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Abstract We consider the propagation of gravitational
waves in the late-time Universe in the presence of matter dis-
tribution inhomogeneities, and we also consider the cosmic
fluid to be viscous. In this work, we investigate the cumulative
effect of inhomogeneities and viscosity of the cosmic-fluid
on the observables associated with the sources of the gravi-
tational waves. Employing Buchert’s averaging procedure in
the backreaction framework, we consider a model of space-
time in which matter is distributed in-homogeneously across
space. Using the modified redshift versus distance relation,
through the averaging process in the context of the model,
we study the variation of the redshift-dependent part of the
observed gravitational wave amplitude for different combi-
nations of our model parameters while simultaneously con-
sidering damping of the gravitational wave amplitude due to
viscosity of the cosmic-fluid. Then, we investigate the dif-
ferences occurring in the variation of the redshift-dependent
part of the observed gravitational wave amplitude due to con-
sideration of viscous attenuation. We show that there are
significant deviations after the inclusion of viscous attenu-
ation in our analysis, depending on the chosen value of the
coefficient of viscosity. Our result signifies the importance
of the effect of viscosity, within the model of an inhomoge-
neous Universe, on precision measurements of parameters of
compact-binary sources of gravitational waves.
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1 Introduction

The century-old prediction of the possible existence of Grav-
itational waves (GWs) in Einstein’s theory of General Rela-
tivity [1,2] has recently found confirmation from the Laser
Interferometer Gravitational-Wave Observatory (LIGO), and
Virgo scientific collaborations [3–8], which has opened a new
window to decipher the mysteries of Universe. With more
and more GW data pouring in, one expects that the GWs will
provide more insight into diverse phenomena, such as the
origins of black holes, the extreme conditions inside neutron
stars, the chronicle of how the Universe structured itself into
galaxies, the physics of the first few moments in the after-
math of the Big-bang and the standard picture of Universe
itself.

Since gravitational wave observations are used to infer
various fundamental properties related to the source of emis-
sion, it is important to have a complete understanding of the
physics of their propagation from the source to us through
the intervening background which in the present Universe
is dominated by the dark components, viz., dark matter and
dark energy. Properties of the cosmic fluid could be cause
for significant attenuation of the amplitude of GWs propa-
gating through it. It may be noted that though electromagnetic
(EM) waves are not affected by the viscosity of matter, GWs
are indeed affected by viscosity [9–15]. GWs have to work
against the viscous matter while passing through it, resulting
in loss of its energy, which is manifested in attenuation of
amplitude or damping of the GWs.1 Studies [16] have been
done analyzing the interaction between a viscous fluid (the
primordial plasma in this case) and the primordial gravita-
tional waves using a relativistic hydrodynamic theory. There

1 It may be mentioned that similar damping occurs in EM waves when
they traverse through any matter having sufficiently high conductivity.
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also exist studies [17,18] describing damping of GWs due
to non-collisional media during the propagation in alternate
gravitational theories. For example, it is possible for the lon-
gitudinal scalar modes of the GWs from Horndeski theories,
to be damped by the non-collisional ensemble of massive
particles.

Cosmologists have used viscosity in wide-ranging studies
over the years. The initial singularity at the big bang can be
avoided by invoking shear, and bulk viscosity [19,20]. Vis-
cosity has been used to explain dark energy [21–23], and it
has been shown that the Universe’s accelerated expansion
can be due to the effect of viscosity [19,22–27]. In certain
other schemes, the neutrino mass [28] and the 21-cm emis-
sion temperature [29] can also be constrained using viscous
cosmology. The viscous matter in the path of propagation
of GWs could be most likely in the form of certain types
of dark matter [24,30–33], though even some of the visi-
ble stellar matter may also have some amount of viscosity.
Such dark matter with dissipative dynamics induced by vis-
cosity can possibly settle the strain between Planck Cosmic
Microwave Background (CMB) and Large Scale Structure
(LSS) observations [34]. GWs in the presence of viscosity
have been suggested as probes of such viscous cosmological
models [14].

Cosmological observations have also revealed that though
the Universe is smooth and uniform on the very largest
of scales, given the standard picture of the Big Bang and
the known age of the Universe, this is not true for smaller
scales. The transition from homogeneity to inhomogeneity
at smaller scales has been indicated by various tests from
cosmological observations like the WiggleZ Dark Energy
Survey [35]. Analysis based on Sloan Digital Sky Survey
[36] have revealed absence of homogeneity in the large-scale
galaxy distribution. Current estimates to analyze large-scale
fluctuations in the luminous red galaxy samples based on
higher-order correlations have found significant (more than
3 σ̄ ) deviations from the � cold dark matter (�CDM) mock
catalogues on samples as large as 500 h−1 Mpc [37]. Thus,
inhomogeneities due to structures may have important effects
on length scales even as large as 500 h−1 Mpc.

It has been argued that local inhomogeneities may impact
the overall evolution of the Universe, through the backreac-
tion arising from the process of averaging [38–44]. The back-
reaction effect quantifies the non-linear process of structure
formation on the mean global evolution of the Universe. Sev-
eral works have been done to explain the accelerated expan-
sion of the late-time Universe through backreaction [45–48],
though there exists a debate in the literature [49] whether
inhomogeneities could account for the accelerated expan-
sion. Recently, the Hubble tension [50,51] arising from a
discrepancy in the inferred value of the Hubble parameter
from local measurements compared to that from early Uni-
verse physics, has attracted a lot of attention. It may be noted

that backreaction induced curvature may possibly explain the
larger values of the Hubble parameter obtained locally [52].

Generally, GW analysis is done by deeming that GW
propagates through a homogeneous and isotropic spacetime,
described by an FLRW-metric. However, GW sources which
are the subject of the present observations [3–8], lie well
within the scale of 500 h−1 Mpc. The analysis of the effect
of inhomogeneities on the propagation of GWs may be of sig-
nificance for precision measurements in the emerging field
of GW astronomy.

The motivation of the present analysis is to study the
propagation of GWs through the background containing vis-
cous dark matter in the presence of inhomogeneities. It has
been shown earlier that the inclusion of the effect of local
inhomogeneities leads to a non-trivial impact on the prop-
agation of EM waves in averaged spacetime [53–59]. The
cosmological-distance versus redshift relations gets modi-
fied due to averaging over inhomogeneities [60–62], lead-
ing to interesting prospects for the detection of signatures of
inhomogeneities through observations of Hubble expansion
[63]. GWs act as fellow carriers of information to EM waves,
and analysis pertaining to the former opens up a new avenue
to the physics of the evolution of the Universe starting from
early times, offering insight into the nature of gravity itself,
and ranging to the current cosmic acceleration.

