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Abstract In astrophysics, the process of a massive body
acquiring matter is referred to as accretion. The extrac-
tion of gravitational energy occurs as a result of the infall.
Since it converts gravitational energy into radiation, accre-
tion onto dark compact objects, e.g. black holes, neutron
stars, and white dwarfs is an extremely significant process
in the astrophysical context. Accretion process is a fruitful
way to explore the features of modified gravity (MOG) theo-
ries by testing the behavior of their solutions associated with
dark compact objects. In this paper, we study the motion of
electrically neutral and charged particles moving in around a
regular spherically symmetric MOG dark compact object to
explore their related innermost stable circular orbit (ISCO)
and energy flux. Then, we turn to investigate the accretion
of perfect fluid onto the regular spherically symmetric MOG
dark compact object. We obtain analytical expressions for
four-velocity and proper energy density of the accreting fluid.
We see that the MOG parameter increases the ISCO radius
of either electrically neutral or charged test particles while
it decreases the corresponding energy flux. Moreover, the
energy density and the radial component of the four-velocity
of the infalling fluid decrease by increasing the MOG param-
eter near the central source.
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1 Introduction

Phenomenologically, dark compact objects are an extensive
family of astrophysical objects, which include black holes,
neutron stars, white dwarfs, etc. In theoretical point of view,
dark compact objects could be predicted in the context of
extended gravity theories as well as in scenarios of the beyond
the standard model of particle physics [1]. Recently, obser-
vations of LIGO/Virgo proved the existence of binary black
holes mergers through detection of gravitational waves [2–
5], and additionally the Event Horizon Telescope (EHT)
revealed the existence of supermassive black holes in center
of galaxy M87 [6–13] and Milky Way [14–19]. Therefore,
it can be naturally anticipated that future advances in the
field of gravitational wave astronomy and very long baseline
interferometry will reveal new species of compact objects.
On the other hand, it is fascinating to understand how and at
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what limits a dark compact object tends to be a black hole
by increasing its compactness, which makes interesting the
study of dark compact objects from a mathematical view-
point.

General Theory of Relativity (GR) designed by Albert
Einstein, besides a lot of achievements in explaining obser-
vations and predicting astonishing phenomena, is not yet
the complete theory to describe gravitational interaction and
corresponding events in the Universe. Reproduction of the
rotation curves of nearby galaxies [20,21], mass profiles of
galaxy clusters [22,23], intrinsic singularities at the center
of black holes, etc are some examples of the failures of GR.
Additionally, GR requires the cosmological constant term �

to explain the positively accelerated expansion of the Uni-
verse at late-time [24,25]. One interesting way to reform GR
is to restructure the geometric part of GR through differ-
ent approaches that can e.g. result in the so-called MOdified
Gravity (MOG), which is a Scalar–Tensor–Vector (STVG)
theory to describe gravitational interaction [26], proposed
and developed by John W. Moffat. A massive vector field
φ in addition to three scalar field as the mass of the vec-
tor field μ̃, the effective gravitational constant G, and the
vector field coupling ξ are responsible for expressing the
gravitational effects of spacetime in MOG setup. The MOG
theory has several achievements in describing astrophysical
observations, such as clarifying the rotation curves of many
galaxies and the dynamics of galactic clusters without dark
matter [27–32], in addition to compatibility with Planck 2018
data [33]. Moreover, several black hole solutions including
non-rotating and rotating ones [34] even with extra dimen-
sions [35], cosmological solutions [36–38] and also, non-
stationary solutions for inhomogeneity distributions of mass-
energy in spacetime [39] are released within the framework
of MOG theory in recent years. Also, many theoretical and
observational efforts have been done to understand the MOG
theory features and how it work in different situations [40–
53]. Interestingly, the solution describing the regular rotat-
ing and non-rotating MOG dark compact object has been
recently explored in Ref. [54]. The shadow behaviour of the
regular rotating and non-rotating MOG dark compact object
is investigated in Ref. [55].

Accretion is a process of particles being dragged onto
a dark compact object. This process releases extra energy
into surroundings, which is a source of some astronomical
phenomena [56,57]; for instance the production of powerful
jets, high-energy radiation, and quasars. A flattened struc-
ture made by rotating gaseous materials that slowly spi-
ral into a massive central body is called an accretion disk.
Accretion disks typically form around compact objects when
interstellar matter exists. Accretion disks of compact objects
are results of rotating gaseous materials in unstable bounded
orbits [56,57]. Under some conditions, the gas particles fall
into gravitational potential of the compact objects, which

causes gravitational energy in the form of heat. The inner
portion of the accretion disk cools down as a result of the
conversion of some heat into radiation [56,57]. The elec-
tromagnetic spectrum of the emitted radiation can be ana-
lyzed when it reaches radio, optical, or X-ray telescopes.
The motion of the gas particles, which may also be related
to the structure and nature of the central mass, determines
the properties of this radiation. As a result, studying accre-
tion disk emission spectra can provide fruitful astrophysical
data. Hence the accretion disks of compact objects drawn a
lot of attention and have been studied in several cases in the
literature [58–79].

The regular non-rotating (spherically symmetric) MOG
dark compact object [54], which can be formed from the
collapse of stellar object, can be tested in astrophysical phe-
nomena, e.g. accretion process. It is the reason we found
it interesting to study accretion disk onto the regular MOG
dark compact object. In this regard, we also aim to study
the motion of electrically neutral and charged test particles
moving in this spacetime, and explore their corresponding
energy flux. The rest of the paper is organized as follows.
In Sect. 2, we review the MOG field equations, and then, we
introduce the regular MOG dark compact object spacetime
and its features. Next, we study the motion of electrically neu-
tral and charged test particles travelling in the regular MOG
dark compact object spacetime in Sect. 3. Then, we inves-
tigate the static spherically symmetric accretion in Sect. 4.
Finally, we end with some conclusions in Sect. 5.