GWs have particular relevance for those sources which do
not emit any EM signals. Here we consider compact objects
in binary formations, e.g., black hole–black hole (BH–BH)
binaries, from which emitted GWs can be detected after
traversing through the background viscous fluid. We con-
sider the background dynamics arising from the backreac-
tion of inhomogeneities due to structure formation. Specifi-
cally, we employ the Buchert formalism [43,44] to quantify
the effect of backreaction. Buchert’s approach on backreac-
tion has been analysed earlier in various efforts to obtain
concurrence with cosmological observations related to the
current acceleration without resorting to dark energy [45–
48,53,61,64–67]. It has been shown using the Buchert frame-
work [68] that the amplitude of GWs produced from binaries
could deviate substantially from that in the case of a homo-
geneous spacetime described by the �CDM model.

In the present work, we show that the local viscous-
inhomogeneities in the path of propagation of GWs may have
a considerable impact on the GW observables. The inclusion
of viscosity affects the GW observables in ways different
from the case of its absence [68]. In the context of a simplified
two-partitioned model of inhomogeneities within the context
of the Buchert framework, here we evaluate the attenuation of
GWs resulting from our model in comparison with the stan-
dard analysis of the �CDM model. Our approach clearly
brings out the quantitative differences in the GW signal due
to the inclusion of effects of viscosity and inhomogeneities,
in combined as well as separate ways.
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The paper is organized as follows. A brief description of
the background dynamics is provided in Sect. 2. Here we
first discuss a viscous �CDM model and next describe our
inhomogeneous two-partitioned model (for both viscous and
non-viscous cases) within Buchert’s averaging formalism. In
Sect. 3, the modification of the redshift-distance relation due
to the averaging procedure is presented. In Sect. 4, the effect
of local viscous inhomogeneities on the redshift-dependent
part of GW amplitude is demonstrated. Finally, we present
concluding remarks in Sect. 5.

2 Background dynamics

For �CDM model (without viscosity), the Hubble parameter
is given by the Friedmann equation

H2(a) = H2
0

(
�m0

a3 + �r0

a4 + �k

a2 + ��

)
(1)

where a is the scale factor, H0 is the present value for the
Hubble parameter, �m0 denotes the fractional matter density
components (assumed pressure less) of the Universe, �r0 is
the fractional radiation density term, �k is the term related
to the curvature, and �� denotes the cosmological constant
component. In practice, the contribution of the radiation at
late times (i.e., at the time of structure formation) is negligible
compared to the matter and cosmological constant terms.
Also, observations indicate that the geometry of the Universe
is almost flat, viz., �k ≈ 0.

2.1 Viscous �CDM model (v�CDM)

GW may propagate through dark matter in its path from its
source to the observer. There are various theoretical models
of dark matter. One of these is the Self Interacting Dark Mat-
ter (SIDM) model [30–33]. In this model, self-interaction is
introduced between the dark matter particles, which results in
dissipation in the dark matter fluid. The outcome of this dis-
sipation is the introduction of coefficients of shear, and bulk
viscosities [24]. In our approach, the dark matter behaves as a
viscous/dissipative component. The general structure of this
model is given by the field equation [69]

Rμν − 1

2
gμνR + �gμν = 8πGTμν (2)

where Rμν represents the Ricci tensor, R represents the Ricci
scalar, gμν is the metric tensor, � is the cosmological con-
stant and Tμν stands for the energy-momentum tensor of the
viscous matter. This tensor possesses both the perfect fluid
structure as well as the possible dissipative effects such that
[69,70]

Tμν = pgμν + (p + ρ)uμuν + �Tμν (3)

where ρ is the density, p is the pressure and the component
�Tμν is the viscous contribution to the fluid,

�Tμν = −2ησμν − ξ�(gμν + uμuν) (4)

Here ξ is the bulk viscosity, η is the shear viscosity, � = uμ

;μ
is the expansion, uμ is the 4 - velocity and “;” represents the
covariant derivative. For simplicity, we set the pressure, p =
0. Then, our dark matter possesses only the viscous pressure
given by [71]

pv = −ξuμ

;μ (5)

In the FLRW metric, the bulk viscous pressure reduces to

pv = −3Hξ (6)

Dark matter physics can incorporate some possible dis-
sipative mechanisms [24,30–34]. Only the bulk viscos-
ity remains compatible with the assumption of large-scale
homogeneity and isotropy. The other processes, like shear
and heat conduction, are directional mechanisms that decay
as the Universe expands. Shear viscosity has mostly been
neglected in these studies on the grounds of not contributing
to a homogeneous and isotropic universe, which is undoubt-
edly true at the large-scale background level [71,72]. Hence,
for our purpose, for this viscous �CDMmodel, shear vis-
cosity does not contribute to the dynamics of an isotropic and
homogeneous background. However, shear viscosity does
indeed play a role in the attenuation of gravitational waves,
as we will see later in Sect. 4.

Now, for a viscous �CDM model, using the FLRW metric,
the Friedmann equation reads,

H2 ≡
(
ȧ

a

)2

= 8πG

3
ρv + �

3
. (7)

Here, ρv stands for the density of viscous matter and denotes
all the matter components. We have assumed that all the mat-
ter components are endowed with viscous properties. For our
purpose here, a proper separation between baryons and dark
matter is unnecessary. One should also recall that baryons
contribute about 1/6th of the present total matter distribu-
tion; thus, this is not expected to lead to appreciable changes
in our analysis, as baryonic matter is a subdominant compo-
nent in comparison to dark matter. By defining the fractional
densities �v = 8πGρv/(3H2

0 ) and �� = �/(3H2
0 ), where

H0 is the present value for the Hubble parameter, the Fried-
mann equation (Eq. 7) becomes

H2 = H2
0 (�v + ��) (8)

Using now the fluid equation for ρv , one gets

ρ̇v + 3H(ρv + pv) = 0. (9)
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Using Eqs. (6) and (9) can be recast as an equation for the
fractional density �v as

a
d�v

da
+ 3�v(1 + ωv) = 0 (10)

where we have defined the fluid equation of state parameter
for the viscous dark matter fluid, ωv , as

ωv ≡ pv

ρv

= −3Hξ

ρv

(11)

Using this formalism, �v as a function of the red-shift z is
calculated. The corresponding quantity in the �CDM case
is �m0(1 + z)3 (Eq. 1).

2.2 Buchert’s formalism in a two-partitioned model

A popular approach for studying the effect of inhomo-
geneities is based on an averaging framework, and several
averaging techniques have been proposed [38–42,60]. Since
the Einstein equations are non-linear, the solutions for an
overall homogeneous matter distribution differ from the aver-
aged solution for a general locally inhomogeneous matter dis-
tribution. In other words, the evolution of the homogeneous
Universe at large scales may be slightly different from that of
an inhomogeneous Universe, even though inhomogeneities,
when averaged over a sufficiently large scale, might be negli-
gible. The difference between the evolution of these models
of the Universe gives the backreaction effect. It quantifies the
non-linear effect of structure formation on the mean global
evolution of the Universe.