2 Action and field equations of STVG theory

The total action in the theory of STVG is in the form of [26]

S = SGR + SM + Sφ + SS, (1)

where SGR is the Einstein-Hilbert action, SM is the action
of all possible matter sources, Sφ is the action of the (spin 1
graviton) vector field φμ possessing the mass μ̃ as one of the
scalar fields in the theory, and SS is the action of three scalar
fields, which can be expressed as follows

SGR = 1

16π

∫
d4x

√−g
1

G
R, (2)

Sφ = −
∫

d4x
√−g

(
1

4
BμνBμν + V1(φ)

)
ξ, (3)

SS =
∫

d4x
√−g

[
1

G3

(
1

2
gμν∇μG∇νG − V2(G)

)

+ 1

μ̃2G

(
1

2
gμν∇μμ̃∇νμ̃ − V3(μ̃)

)

+ 1

G

(
1

2
gμν∇μξ∇νξ − V4(ξ)

)]
, (4)
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in which gμν is the background metric tensor and g is the cor-
responding determinant, R is the Ricci scalar constructed by
contracting Rμν as the Ricci tensor, G is a scalar field in the
setup, which known as the enhanced Newtonian parameter,
ξ is third scalar field in the setup as the vector field coupling,
V1(φ),V2(G),V3(μ̃), andV4(ξ) are the corresponding poten-
tials of the vector field φμ, and three scalar field G, μ̃, and
ξ , respectively, and Bμν = ∂μφν −∂νφμ, and also ∇μ stands
for the covariant derivative in the spacetime.

In the STVG theory, Tμν = (M)Tμν + (φ)Tμν + (S)Tμν

is the total stress-energy tensor, in which the stress-energy
tensor of matter sources is (M)Tμν , the stress-energy tensor
of the scalar fields is (S)Tμν , and the stress-energy tensor of
the vector field is

(φ)Tμν = −1

4

(
B σ

μ Bνσ − 1

4
gμνB

σλBσλ

)
, (5)

for which V1(φ) = 0. One can find the full field equations of
the STVG framework by variation of the action S concerning
the inverse of the metric tensor, which yields [26]

Gμν + G

(
∇γ ∇γ

1

G
gμν − ∇μ∇ν

1

G

)
= 8πGTμν, (6)

in which the Einstein tensor is defied as Gμν = Rμν −
1
2gμνR.

2.1 Regular MOG static spherically symmetric dark
compact object

The line element of the regular MOG static spherically sym-
metric dark compact object were found under the following
assumptions [54]

• The vector field is massless, i.e., μ̃ = 0, since one can
prove that for MOG compact objects, e.g., black holes
possessing horizons, the mass of the vector field in the
setup is zero.

• The enhanced Newtonian parameter G is defined as a
constant depending on the free dimensionless parameter
α so that G = GN (1 + α) where GN is the Newtonian
constant. Furthermore, the gravitational source charge of
the vector field is Qg = √

αGNM where M is the source
mass. Here, we set GN = 1.

• The vector field coupling is set to unity, i.e., ξ = 1.
• The matter-free field equations of STVG setup is con-

sidered since the MOG dark compact object is a vacuum
solution of the framework.

The above assumptions result in SM = SS = 0 and con-
sequently, we have (M)Tμν = (S)Tμν = 0. Thus, the field
equations (6) now reduce to the following form

Gμν = 8π(1 + α)(φ)Tμν. (7)

Solving the last equation by following the procedure intro-
duced in Ref. [54] leads to the line element of the regular
MOG static spherically symmetric dark compact object as
follows

ds2 = f (r)dt2 − 1

f (r)
dr2 − r2d�2, (8)

where d�2 = dθ2 + sin2 θdϕ2 is the line element of the unit
2-sphere, and also we have defined

f (r) = 1 − 2(1 + α)Mr2

(
r2+α(1 + α)M2

) 3
2

+ α(1 + α)M2r2

(
r2 + α(1 + α)M2

)2 ,

(9)

which satisfies the weak energy condition [80,81]. The MOG
dark compact object possesses a critical value for α as αcri t =
0.674 [54], so that for α ≤ αcri t it has two horizons. It
is worth mentioning that the (spin 1 graviton) vector field
produces a repulsive gravitational force, which prevents the
collapse of the MOG dark compact object to a MOG black
hole with horizon.

Setting α = 0 in the line element (8) recovers the
Schwarzschild black hole in GR. Moreover, the asymptotic
behavior of the MOG compact object in the limit of r → ∞
is deduced as follows

f (r) ≈ 1 − 2(1 + α)M

r
+ α(1 + α)M2

r2 . (10)

When, α ≤ αcri t , the two horizons of the regular MOG
static spherically symmetric dark compact object in the limit
of r → ∞ can be found as

r± = M
(

1 + α ± √
1 + α

)
. (11)

When, α > αcri t , there is a naked regular MOG static
spherically symmetric dark compact object with no horizon.
On the other hand, approaching the source, i.e., r → 0, the
MOG dark compact object behaves to the form

f (r) ≈ 1 − r2

M2

(
2
√

1 + α − √
α

(1 + α)α
3
2

)
. (12)

Therefore, the spacetime metric of the MOG dark compact
object is regular so that f (0) = 1. Additionally, one can
verify that the Kretschmann scalar Rμνλσ Rμνλσ in addition
to the Ricci scalar R in the spacetime metric are regular at
r = 0.

For the static spherically symmetric system, the gravita-
tional redshift z at the asymptotic distance r to an observer
is gathered as follows

z(r) = 1√
f (R)

− 1, (13)

where the radius of the MOG dark compact object is R. For
α < αcri t , in the limit of r → ∞, the gravitational redshift
of the compact object becomes infinite on the horizon r+
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and for α > αcri t it has a finite value. Based on the observa-
tional data, however, one anticipates that the regular MOG
dark compact object is adequately dark to be compatible with
binary X-ray observations, so that α ∼ αcri t [54].

3 Motion of test particle in MOG dark compact object
spacetime

The geodesic structure of the spacetime of the MOG compact
object governs the trajectory of a test particle. In this sec-
tion, we investigate the time-like geodesics around the reg-
ular MOG static spherically symmetric dark compact object
through Lagrangian formalism [47,48,78,82,83].

Under temporal translation and rotation around the axes
of symmetry, the line element (8) of the MOG dark compact
object associated with the metric coefficient (9) is invari-
ant since this spacetime is static and spherically symmetric.
Therefore, the spacetime of the regular MOG dark compact
object possesses two Killing vectors as follows

(t)ζμ ∂

∂xμ
= (1, 0, 0, 0)

∂

∂xμ
= ∂

∂t
,

(ϕ)ζμ ∂

∂xμ
= (0, 0, 0, 1)

∂

∂xμ
= ∂

∂ϕ
.

(14)

These Killing vectors imply two conserved (constants)
quantities for the motion of the test particle in the spacetime,
which we aim to find them in the following. We plan to inves-
tigate the trajectory of both electrically neutral and charged
test particles motion around the regular MOG dark compact
object.

3.1 Motion of electrically neutral test particle

The Lagrangian of a test particle moving in the spacetime of
the regular MOG dark compact object is expressed as

L = 1

2
gμν ẋ

μ ẋν, (15)

where over-dot stands for derivative with respect to the affine
parameter τ . The four-velocity of the test particle is defined
as ẋμ ≡ uμ = (ut , ur , uθ , uϕ). We interested in the planar
motion of the particle on the equatorial plane with θ = π

2 .
Thus, utilizing the Euler–Lagrange equation

d

dτ

(
∂L
∂ ẋμ

)
− ∂L

∂xμ
= 0, (16)

one can find two conserved quantities of the particle motion
corresponding with two Killing vectors as follows

dt

dτ
= ṫ ≡ ut = E

f (r)

= E(
1 − 2(1+α)Mr2

(r2+α(1+α)M2)
3
2

+ α(1+α)M2r2

(r2+α(1+α)M2)
2

) , (17)

dϕ

dτ
= ϕ̇ ≡ uϕ = L

r2 , (18)

where E and L as two conserved quantities are the total
energy and the total angular momentum per unit mass of the
particle, respectively. Moreover, using the Euler–Lagrange
equation, we can find dθ

dτ
= θ̇ ≡ uθ = 0 in addition to

dr

dτ
= ṙ ≡ ur =

[
− f (r)

(
1 − E2

f (r)
+ L2

r2

)] 1
2

. (19)

Based on the normalization condition for the four-velocity
of the test particle, i.e., uμuμ = 1 and utilizing Eqs. (9), (17),
and (18) one can find

ṙ2 = E2 − Vef f , (20)

where Vef f is the effective potential of the test particle, which
is defined as

Vef f = f (r)

(
1 + L2

r2

)

=
⎛
⎝1 − 2(1 + α)Mr2

(
r2 + α(1 + α)M2

) 3
2

+ α(1 + α)M2r2

(
r2 + α(1 + α)M2

)2

)(
1 + L2

r2

)
. (21)

Effective potential analysis is significant in studying
geodesic structure. The location of the circular orbits, for
example, is determined by the local extremum of the effec-
tive potential. Figure 1 illustrates the behavior of the effective
potential Vef f for the MOG dark compact object in compar-
ison with the Schwarzschild case in GR. From Fig. 1 we see
that increasing the value of the parameter α leads to incre-
ment of the effective potential.

3.1.1 Stable circular orbits around regular MOG dark
compact object

The main characteristic of circular orbits is ṙ = r̈ = 0 or
equivalently ur = u̇r = 0. Hence, from Eqs. (17)–(19) one
can verify that for circular orbits, E2 = Vef f and conse-

quently,
dVef f
dr = 0 must be satisfied. Solving these two equa-

tions simultaneously by using Eqs. (9), (17), and (18) results
in the following relations for the total (specific) energy E ,
total (specific) angular momentum L , and the angular veloc-
ity �ϕ ≡ dϕ

dt = uϕ

ut for the test particle in MOG dark compact
object background
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Fig. 1 The illustration of Vef f of the regular static spherically sym-
metric MOG dark compact object versus r for different values of α. The
black solid line is for the case of Schwarzschild solution in GR

E2 = 2 f 2(r)

2 f (r) − r f ′(r)
=

(
α(1 + α)M2 + r2

)3

y1

×
⎛
⎝1 − 2(1 + α)Mr2

(
r2 + α(1 + α)M2

) 3
2

+ α(1 + α)M2r2

(
r2 + α(1 + α)M2

)2

⎞
⎠

2

,

(22)