In the averaging framework, [43], the problem is simpli-
fied and restricted to scalar quantities only. Einstein equa-
tions are decomposed into a set of dynamical equations for
scalar quantities. Averages on flow-orthogonal spatial hyper-
surfaces (vorticity is assumed zero) are defined as proper
volume averages. Under certain assumptions, this leads to
Buchert’s equations with a kinematical backreaction term
[43]. Such an approach has sparked considerable interest as
it has been shown that backreaction could lead to an agree-
ment with cosmological observations without resorting to
dark energy [45–48,53,61,64–67]. For details of Buchert’s
averaging procedure, one may refer to Refs. [43,44]. Here
we provide a brief overview of Buchert’s formalism required
in context of the present analysis. In Buchert’s averaging
scheme for scalars, averages of scalar quantities on flow-
orthogonal spatial hypersurfaces are defined as

〈 f (t, xi )〉D :=
∫
D d3x

√
det (gi j ) f (t, xi )∫

D d3x
√
det (gi j )

, (12)

where D is a spatial domain. One fundamental quantity char-
acterizing this domain is its volume, which is given by,

VD(t) :=
∫
D
d3x

√
det (gi j ). (13)

The normalized dimensionless effective volume scale factor
aD is defined by

aD(t) :=
(
VD(t)

VD0

)1/3

, (14)

which is normalized by the volume VD0 of the domain D at
some reference time t0 which we can take as the present time.

Spatially averaging the Raychaudhuri equation, the Hamil-
tonian constraint and the continuity equation, one obtains the
equations for effective scale factor in Buchert’s formalism,
which are respectively,

3
äD
aD

= −4πG〈ρ〉D + QD + �, (15)

3H2
D = 8πG〈ρ〉D − 1

2
〈R〉D − 1

2
QD + �, (16)

∂t 〈ρ〉D + 3HD〈ρ〉D = 0, (17)

where local averaged matter density 〈ρ〉D , averaged spatial
Ricci scalar 〈R〉D and the Hubble parameter HD are domain
dependent and are functions of time. � is the cosmological
constant (� = 0 for our model and for our purpose here). QD

is called the backreaction term which quantifies the averaged
effect of the inhomogeneities in the domain D and is defined
as

QD := 2

3

(
〈θ2〉D − 〈θ〉2

D

)
− 2〈σ 2〉D, (18)

where θ is the local expansion rate and σ 2 := 1
2σ i

jσ
j
i is the

shear-scalar. QD is zero for a homogeneous domain. The
departure from homogeneity is ingrained in this term. QD

and 〈R〉D are inter-related by the equation:

1

a2
D

∂t (a
2
D〈R〉D) + 1

a6
D

∂t (a
6
DQD) = 0. (19)

Equation 19 couples the time evolution of the backreaction
term with the time evolution of averaged intrinsic curvature
and signifies the departure from FLRW-cosmology, where
there is no such coupling.

In this framework, the domain D is partitioned into non-
interacting subregions Fl composed of elementary space
entities F (α)

l . Mathematically, D = ∪lFl , where Fl =
∪αF (α)

l and F (α)
l ∩ F (β)

m = ∅ for all α 	= β and l 	= m.
The average of any scalar function f on the domain D is
given by,

〈 f 〉D = V−1
D

∫
D

f
√
det (gi j )d

3x

=
∑
l

V−1
D

∑
α

∫
F (α)
l

f
√
det (gi j )d

3x

=
∑
l

VFl

VD
〈 f 〉Fl =

∑
l

λl〈 f 〉Fl , (20)

123



Eur. Phys. J. C (2023) 83 :435 Page 5 of 17 435

where λl = VFl /VD is the volume fraction of the subregion
Fl such that

∑
l λl = 1 and 〈 f 〉Fl is the average of f on the

subregion Fl . The above equation governs the averages of
scalar quantities ρ, R and HD . But QD , due to the presence
of 〈θ〉2

D term, does not follow the above equation. Instead,
the equation for QD is

QD =
∑
l

λl Ql + 3
∑
l 	=m

λlλm(Hl − Hm)2, (21)

where Ql and Hl are defined in the subregion Fl in the same
way as QD and HD are defined in the domain D [44].

We can also define scale factor al for the individual sub-
regions in the same way as aD has been prescribed for the
domain D. Since, the domain D comprises the different sub-
regions Fl and all these subregions are disjoint, therefore
VD = ∑

l VFl , which results in a3
D = ∑

l a
3
l . Twice dif-

ferentiating this relation with respect to foliation time gives
us,

äD
aD

=
∑
l

λl
äl(t)

al(t)
+

∑
l 	=m

λlλm(Hl − Hm)2. (22)

Within the context of the above framework, we consider a
two-partitioned model. In our model, the domain D, through
which GWs propagate from the source to the observer, is an
ensemble of two types of disjoint FLRW regions [73]. These
are—(i) the overdense region described by an FLRW region
which can be assumed to be spatially flat, and (ii) the under-
dense region, which is a nearly empty FLRW region which is
assumed to have a small density (compared to the overdense
region) and negative spatial curvature. We consider the over-
dense region to have viscous nature in our present work to
study the effect of viscosity on the GW amplitude. Therefore
for our two-partitioned model, Eq. (21) effectively becomes,

QD = λoQo + (1 − λo)Qu + 6λo(1 − λo)(Ho − Hu)2, (23)

where λo denotes the volume fraction of the overdense
region. Now, Eq. (19) couples the time evolution of the back-
reaction term QD with the time evolution of the averaged
3-Ricci scalar curvature. Therefore, we can choose the cur-
vatures of our individual sub-regions in such a way that the
Ql term for these sub-regions becomes effectively zero [44],
i.e., Qo = 0 and Qu = 0. This has been done by taking the
curvature of our overdense region to be zero, i.e., our over-
dense region is flat. On the other hand, we have assumed our
underdense region to have Friedmann-like a−2

u constant cur-
vature term. These assumptions along with Eq. (19) results
in, Qo = 0 and Qu = 0. This stipulation to FLRW is an
approximate assumption governing our model (in the more
general case, the sub-domains may not necessarily be FLRW
regions). From Eq. (23), it can be seen that control over global
backreaction can be achieved only if the individual backre-
action terms are not set to zero.

In this work, we investigate the simultaneous impact of
inhomogeneities and viscosity of the matter contained in the
overdense region, on the amplitude of GWs for the same
type of sources. For this, we consider two cases—(a) when
the GW is assumed to propagate through a homogeneous and
isotropic spacetime (with and without viscosity of associated
matter), described by the FLRW metric, in the �CDM model,
and (b) when the GW propagates through an inhomogeneous
spacetime (both viscous and non-viscous cases), described
by our model specified above. The physical interpretation
of the underdense region in our model is that they represent
the cosmic voids in the path of propagation of the GWs, and
the overdense region represents all the matter content in that
path. In this work, we have considered both scenarios (vis-
cous and non-viscous) for the matter present in the overdense
region of our model. A point to note here is that we are not
considering viscous matter in addition to non-viscous matter
here. The total matter content in both the non-viscous case
and the viscous case is the same. It’s just that in viscous case
the matter content has viscous properties too. The overdense
viscous region in our model portrays a viscous dark matter
fluid.