L2 = r3 f ′(r)
2 f (r) − r f ′(r)

= y2(1 + α)Mr4

y1

√
α(1 + α)M2 + r2

, (23)

�2
ϕ = 1

2r
f ′(r) = y2(1 + α)M(

α(1 + α)M2 + r2
) 7

2

, (24)

where a prime stands for differentiation with respect to radial
coordinate r and also we have defined

y1 ≡ r6 + α3(1 + α)3M6 + 3α2(1 + α)2M4r2

+(1 + α)Mr4
(

5αM − 3
√

α(1 + α)M2 + r2
)

, (25)

y2 ≡ r4 − αMr2 (y1 + (1 + α)M)

−α2(1 + α)M3 (2(1 + α)M − y1) . (26)

According to Eqs. (22)–(24) one can see that the condi-
tion 2 f (r) − r f ′(r) > 0 for existence of the circular orbits
is required in order the total energy and the total angular
momentum to be real.

Figure 2 demonstrates the behavior of the E2 versus r
from which we can see that growing the parameter α leads to
amplify the specific energy of the test particle in the space-
time of the regular MOG dark compact object while far from
the source, the energy becomes almost constant. The corre-
sponding curve of the Schwarzschild solution in GR is also
shown in Fig. 2 which has always smaller values than the
regular MOG dark compact object case.

Figure 3 is the illustration of L2 versus r associated with
the regular MOG dark compact object in comparison with
Schwarzschild solution in GR for different values of α, so
that again increasing it results in growing the value of L2. All
of these figures have smaller values of E2 and L2 than the

Fig. 2 The plot of E2 of the regular static spherically symmetric MOG
dark compact object versus r for different values of α. The black line
is for the case of Schwarzschild solution in GR

Fig. 3 The behavior of L2 of the regular static spherically symmetric
MOG dark compact object versus r for different values of α. The black
solid line is for the case of Schwarzschild solution in GR

corresponding ones in the case of the Schwarzschild solution
in GR.

In Fig. 4 we see the curves of �2
ϕ versus r for the reg-

ular MOG dark compact object in comparison with the
Schwarzschild case in which we see that increasing α leads
to reduction of the value of �2

ϕ so that the curve of the
Schwarzschild case contains higher values of �2

ϕ than corre-
sponding ones in the regular MOG dark compact object.

The location of the stable circular orbits correspond to
the local minimum of the effective potential. Accordingly,
an innermost (marginally) stable circular orbit (ISCO) needs
the conditions

dVef f
dr

= 0,
d2Vef f
dr2 = 0, (27)

to be satisfied. The existence of ISCO, rI SCO is purely a
relativistic phenomenon. Instead of classical mechanics in
which the effective potential possesses just one minimum;
in GR however, the effective potential can generate either a
local maximum and minimum or no extremum, relying on
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the choice of L in the effective potential. A stable outer and
an unstable inner circular orbit for the test particle is related
to this extremum. ISCO is where the stable and unstable cir-
cular orbits coincide for a specific value of L . Due to the
complexity of the metric coefficient function (9) the explicit
analytical form of ISCO associated with the regular MOG
dark compact object is not available. Hence, solving equa-
tion set (27) numerically by using Wolfram Mathematica
(v13.1) results in numerical values of the ISCO for the test
particle moving in the spacetime of the MOG dark compact
object. To do this, we set M = 1. Then, for three different
values of the MOG parameter α in Table 1 we collect the
numerical values of rI SCO , L I SCO , and EI SCO for the regu-
lar static spherically symmetric MOG dark compact object.
On the other hand, we know that for Schwarzschild black
hole in GR, the ISCO is rI SCO = 6M . Therefore, from Table
1 we see that increasing the value of α leads to grow the
ISCO associated with the regular MOG dark compact object.

Fig. 4 The illustration of�2
ϕ of the regular static spherically symmetric

MOG dark compact object versus r for different values of α. The black
solid line is for the case of Schwarzschild solution in GR

Table 1 The numerical values
of rI SCO , L I SCO , and EI SCO for a
test particle moving in the
regular static spherically
symmetric MOG dark compact
object spacetime associated with
different values of α

α rI SCO L I SCO EI SCO

0.09 6.252 3.699 0.940

0.2 6.534 3.980 0.937

0.4 6.968 4.470 0.932

3.1.2 Radiant energy flux

In accretion process, the falling particles at infinity from rest
will accrete onto the source mass. During the process, the
gravitational energy of these falling particles will release and
then convert into the electromagnetic radiation [56,84]. One
can express the radiation flux of the accretion disc around
the central mass in the following form, which depends on
the specific angular momentum, the specific energy, and the
angular velocity of the falling test particle [56,84]

F(r)=− Ṁ

4π

�′
ϕ√−g

(
E − L�ϕ

)2

∫ r

rI SCO

(
E − L�ϕ

)
L ′dr,

(28)

where Ṁ is the accretion rate and g = det(gμν) = −r4 sin2 θ

is the determinant of the background metric tensor associated
with the line element (8), so that on the equatorial plane,
we have g = −r4. Inserting Eqs. (22)–(24) into Eq. (28)
and also, using numerical data in Table 1, one can find an
approximate expression for radiation flux as follows

F(r) ≈ − (1 + α)ṀM
3
2 y1y3

(
α(1 + α)M2 + r2

) 5
4

96π(r − 3M)r
3
2
√

(1 + α)My2

(
(1 + α)Mr3y2 − r f (r)

(
α(1 + α)M2 + r2

) 7
2

)2

×
(

18(α − 2)Mr2 + 6(α + 2)r3 − M2α(6M + 79r) − 4(3 + α)
√

3Mr
3
2 (3M − r) tanh−1

[√
3M

r

])
, (29)

where we have defined

y3 ≡ Mαr3
(

4
√

α(1 + α)M2 + r2 + 9(1 + α)M
)

+4α2(1 + α)M3r

×
(

3(1 + α)M − 2
√

α(1 + α)M2 + r2
)

− 3r5. (30)

Figure 5 is the illustration of energy flux F(r) over r
associated with the regular MOG dark compact object so
that Fig. 5a is related to α = 0.09 and Fig. 5b is related to
α = 0.2. From Fig. 5 we see that the energy flux in the setup
is zero at r < rI SCO and then at r = rI SCO it grows from zero
to infinity at r > rI SCO and after that, it again becomes zero
at far from the source. Comparing Fig. 5a, b demonstrates
that increasing the value of α leads to decrease the energy in
the setup.

It also should be noted that the thermodynamical equilib-
rium is basic demand for the model describing the steady-
state accretion disk. As a result, the radiation emitted from
the accretion disk surface is equivalently as the black body
spectrum [46,56,84]. This means that the energy flux and
the effective temperature of the accretion disk can be related
with the well-known Stefan–Boltzman lawF(r) = σSB T

4 in
which σSB is Stefan–Boltzman constant. Therefore, from this
law, one can find the effective temperature T of the accre-
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Fig. 5 The behavior of F(r) versus r for the regular static spherically symmetric MOG dark compact object

tion disk. Furthermore, at the distance d with the inclination
angle γ to the central mass, the luminosity of accretion disk
can be found as [46,56,84]

L(υ) = 4πd2 I (υ) = 8 cos γ

π∫ r

rI SCO

∫ 2π

0

υ3
e r

exp
[

υe
T

] − 1
dϕ dr,

(31)

where I (υ) is the thermal energy flux as function of fre-
quency υ, while υe = υ(1 + z) is the emitted frequency at
the redshift z. Calculating the luminosity of accretion disk
from the above equation is not possible, analytically due to
the complexity of the relations.

3.2 Motion of electrically charged test particle

Assuming magnetic coupling process [85–89] in the vicinity
of regular MOG dark compact object, the energy and angular
momentum can be transferred from the dark compact object
to the accretion disk. Therefore, on the horizon of the dark
compact object, the strength of the magnetic field is expressed
as [48]

Bh = 1

rh

√
2mpṀc, (32)

where the index (h) stands for horizon, c is the speed of
light, and mp is the magnetization parameter so that mp = 1
means the equipartition state for the accretion and magnetic
coupling process. Theoretical and experimental evidence
demonstrate that the magnetic field can be exist in the sur-
roundings of black holes and other compact objects [90–92].
Here, we suppose a weak magnetic field whose energy cannot
influence the background geometry [93]. Accordingly, this
type of regular MOG dark compact object is called weakly
magnetized.

Following the procedure introduced in Refs. [48,89,91],
we aim to calculate the magnetic field in the surroundings of
the regular MOG dark compact object. The Killing vectors
introduced in Eq. (14) satisfy the following Killing vector
equation [94]

�ζμ = 0, (33)

where � = ∂μ∂μ is the d’Almmbert operator. In Lorentz
gauge, the above equation is equivalent with the Maxwell
equation for four-potential

Aμ

;μ = 0, (34)

in which Aμ is the four-potential and “;” shows covariant
derivative. The expression

Aμ = B

2
(ϕ)ζμ =

(
0, 0, 0,

B

2

)
, (35)

is related to a weak magnetic field, which is homogeneous at
the spatial infinity with the strength B. Moreover, the mag-
netic field four-vector can be defined as follows

Bμ = −εμνλσ

√−g
Fλσ wν, (36)

where εμνλσ is the Levi-Cività symbol, Fλσ = Aν;μ − Aμ;ν
is the Maxwell tensor, andwν is the four-velocity of a local
observer at rest, which can be written as

wν =
(

1√
f (r)

, 0, 0, 0

)
. (37)

Utilizing Eqs. (34)–(37) results in the magnetic field four-
vector expression, which on the equatorial plane is as follows

Bν =
(

0, 0,− B
√

f (r)

r
, 0

)
. (38)

It is assumed that the magnetic field is directed upward
along the z-axis at spatial infinity [95]. Figure 6 demonstrates
the illustration of Bθ in vicinity of the regular MOG dark
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Fig. 6 The illustration of Bθ around the regular static spherically sym-
metric MOG dark compact object versus r for different values of α,
where we have set M = 1. The black solid line is for the case of
Schwarzschild solution in GR

compact object versus r for different values of α. We see from
Fig. 6 that far from the regular MOG dark compact object,
the magnetic field is almost vanishing. Also, the effect of α

on Bθ is to reduce its strength.
The Lagrangian of an electrically charged test particle with

rest mass m and electric charge q travelling in the spacetime
of the regular MOG dark compact object is expressed as

L̃ = 1

2
gμν ẋ

μ ẋν + 1

m
Aμ ẋ

μ. (39)

Similar to the previous section, using Euler–Lagrange
equation (16), on the equatorial plane we can find

ṫ ≡ ũt = Ẽ

f (r)