2.2.1 Non-viscous case (no bulk and shear viscosity)

Expressions for the scale factors for the two types of regions,
overdense (non-viscous in this case) and underdense, for this
model, are given as [65,66],

ao = cot
α, (24)

au = cut
β. (25)

Here o represents the overdense region, and u represents the
underdense region. In this model, the scale factors of the two
regions are proportional to cosmic time raised to some powers
α and β for over and under-dense regions, respectively. α

varies from 1/2 to 2/3 since the evolution of au is expected
to be faster than that for the radiation-dominated case (1/2)
and limited by the maximum value for the matter-dominated
case (2/3). β varies from 2/3 to 1 to denote any behaviour
ranging from a matter-dominated region (β = 2/3) up to dark
energy-dominated region (β > 1). cu and co are constants of
proportionality and are given respectively as:

co = aD0

tα0
,

cu = aD0

tβ0
,

whereaD0 is the scale factor at the present time for the domain
D. For present time t0 ≈ 13.8Gy, aD0 = 1 and H0 = 100 h
km sec−1 Mpc−1. Therefore,

co = 1

tα0
, (26)

123



435 Page 6 of 17 Eur. Phys. J. C (2023) 83 :435

cu = 1

tβ0
, (27)

Using Eq. (22) for our model we get,

äD
aD

= λo
äo
ao

+ λu
äu
au

+ 2λoλu(Ho − Hu)
2. (28)

Here λo = Vo/VD is the volume fraction for the overdense
region, Vo is the volume of the overdense region and λu is the
volume fraction of underdense region such that λu +λo = 1.
Now, using Eq. (14), Vo can be written in terms of scale

factor and initial volume fraction, λo = a3
oVo0

a3
DVD0

, where Vo0 is

the volume of the overdense region at some reference time
t0. This in turn gives us,

λo = k1
t3α

a3
D

. (29)

where k1 = λo0a
3
D0

t3α
0

is a constant and λo0 , aD0 , t0 are the

present volume fraction of overdense region, the present
global scale factor and the present time, respectively. Equa-
tion 29 shows that the volume fraction of the overdense region
is a function of α and β (throughaD asaD is a function of both
α and β). Similarly, it can be shown that the volume fraction
of the underdense region is a function of α and β. This implies
that (α, β) governs the volume fractions of the 2 subregions
in our 2-domain model. The present values of volume frac-
tions of the 2 region are taken as (λo0 , λu0) = (0.09, 0.91)

[44]. Solving Eq. (28) gives us an expression for aD , and
using that expression in Eq. (15) gives us an expression of
〈ρ〉D for our model.

2.2.2 Viscous case

The sub-regions in our backreaction model are essentially
FLRW regions. Hence, their dynamics are also governed by
the standard Friedmann equations (Eqs. 1, 7). Only our over-
dense region has viscous matter contained in it. So, for our
overdense region, the Friedmann equation reads (we have
taken � = 0),

Hv
2
o ≡

( ˙avo

avo

)2

= 8πG

3
ρvo. (30)

Here, avo is the scale factor for our viscous overdense region,
Hvo is the Hubble parameter for our viscous overdense region
and ρvo stands for density of viscous matter in our over-
dense region and denotes all the matter components. We
have assumed that all the matter components of our over-
dense region are endowed with viscous properties similar to
the �CDM model with viscosity. Also, since our overdense
region is an FLRW region (homogeneously and isotropically
overdense), therefore here too the shear viscosity with coef-
ficient η, doesn’t have any effect on the dynamics of the

background. The fluid equation for ρvo is given by,

˙ρvo + 3Hvo(ρvo + pvo) = 0. (31)

where pvo is the bulk viscous pressure given by

pvo = −3Hvoξ (32)

By defining the fractional densities �vo = 8πGρvo/(3H
2
0 ),

equation for the fractional density �vo is given as,

ao
d�vo

dao
+ 3�vo(1 + ωvo) = 0 (33)

where we have defined the fluid equation of state parameter
for the viscous dark matter fluid for our overdense region,
ωvo, as

ωvo ≡ pvo

ρvo
= −3Hvoξ

ρvo
(34)

Since Eq. (33) is a first-order differential equation, we require
one boundary condition to solve it. We take this boundary
condition from our non-viscous backreaction model, given
by

�vo(z = 0) = �o(z = 0) (35)

where �o is the fractional density of the overdense region
from the non viscous case.

The scale factor for our overdense region in our viscous
backreaction model is calculated using (Eqs. 34, 33 and 30).
The boundary condition used for solving (Eq. 33) is (Eq. 35).
The avo that we get from the above-mentioned analysis is a
function of (α, β). The scale factor for the underdense region,
au is still given by Eq. (25). The scale factor for domain D
in this case avD is given by,

ävD

avD
= λo

ävo

avo
+ λu

äu
au

+ 2λoλu(Hvo − Hu)
2 (36)

The equation for the backreaction term in this case QvD is
given by (Qu = 0; Qo = 0),

QvD = 6λo(1 − λo)(Hvo − Hu)
2, (37)

Solving Eq. (36) gives us an expression for avD . Equa-
tion (37) leads to an expression for QvD . Using these
expressions in Eq. (15) we get an expression of 〈ρ〉vD for
our viscous backreaction model. The present value of the
bulk viscosity parameter has been estimated in the literature
based on various theoretical considerations and observations
[15,27,74,75]. By solving the energy conservation equation
for bulk viscous flat Friedmann universes, the coefficient of
bulk viscosity at present time ξ has been estimated to be
∼ 106 Pa s in [75]. Other analyses based on comparing the
theoretical curves for H = H(z) with observations [76], and
by studying the asymptotic behaviour in the equivalent phase
space in a Friedmann model of the Universe with bulk vis-
cous matter [77] have also been performed. In [78], a value
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of ∼ 107 Pa s for ξ has been suggested. Considering all the
above studies, a reasonable range for ξ may be taken as 105

Pa s < ξ0 < 107 Pa s. For our present work, we have used the
mid-range value of 106 Pa s in the red-shift range 0 ≤ z ≤ 5.

In Fig. 1 we provide a plot of the Hubble parameter ver-
sus the redshift for �CDM, viscous �CDM and for our vis-
cous backreaction model for various values of the backreac-
tion model parameters. The underdense region in our model
represents the cosmic voids in the path of propagation of
the GWs, and the overdense region represents all the matter
content in that path where the effect of viscosity is directly
evident. In Fig. 1, for the plots of our viscous backreaction
model, we fix the value of β at 0.8 (representing a mid-range
value in the range of values of β—(2/3, 1)), and we vary the
values of α. As expected, for a fixed β, curves with larger
value of α lead to larger values of Hubble parameter. It can
be seen that backreaction from inhomogeneities may lead to
departure in the background Hubble evolution that may get
accentuated for higher redshifts.