= Ẽ(
1 − 2(1+α)Mr2

(r2+α(1+α)M2)
3
2

+ α(1+α)M2r2

(r2+α(1+α)M2)
2

) ,

(40)

and

ϕ̇ ≡ ũϕ = L̃

r2 − qB

2m
, (41)

where ũμ is the four-velocity of the electrically charged test
particle, Ẽ and L̃ are the specific energy and specific angular
momentum of the electrically charged test particle respec-
tively. Again, on the equatorial plane, one can employ the
normalization condition ũμũμ = 1 to gain

ṙ2 = Ẽ2 − Ṽe f f , (42)

Fig. 7 The illustration of Ṽe f f of the massive electrically charged test
particle moving in the spacetime of the regular static spherically sym-
metric MOG dark compact object versus r for different values of α. The
black solid line is for the case of Schwarzschild solution in GR

where Ṽe f f is the effective potential of the electrically
charged test particle, which is

Ṽe f f = f (r)

⎛
⎝1 + r2

(
L̃

r2 − qB

2m

)2
⎞
⎠

=
(

1 − 2(1 + α)Mr2

(
r2 + α(1 + α)M2

) 3
2

+ α(1 + α)M2r2

(
r2 + α(1 + α)M2

)2

)

×
⎛
⎝1 + r2

(
L̃

r2 − qB

2m

)2
⎞
⎠ . (43)

Figure 7 is the illustration of Ṽe f f versus r for the elec-
trically charged test particle moving in the spacetime of the
regular MOG dark compact object for different values of α.
From Fig. 3 we see that increasing α firstly leads to increase
the effective potential while in far from the source decreases
it.

3.2.1 Stable circular orbits around regular MOG dark
compact object for electrically charged particles

Similar to previous section, the conditions E2 = Vef f and
dVef f
dr = 0 must be satisfied for circular orbits. Therefore, one

can solve these equations simultaneously by using Eqs. (9),
(40), and (41) to obtain the following relations
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Table 2 The numerical values
of r̃ I SCO , L̃ I SCO , and Ẽ I SCO for
an electrically charged test
particle moving in the regular
static spherically symmetric
MOG dark compact object
spacetime associated with
different values of α

α r̃ I SCO L̃ I SCO Ẽ I SCO

0.09 0.135 0.844 0.403

0.2 0.303 4.428 0.246

0.4 0.664 21.659 0.134

Ẽ2 = f (r)

⎛
⎜⎝1 +

r
(√

B2q2r f (r)2 − m2r f ′(r)2 + 2m2 f (r) f ′(r) − Bq
√
r f (r)

)2

m2 (r f ′(r) − 2 f (r))2

⎞
⎟⎠ , (44)

L̃ = 2r
3
2
√
B2q2r f (r)2 − m2r f ′(r)2 + 2m2 f (r) f ′(r) − Bqr3 f ′(r)

4m f (r) − 2mr f ′(r)
, (45)

�̃2
ϕ =

(√
B2q2r f (r)2 − m2r f ′(r)2 + 2m2 f (r) f ′(r) − Bq

√
r f (r)

)2

2r
(
f (r)

(
B2q2r2 + 2m2

) − r
(
Bq

√
r
√
B2q2r f (r)2 − m2r f ′(r)2 + 2m2 f (r) f ′(r) + m2 f ′(r)

)) . (46)

Equations (44)–(46) in the limit of q → 0 reduce to Eqs.
(22)–(24).

The location of ISCO for the massive electrically charged
test particle moving in regular MOG dark compact object sat-
isfies the conditions (27). As we previously mentioned, the
explicit analytical form of ISCO for the electrically charged
test particle associated with the regular MOG dark compact
object is not available due to complexity of the metric coef-
ficient (9). Thus, one can numerically solve the equations set
(27) by using, for instance, Wolfram Mathematica (v13.1)
to obtain the numerical values of the ISCO for the electri-
cally charged test particle moving in the spacetime of the
MOG regular dark compact object. To do this, in Table 2 we
again set M = 1 and for different values of α we collect
the numerical values of r̃ I SCO , L̃ I SCO , and Ẽ I SCO correspond-
ing with the electrically charged test particle for the regu-
lar static spherically symmetric MOG dark compact object.
Table 2 demonstrates that increasing the value of α causes to
increase the ISCO radius of electrically charged test particle
associated with the regular MOG dark compact object. Com-
paring Tables 1 and 2 shows us that the values of ISCO related
to the weakly magnetised regular MOG dark compact object
are smaller than the corresponding ones related to the regular
MOG dark compact object. Therefore, the electric charge of
the test particle and the magnetic field in the vicinity of the
source affect the ISCO radius by reducing it.

Similar to previous section, one can find the energy flux
associated with the massive electrically charged particle
moving in the regular MOG dark compact object spacetime
by inserting Eqs. (44)–(46) into Eq. (28). Also, the corre-
sponding luminosity of the accretion disk can be found by
Eq. (31). However, due to the lengthy and complexity of the
related equations, it cannot be solved analytically.

4 Accretion onto regular MOG dark compact object

In this section, we aim to find the basic dynamical equations
and parameters associated with the accretion onto the regu-
lar MOG dark compact object following the procedure per-
formed in Refs. [76,78]. To do this, we take into account the
spherically symmetric accretion in the equatorial plane with
θ = π

2 . Additionally, we assume that the accreting matter is

inflowing perfect fluid onto the regular MOG dark compact
object.

4.1 Dynamical equations

The perfect fluid stress-energy tensor is expressed as

Tμν = (p + ρ)vμvν − pgμν, (47)

where p, ρ, and vμ are pressure, energy density, and four-
velocity of the perfect fluid, respectively. On the equatorial
plane, the only non-vanishing four-velocity components are
vμ = (vt , vr , 0, 0). To be precise, the four-velocity of the
perfect fluid vμ and the four-velocity of the test particle uμ

in previous section are equivalent since the inflowing fluid,
in fact, travels on the time-like geodesics creating the accre-
tion disk around the MOG compact object. Therefore, the
trajectory of inflowing fluid and the test particle in previ-
ous section are identical. In other words, the test particle in
the previous section is assumed here as perfect fluid. On the
other hand, according to the normalization condition for the
four-velocity of the perfect fluid vμvμ = 1 one can find

vt =
√

f (r) + (vr )2

f (r)

=

√
1 − 2(1+α)Mr2

(r2+α(1+α)M2)
3
2

+ α(1+α)M2r2

(r2+α(1+α)M2)
2 + (vr )2

1 − 2(1+α)Mr2

(r2+α(1+α)M2)
3
2

+ α(1+α)M2r2

(r2+α(1+α)M2)
2

,

(48)

where the condition vr < 0 must be satisfied since the accre-
tion is an inward flow of matter while the assumption vt > 0

123



449 Page 10 of 14 Eur. Phys. J. C (2023) 83 :449

is taken into account because we interested in forward flow
in time.

From the conservation of the stress-energy tensor, i.e.,
Tμν

;ν = 0 in which (;) stands for covariant derivative, we can
find the following relation

(p + ρ)vr r2

√√√√1 − 2(1 + α)Mr2

(
r2 + α(1 + α)M2

) 3
2

+ α(1 + α)M2r2

(
r2 + α(1 + α)M2

)2 + (vr )2 = A0, (49)

where A0 is a constant of integration. Additionally, we can
project the stress-energy tensor conservation law onto the
perfect fluid four-velocity to the form of

vμT
μν

;ν = 0, (50)

which results in the following relation

ρ′

p + ρ
+ (vr )′

vr
+ 2

r
= 0. (51)

By integrating, the last equation yields

r2vr exp

[∫
dρ

p + ρ

]
= −A1, (52)

where A1 is a constant of integration. Since the condition
ur < 0 holds, one can deduce

(p + ρ) exp

[
−

∫
dρ

p + ρ

]

√√√√1 − 2(1 + α)Mr2

(
r2 + α(1 + α)M2

) 3
2

+ α(1 + α)M2r2
(
r2 + α(1 + α)M2

)2 + (vr )2 = A2,

(53)

where A2 is an integration constant.
Equation of mass flux in the setup is given by

(ρvμ);μ = 0, (54)

where on the equatorial plane results in the following relation

ρvr r2 = A3, (55)

where A3 is an integration constant.

4.2 Dynamical parameters

Isothermal fluids with the equation of state p = ωρ where
ω is the equation of state parameter are taken into account.

During the motion of these fluids, the temperature remains
constant. Consequently, Eqs. (52), (53), and (55) yields

p + ρ

ρ

×
√√√√1 − 2(1 + α)Mr2

(
r2 + α(1 + α)M2

) 3
2

+ α(1 + α)M2r2
(
r2 + α(1 + α)M2

)2 + (vr )2 = A4,

(56)

where A4 is an integration constant. Inserting p = ωρ into
the lest equation yields the vr as follows

vr =
(

1

ω + 1

) √√√√√A2
4 − (ω + 1)2

⎛
⎝1 − 2(1 + α)Mr2

(
r2 + α(1 + α)M2

) 3
2

+ α(1 + α)M2r2

(
r2 + α(1 + α)M2

)2

⎞
⎠. (57)

Figure 8 is the graph of vr versus r for the regular static
spherically symmetric MOG dark compact object in compar-
ison with Schwarzschild black hole in GR. From Fig. 8, we
see that the fluid with the radial element of its four-velocity
corresponding with each curve (associated with each value
of α) begins to move towards the regular MOG dark compact
object from rest at large r , as previously mentioned. Then,
it approaches the regular static spherically symmetric MOG
dark compact object to again reach the rest state. Further-
more, from Fig. 4, we see that decreasing the parameter α

leads to increase the value of vr far from the source. More-
over, the curve of Schwarzschild case goes to infinity by
approaching the regular static spherically symmetric MOG
dark compact object.

The proper energy density of the fluid can easily be deter-
mined as follows

ρ =
(
A3

r2

)

× (ω + 1)√√√√A2
4 − (ω + 1)2

(
1 − 2(1+α)Mr2

(
r2+α(1+α)M2

) 3
2

+ α(1+α)M2r2(
r2+α(1+α)M2

)2

) .

(58)
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Fig. 8 The illustration of vr of the regular static spherically symmetric
MOG dark compact object versus r for different values of α. The black
solid line is for the case of Schwarzschild solution in GR

Fig. 9 The illustration of ρ of the regular static spherically symmetric
MOG dark compact object versus r for different values of α. The black
solid line is for the case of Schwarzschild solution in GR

Figure 9 demonstrates the illustration of ρ versus r for
the regular static spherically symmetric MOG dark compact
object in comparison with Schwarzschild black hole in GR.