3 Redshift and distance relation

Buchert’s averaging scheme provides us with a method
of spatially averaging scalar quantities in the backreaction
framework. Such quantities need to be related to cosmo-
logical observables. A possible approach relies on the study
of distance-redshift relation in an inhomogeneous universe
using an approximate metric [60]. In our present investiga-
tion, we consider a more consistent scheme based on the
procedure of averaging. The covariant scheme proposed by
Räsänen [54,79] provides us with a way of doing this. This
scheme gives the relation between effective redshift and
angular diameter distance DA in the following way,

1 + z = 1

aD
, (38)

HD
d

dz

(
(1 + z)2HD

dDA

dz

)
= −4πG

c4 〈ρD〉DA. (39)

Equation (38) provides an expression of effective redshift z
in terms of the scale factor aD of the domain D. Certain con-
ditions must be satisfied to apply the covariant scheme. These
are: (i) spatial averages are determined on hypersurfaces of
statistical homogeneity and isotropy, and (ii) structure evolu-
tion is slow compared to the travel time of GW from source
to the observer.

For our model, domain D is the region of spacetime
through which the GW travels while propagating from the
source to the observer. Domain D could have any combina-
tion of fractions of underdense and overdense regions, i.e.
any combination of (λu, λo) as long as λu + λo = 1 is sat-
isfied. (λu, λo) in turn are governed by (α, β). In this work,
we take various combinations of allowed values of (α, β) in

our analysis. Using the expressions for HD and 〈ρD〉 that
we calculated from our model for the two cases—viscous
(with only ξ , but no η since η doesn’t affect the background)
and non-viscous, and using the covariant scheme (Eqs. (38),
(39)), we can calculate DA for our model.

In Fig. 2, we plot the ratio of angular diameter distance for
our model to the present Hubble-length (DH = cH−1

0 , value
of H0 (present value of H) used is 100 h km s−1 Mpc−1 �0.07
Gyr−1, with h = 0.7) as a function of effective redshift with
different combinations of (α, β). We have studied earlier the
effect of varying α on the dynamics (Fig. 1). Here in Fig. 2
we explore the effect of varying β on the angular diameter
distance choosing a fixed value of α = 0.5. The value of
ξ used is 106 Pa s in the range 0 ≤ z ≤ 5 [15]. From this
figure, one can see that for low redshifts (z < 0.5), curves
for our model overlap with each other and with the �CDM
curve, but as we increase the redshift, curves start deviating
from the �CDM curve. Inclusion of viscosity in the analysis
results in deviation in the plots for both the �CDM model
and our model. For the �CDM case, plot of viscous case
(dashed) has higher magnitude than the non-viscous case
(solid). It is observed that for lower values of z (z � 2),
plots of viscous cases (dashed curves) for our backreaction
model have a higher magnitude of DA for the same value of
z in comparison to corresponding non-viscous cases (solid
curves) and for z � 2, the magnitude of DA for viscous cases
(dashed curves) are smaller than those for the non-viscous
cases (solid curves) for our model.

In Fig. 3, the ratio of luminosity distance DL to the present
Hubble length DH is plotted with respect to redshift z for both
viscous and non-viscous cases of �CDM and our backreac-
tion model. DL is calculated from DA (Fig. 2) using the rela-
tion DL = (1 + z)2DA. There are two insets in the figure. It
can be seen here too that for low redshifts (z < 0.5), the curves
for our model overlap with each other and with the �CDM
curve, but as we increase the redshift, the curves start devi-
ating from the �CDM curve. Inset (a) shows the magnified
portion of the plots at lower values of redshift, particularly
around the value of z for which the plots of DA/DH turn
around in Fig. 2. As in Fig. 2, plots for the viscous backreac-
tion model (dashed curves) have a larger magnitude than the
non-viscous case (solid curves) for about z � 2. For z � 2.5,
plots for the viscous case have a smaller magnitude than the
non-viscous case similar to plots in Fig. 2. This behaviour is
shown in inset (b). A point to note is that this behaviour is
not observed for the �CDM case, where viscous case plots
have a larger magnitude throughout the range of z of our
interest. In inset (b), purple (backreaction (β = 0.8)) and red
(backreaction (β = 0.7)) plot lines overlap, which is similar
to the case of Fig. 2 at this value of z. Another feature of the
plots for our backreaction model can be observed at higher
redshift z. It can be seen that the difference between the solid
and dashed lines (representing the non-viscous and viscous
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Fig. 1 Plot of Hubble
parameter vs redshift z for the
�CDM model, viscous �CDM
model and our viscous
backreaction model. Plots for
our viscous backreaction model
are for varying values of α with
fixed value of β = 0.8. The value
of ξ used is 106 Pa s. The value
of H0 used is 100 h km s−1

Mpc−1 � 0.07 Gyr−1, with h =
0.7. Parameters used for �CDM
are �m = 0.31, �� = 0.69. The
inset shows the magnified
portion of the plots at higher
redshift

Fig. 2 Plot of the ratio of
angular diameter distance DA to
the present Hubble length DH
w.r.t. redshift, for the �CDM
case and for our backreaction
model with different
combinations of β and fixed
value of α = 0.5 for both viscous
and non-viscous cases. Value of
ξ used is 106 Pa s. Parameters
used for �CDM are �m = 0.31,
�� = 0.69. The inset shows a
magnified portion of the plots
for our backreaction model

cases, respectively) increases with larger values of β. Specif-
ically, the difference between the red lines is smallest for the
lowest values of β, while the difference between the brown
lines is largest for the highest values of β.

4 Gravitational wave amplitude

The amplitude of GW from a binary of compact objects of
massesm1 andm2 in the early inspiral stage, where Keplerian
approximations are well valid, is given by (for the cross(×)-
polarization) [80]

h× = G5/3(1 + z)5/3

DLc4

∗ m1m2

(m1 + m2)1/3 (−4ω2/3)Sin 2ωt, (40)

where ω is the observed angular frequency of the binary
of compact objects and DL is the luminosity distance of
the binary from the observer. For the plus (+)-polarization,
the peak of the amplitude remains identical. For a constant
observed frequency, the redshift-dependent part in the GW
amplitude is (1 + z)5/3/DL .

The amplitude of GW given in Eq. (40) is derived without
considering the effect of viscosity on the propagation of the
GW. In Ref. [14], the authors have studied the effect of the
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Fig. 3 Plot of the ratio of
luminosity distance DL to the
present Hubble length DH w.r.t.
redshift, for the �CDM case
and for our backreaction model
with different combinations of β

and fixed value of α = 0.5 for
both viscous and non-viscous
cases. Value of ξ used is 106 Pa
s. Parameters used for �CDM
are �m = 0.31, �� = 0.69.
There are two insets in the
figure. Inset (a) shows the
magnified portion of the plots at
lower values of redshift, from
z = 1.4 to z = 1.6. Inset (b)
shows the magnified portion of
the plots at higher values of
redshift, from z = 4.5 to z = 5

viscosity of the cosmic fluid, particularly dark matter, on
the GW amplitude and have estimated its effect on the GW
amplitude. Assessing the impact of viscosity, after travelling
a proper distance L = ar , the GW gets attenuated by the
factor (see, Appendix A) [14]

A = L∗e− γ
2 L/L , (41)

where L∗ is the proper source distance for zero shear vis-
cosity and γ = 16πGη, where η is the coefficient of shear
viscosity for the region through which GW is propagating.
The attenuation factor in terms of luminosity distance DL is
given by:

A = DL∗
DL

e
− γ

2(1+z)2
DL

, (42)

where DL = (1+z)2L . DL∗ is the luminosity distance of the
source, for zero shear viscosity. Therefore, the total redshift-
dependent part of the attenuated GW amplitude (let’s repre-
sent this quantity by F(z)) is given by

F(z) = (1 + z)5/3

DL∗
A

= (1 + z)5/3

DL∗

DL∗
DL

e
− γ

2(1+z)2
DL

= (1 + z)5/3

DL
e
− γ

2(1+z)2
DL

.

(43)

For non viscous case (η = 0),

F(z, η = 0) = (1 + z)5/3

DL
(44)

The luminosity distance DL is calculated from angular
diameter distance, DA as DL = (1 + z)2DA. Since, DL =
(1 + z)2L , for the flat FLRW spacetime, DA gives a good

measure of the proper distance L . DA for flat spacetime is
given by

DA = DC

(1 + z)
= DH

(1 + z)

∫ z

0

dz′

E(z′)
(45)

where DC is the comoving distance which is given as
DH

∫ z
0

dz′
E(z′) where DH is the Hubble distance (= c

H0
, where

H0 = 100 h km s−1 Mpc−1 � 0.07 Gyr−1, with h = 0.7.) and
E(z)�CDM ≡ √

�M (1 + z)3 + �� for the �CDM model
(non-viscous case) (throughout this work, parameters used
for �CDM are �m = 0.31, �� = 0.69) and E(z)v�CDM ≡√

�v + �� for the viscous �CDM model, where �v is the
fractional density for viscous matter which has a contribution
from the bulk viscosity ξ (Sect. 2.1). Hence, now, for viscous
�CDM case (v�CDM),

F(z)v�CDM = (1 + z)5/3

DLv

e
− γ

2(1+z)2
DLv . (46)

where DLv is the luminosity distance in the presence of vis-
cosity, i.e. it is calculated using E(z)v�CDM . For non viscous
�CDM case,

F(z)�CDM = (1 + z)5/3

DL∗
(47)

where DL∗ is the source luminosity distance in the absence
of viscosity, i.e. it is calculated using E(z)�CDM .

The value of the shear viscosity parameter η has been
estimated in earlier works to lie within the range ∼ 106 Pa s
and ∼ 109 Pa s [14,15,81]. Gravitational wave observation
data from LIGO has been used to put constraints on the value
of η [14]. Reference [81] used the relativistic Boltzmann
equation to examine the theory of viscosities at the time of
neutrino decoupling. The analysis of [81] to calculate the
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Fig. 4 Plot of F(z) for the
�CDM model for both viscous
and non-viscous cases. Value of
ξ used is 106 Pa s. Plots for
viscous cases are for the
applicable range of values of η

between ∼ 106 Pa s and ∼ 109

Pa s. Dashed orange plot
represents the favored value of
η. Parameters used for �CDM
are �m = 0.31, �� = 0.69. The
inset shows the magnified
portion of the plot for the
�CDM model and for our
backreaction model (η = 106 Pa
sec)

present-day value of η was subsequently employed in [15],
to relate the value of η at the time of neutrino decoupling
with the present value using a scaling relation, leading to the
value of 108 Pa s. Our present analysis uses the above value
of 108 Pa s as the most favored one.

In Fig. 4, we plot the overall redshift-dependent part, F(z)
(both F(z)v�CDM and F(z)�CDM ), given in Eqs. (46) and
(47) w.r.t. redshift z, for the range of values of η between
∼ 106 Pa s and ∼ 109 Pa s. The plots for viscous cases in
Fig. 4 have contributions from both bulk viscosity ξ (through
DLv ) and shear viscosity η. It was argued in Ref. [14] that
since ξ only couples to scalar perturbations, it doesn’t play
a role in the attenuation of GWs, and only η affects the GW
amplitude. However, from our analysis, it is clear that both
ξ and η affect the GW amplitude, with the role of the former
entering through the modified background dynamics due to
bulk viscosity.

The expressions given in Eqs. (46) and (47) are valid for a
space with homogeneous mass distribution. To examine the
variation of the redshift-dependent part of GW amplitude for
our model, we have to modify the expressions accordingly.
For our backreaction model, the relation DL = (1+z)2DA is
valid too, but in this case DA is calculated using the covariant
scheme (Eqs. 38, 39). Our model represents a space with
inhomogeneous mass distribution, where there are two types
of regions, viz. over-dense and under-dense, and viscosity
is only associated with the over-dense region, as the under-
dense region is assumed to be empty.

Hence, in the exponential term of the F(z) in Eq. (43),

e
− γ

2(1+z)2
DL , for our model, DLo would replace DL , where

DLo is the luminosity distance traversed by the GW through
the over-dense region only. So, the exponential term of the

F(z) in Eq. (43) for our model is now given by e
− γ

2(1+z)2
DLo .

In the �CDM model, incorporating viscosity results in an
attenuation factor with DL in the exponential factor, where
DL is the total luminosity distance traversed by the GW.
Viscosity is not distributed through the entire path of the
GW but is concentrated only in some regions. Using DL

in the �CDM model results in a larger deviation between
the attenuated and unattenuated cases in the �CDM model,
compared to our model.