4.3 Mass evolution

The central source mass of a black holes as well as a dark
compact object is a dynamic quantity over time. Accretion
process, for example, leads to grow their mass by accreting
the surrounding matter onto them. The mass change measure

or accretion rate of the regular MOG dark compact object
can be obtained through Ṁ ≡ dM

dt = − ∫
T r
t dS in which the

surface element of the object is dS = (√−g
)
dθdϕ and also

T r
t = (p + ρ)vtv

r . Consequently, the accretion rate Ṁ can
be obtained as

Ṁ = −4πr2vr (p + ρ)

×
√√√√1 − 2(1 + α)Mr2

(
r2 + α(1 + α)M2

) 3
2

+ α(1 + α)M2r2

(
r2 + α(1 + α)M2

)2 + (vr )2

≡ −4π A0, (59)

where the definitions A0 ≡ −A1A2 and A2 ≡ (p∞ + ρ∞)√
f (r∞) are assumed. Finally, we gain

Ṁ = 4π A1M
2 (p∞ + ρ∞)

√
f (r∞). (60)

One can use Eq. (60) to obtain a relation between the initial
mass Mi and the mass in arbitrary time t as follows

Mt = Mi

1 − t
tcr

, (61)

where the critical accretion time is defined as tcr =(
4π A1Mi (p + ρ)

√
f (r∞)

)−1. At t = tcr , the mass of the
regular MOG dark compact object approaches infinity in a
finite time.

4.4 Critical accretion

In accretion process, the inward flow of the fluid from rest
at far from the source (regular MOG dark compact object)
begins to move and continues to accelerate due to the grav-
itational field of the central source. During the inward flow
motion of the fluid towards the source, it reaches sonic (crit-
ical) point, where the four-velocity of the fluid coincides the
local speed of sound cs . From this critical point to the central
source, the inward flow accelerated motion has supersonic
velocities. A radial velocity gradient is needed to find the
critical point.

The derivatives of Eqs. (55) and (56) yield

ρ′

ρ
+ (vr )′

(vr )
+ 2

r
= 0, (62)

and

ρ′

ρ

(
d ln[p + ρ]
d ln[ρ] − 1

)
+ vr (vr )′

(
α(1 + α)M2 + r2

) 7
2 + y2(1 + α)Mr

(
α(1 + α)M2 + r2

) 7
2

(
1 − 2(1+α)Mr2

(r2+α(1+α)M2)
3
2

+ α(1+α)M2r2

(r2+α(1+α)M2)
2 + (vr )2

) = 0.
(63)

Equations (62) and (63) result in the following relation

d ln[vr ]
d ln[r ] = D1

D2
, (64)

123



449 Page 12 of 14 Eur. Phys. J. C (2023) 83 :449

where we defined

D1 ≡ −2V 2

+ y2(1+α)Mr2

(
α(1+α)M2+r2

) 7
2

(
1− 2(1+α)Mr2

(r2+α(1+α)M2)
3
2

+ α(1+α)M2r2

(r2+α(1+α)M2)
2 + (vr )2

) ,

(65)

and

D2 ≡V 2 − (vr )2

1 − 2(1+α)Mr2

(r2+α(1+α)M2)
3
2

+ α(1+α)M2r2

(r2+α(1+α)M2)
2 + (vr )2

,

(66)

in which

V 2 ≡ d ln[p + ρ]
d ln[ρ] − 1. (67)

When the condition D1 = D2 = 0 is satisfied, the critical
points occur. This condition first gives us

V 2
cr = r f ′(r)

4 f (r) + r f ′(r)
, (68)

so that the positivity of its denominator determines the range
of the critical radius by the following inequality

4

⎛
⎝1 − 2(1 + α)Mr2

(
r2 + α(1 + α)M2

) 3
2

+ α(1 + α)M2r2

(
r2 + α(1 + α)M2

)2

⎞
⎠

+ 2y2(1 + α)Mr2

(
α(1 + α)M2 + r2

) 7
2

> 0. (69)

Additionally, the condition for critical points give us

(vrcr )
2 = 1

4
r f ′(r) = y2(1 + α)Mr2

2
(
α(1 + α)M2 + r2

) 7
2

, (70)

where the index (cr ) in Eqs. (68) and (70) stands for critical
values. Finally, the local sound speed c2

s = dp
dρ can be found

as

c2
s = −1 + A4√√√√1 − 2(1 + α)Mr2

(
r2 + α(1 + α)M2

) 3
2

+ α(1 + α)M2r2
(
r2 + α(1 + α)M2

)2 + (vr )2.

(71)

5 Summary and conclusions

In this paper, we explored the accretion onto the regular
spherically symmetric MOG dark compact object as well
the electrically neutral and charged particles motion in its
spacetime, by following the Lagrangian formalism. We found
out that the effective potential of the neutral particle moving
in the spacetime of the regular MOG dark compact object
increases by increasing the value of the parameter α, while

for the effective potential of the electrically charged parti-
cle, it is not the case far from the source. Moreover, we
demonstrated that the parameter α of the MOG setup ampli-
fies the specific energy and angular momentum of the test
particle, while it decreases the angular velocity. We also
showed that the parameter α increases the ISCO radius of
either electrically neutral or charged test particles. We saw,
however, that the ISCO radius of the electrically neutral
(charged) particle associated with the regular MOG dark
compact object is larger (smaller) than the corresponding
one in the Schwarzschild black hole in GR. By treating the
energy flux of the accretion disk related to the neutral parti-
cle, we proved that the energy flux peaks after reaching the
ISCO and then falls to zero extremely fast, while the param-
eter α of the MOG setup decreases it. Furthermore, the radial
component of the four-velocity and the energy density of the
accreting fluid reduce by growing the parameter α near the
source, while it is not the case at far from the source.
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