An important consideration for the propagation of EM
waves for a model like ours (inhomogeneous 2—domain
model) is that the ratio of distances travelled by EM waves
through the two regions is equal to the ratio of proper vol-
umes of the two regions [61]. It is clear that this also holds
for GWs. This condition gives,

DLo

DLu

=
(
ao
au

)3

, (48)

where DLo and DLu are the luminosity distances traversed
by the GW through the over-dense and under-dense regions,
respectively. If the total luminosity distance travelled by
the GW in our model is DLv2d (v2d stands for viscous
2-domain inhomogeneous model, this DLv2d is calculated
for the viscous case of our model (Sect. 2.2.2) using DA

calculated from the covariant scheme (Eqs. 38, 39)), then
DLv2d = DLo + DLu , which gives,

DLo

(
1 + DLu

DLo

)
= DLo

(
1 +

(
au
ao

)3
)

= DLv2d ,
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or,

DLo = DLv2d(
1 +

(
au
ao

)3
) . (49)

Therefore, the exponential term in the total redshift depen-
dent part of attenuated GW amplitude for our model now
becomes,

E = e
− γ

2(1+z)2

DLv2d(
1+( au

ao )
3)

, (50)

and the total redshift-dependent part of the attenuated GW
amplitude for our viscous model is given by,

F(z)v2d = (1 + z)5/3

DLv2d

E

= (1 + z)5/3

DLv2d

e
− γ

2(1+z)2

DLv2d(
1+( au

ao )
3)

. (51)

The redshift-dependent part of the GW amplitude for our
non-viscous model (Sect. 2.2.1) is given by,

F(z, ξ = 0, η = 0)2d = (1 + z)5/3

DL∗2d

. (52)

where 2d stands for non-viscous 2-domain inhomogeneous
model and DL∗2d is the source luminosity distance for the case
of our non-viscous 2-domain inhomogeneous model. There-
fore, for our model, the deviation of the redshift-dependent
part of GW amplitude due to viscous-attenuation, can be
written as,

F(z, ξ = 0, η = 0)2d − F(z)v2d

= (1 + z)5/3

⎧⎪⎪⎨
⎪⎪⎩

1

DL2d

− e
− γ

2(1+z)2

DLv2d(
1+( au

ao )
3)

DLv2d

⎫⎪⎪⎬
⎪⎪⎭

. (53)

To summarize, the redshift dependent part of GW for a
homogeneous and non-viscous spacetime (�CDM model)
is given by Eq. (47). Now, if we introduce matter distribution
inhomogeneities, then F(z) gets modified due to modifica-
tion of the redshift-distance relations, and is now given by
Eq. (52). It can be seen that,

F(z, ξ = 0, η = 0)2d = F(z)�CDM × DL∗
DL∗2d

(54)

Therefore, the effect of inclusion of matter distribution inho-
mogeneities on redshift dependent part of GW amplitude is
equivalent to multiplication by the factor DL∗

DL∗2d
.

On further introduction of viscosity in the analysis, GW
in our backreaction model gets attenuated by the attenuation
factor (using (Eq. 50)),

A = DL∗2d

DLv2d

E

= DL∗2d

DLv2d

e
− γ

2(1+z)2

DLv2d(
1+( au

ao )
3)

(55)

where DL∗2d is the luminosity distance for the case of
our non-viscous 2-domain inhomogeneous model, calculated
using the covariant scheme.

Thus, the total redshift dependent part of GW in the pres-
ence of viscous inhomogeneities becomes (using Eqs. 51, 52,
54 and 55),

F(z)v2d = F(z)�CDM × DL∗
DL∗2d

× A

= F(z, ξ = 0, η = 0)2d × A

= (1 + z)5/3

DL∗2d

× DL∗2d

DLv2d

E

= (1 + z)5/3

DLv2d

E

= (1 + z)5/3

DLv2d

e
− γ

2(1+z)2

DLv2d(
1+( au

ao )
3)

(56)

In Fig. 5, we plot the redshift dependent part of the GW
amplitude, F(z) vs z for the �CDM model and for our model
for model parameter (α, β) = (0.67, 1). There are 3 curves
for each model. The solid curve represents the non-viscous
case; the dotted curve represents the case in which only the
bulk viscosity has been included in the analysis, and the
dashed curve is the case with both bulk viscosity and shear
viscosity in the analysis. As can be seen from Fig. 5, even if
we just consider bulk viscosity then also there is deviation of
the redshift dependent part of GW amplitude (dotted curve)
with respect to the non viscous case (solid curve). This is
because redshift dependent part of GW amplitude consists
of DL and ξ affects this DL via the quantity E(z) (Eq. 45).
On further inclusion of η in the analysis, redshift dependent
part of GW amplitude gets attenuated (dashed curve). In this
case, F(z) for viscous �CDM model is given by Eq. (46), for
non viscous �CDM model by Eq. (47), for our non viscous
model with inhomogeneities by Eq. (52) and for our viscous
model with inhomogeneities, it is given by Eq. (51).

In Fig. 6, we plot the redshift dependent part of the GW
amplitude, F(z) vs z for the �CDM model and for our model
for different combinations of model parameter (α, β). Here,
we have kept β constant = 0.8, and we vary the value of
α. The solid curves represent the non-viscous cases, and the
dashed curves represent the viscous case with contributions
from both ξ and η. The redshift dependent part of GW ampli-
tude, i.e., the quantity (1 + z)5/3/DL in the case of �CDM,
has a minimum at zmin � 2.63 [82]. In Fig. 6 we display the
minima points of the various curves. Circular points represent
the minima for the solid (non-viscous) curves while triangu-
lar points represent the minima positions for the dashed (vis-
cous) curves. We observe that the minima for the v�CDM
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Fig. 5 Plot of F(z) vs z for
�CDM model and for our
model for (α, β) = (0.67,1). The
solid curves are for non-viscous
cases. The dotted curves are for
those cases in which only ξ has
been included. The dashed
curves have contributions from
both ξ and η. Value of ξ used is
106 Pa s. Parameters used for
�CDM are �m = 0.31, �� =
0.69. Inset shows the magnified
portion of the solid curve and the
dotted curve for the two models
to illustrate the difference
between these two curves

Fig. 6 Plot of F(z) vs z for
�CDM model and for our
model for different
combinations of (α, β) while
keeping β = 0.8 as constant. The
solid curves are for non-viscous
cases. The viscous cases
represented by dashed curves
have contributions from both ξ

and η. Value of ξ used is 106 Pa
s. Parameters used for �CDM
are �m = 0.31, �� = 0.69.
Circular points represent the
minima for the solid
(non-viscous)curves while
triangular points represent the
minima positions for the dashed
(viscous) curves. Inset shows
the magnified portion of the
three dashed curves of our
backreaction model to illustrate
the difference between these
curves

curve deviates significantly from the �CDM case. For our
backreaction model (both viscous and non viscous), minima
points deviate significantly from the �CDM case. It can be
seen from the figure that for the non-viscous cases of our
model, all three plot lines and their minima points for dif-
ferent values of α overlap. F(z) for the non-viscous cases is
given by Eq. (52). Since the value of (1 + z)5/3 is the same
for all (α, β), the only quantity varying with changing (α, β)

is DL . The volume fraction of the overdense region at the
present time is taken as 0.09, and the range of variation of
α, which governs the evolution of the overdense region, is
from 0.5 to 0.67. Since the overdense volume fraction is so
small; therefore variation of α over this small range (0.5–

0.67) doesn’t have much effect, and hence, the plot lines for
the non-viscous cases overlap in Fig. 6.

From Fig. 6, it can be seen that there is substantial atten-
uation of the redshift-dependent part of the GW amplitude
due to viscosity. F(z) for viscous cases is given by Eq. (51).
As compared to the non-viscous case (Eq. 52), there are now
additional terms. From Eqs. (24) and (26), the scale factor of
the overdense region is given by,

ao =
(
t

t0

)α

=
(

t

13.8

)α

(57)

where t0 = 13.8 Gyr. For a given value of t (t < t0), as
we increase α, ao decreases. It can be seen in Fig. 6, as
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we increase the value of α keeping β constant, the redshift
dependent part of GW, F(z), for the viscous case, gets smaller
in magnitude. Physically, this can be explained from the fact
that from Eq. (14) for an overdense region, ao can be defined
as

ao(t) :=
(
Vo(t)

Vo0

)1/3

, (58)

where Vo0 is the volume of the overdense region at the present
time which we have fixed for all values of (α, β) to be 0.09
by fraction of the total volume. As ao decreases, the volume
of the overdense domain decreases. Hence, the distance trav-
elled by the GW through the overdense region will be less,
leading to less attenuation suffered by the GW. GW which
travels the largest distance through the overdense region will
suffer the most attenuation. This distance travelled by the
GW is directly proportional to the scale factor of the over-
dense region. In Fig. 6, the green dashed curve has the largest
value of α (hence the smallest value of ao), corresponding
to the largest amplitude among the viscous cases since it has
suffered the least attenuation. In contrast, the black dashed
curve has the smallest value of α (hence the largest value
of ao), corresponding to the smallest amplitude among the
viscous cases since it has suffered the most attenuation. The
above feature is not observed for the non-viscous cases (solid
curves) as the overdense region is non-viscous; hence, there
is no viscous-attenuation.

5 Conclusions

In this work, we have studied the propagation of GWs
from compact binary sources through a viscous inhomoge-
neous Universe governed by a model based on the averaging
procedure for scalars in Buchert’s backreaction framework
[43,44]. Dynamics under this model lead to a modification of
the redshift-versus-distance relation from that for the �CDM
model. The extent of variation depends on the combination of
the model parameters. In the present work, we have consid-
ered viscosity to be present in the matter content within the
over-dense regions of inhomogeneous spacetime described
by our model, which causes the attenuation of GW ampli-
tude when the GW passes through those regions of space-
time. We have incorporated the viscous attenuation of GW
amplitude within our model of inhomogeneous spacetime
and have derived an expression for the resultant redshift-
dependent part of the GW amplitude.

In the �CDM model, incorporating viscosity results in
a GW attenuation factor with DL in the exponent, where
DL is the total luminosity distance traversed by the GW. It
is worth noting that in the real Universe, viscosity resulting
from dark matter interactions is not distributed uniformly
through the entire path of the GW but is concentrated only

in some regions. Therefore, in our model, we have used DLo

(luminosity distance of the overdense region) instead of DL .
Using DL results in a more significant deviation between
the attenuated and unattenuated cases for the �CDM model,
compared to using DLo for our model. It has been argued
earlier [14] that since bulk viscosity couples only to scalar
perturbations, it doesn’t play a role in the attenuation of GWs.
However, as shown here, bulk viscosity indirectly impacts the
GW amplitude through its effect on the luminosity distance.
Moreover, the effect of shear viscosity on GW attenuation is
clearly demonstrated in the backreaction model due to inho-
mogeneities.

Our analysis demonstrates a substantial deviation in the
redshift-dependent part of the GW amplitude due to the inclu-
sion of viscous attenuation, compared to the case when vis-
cosity is considered negligible or absent within the model
of inhomogeneous spacetime. We have further shown that
the rate of expansion of the overdense region (characterized
by the parameter α, which governs the time evolution of the
scale factor of the overdense region) plays a vital role in the
magnitude of attenuation. It may be emphasized that con-
sideration of the effect of viscosity on GW observables for
compact binary sources is significant in the context of local
inhomogeneities in the Universe.

To summarize, we would again like to highlight the
importance of considering realistic background effects in the
study of GW propagation, since using incorrect background
dynamics for analyzing GW data from detectors could result
in incorrect inferences about GW sources. Towards this end
we have taken into account these two aspects of inhomo-
geneities and attenuation of GW due to viscosity together in
our present work. Our analysis leads to several interesting
features in the red-shift dependent part of the gravitational
wave amplitude. Additionally, the role of bulk viscosity is a
new feature that is also brought out in the form on its indirect
contribution towards GW attenuation through modification
of the background dynamics. Our analysis paves the way for
obtaining more precise estimations of GW observables and
bounds on the viscosity parameters of dark matter in future
work involving more realistic backreaction models and data-
analysis techniques in GW astronomy.
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Appendix A: GWs in the presence of viscosity

GWs are affected by the viscosity of the propagating medium
[9–15]. It was shown [9] that only the coefficient of shear
viscosity has any influence on the attenuation of GW.

Here, we discuss some essential steps in the derivation of
the attenuation factor of a GW propagating through a viscous
fluid in an FRW Universe. The same relation of the attenua-
tion factor is also valid for our backreaction models, incor-
porating the redshift-distance relation given by the covariant
scheme. We use the mechanism employed by [14]. The gen-
eral form of the energy-momentum tensor for a non-ideal
fluid is given by [14,69],

Tμν = (ρ + p)uμuν + pgμν − 2ησμν − ξθ�μν (A1)

where ρ is the density of the fluid, p is the pressure of the
fluid, uμ is the fluid four velocity, gμν is the metric tensor, η

is the coefficient of shear viscosity, σμν is the shear, ξ is the
coefficient of bulk viscosity, θ is the volume expansion of the
fluid and �μν is the projection tensor on the subspace normal
to uμ and it is given by the relation, �μν = gμν + uμuν .
Throughout, h̄ = c = 1.

Next, we consider tensor perturbations in the background
FRW metric,

ds2 = −dt2 + a2(t)[δi j + hi j ]dxidx j , (A2)

The tensor perturbations are considered in the transverse and
traceless gauge, ∂ i hi j = hii = 0.

The total four-velocity is given by uμ = u(0)
μ + ∂uμ. Nor-

malizing the four-velocity, considering only up to first-order
terms in the metric and velocity perturbations, and going to
the rest frame of the fluid, the velocity perturbations ∂uμ

vanish. In the rest frame of the fluid, we have,

θ = 3H (A3)

σi j = 1

2
a2ḣi j , (A4)

where H is the Hubble parameter and dot denotes derivative
with respect to cosmic time t.

Einstein’s equation in zeroth order in hi j , Gi j = 8πGTi j
and in first order in hi j , ∂Gi j = 8πGTi j gives us the wave
equation for GWs in a viscous fluid,

ḧi j + (3H + 16πGη)ḣi j − ∇2

a2 hi j = 0 (A5)

ξ doesn’t come into Eq. (A5) as it only couples to scalar
perturbations.

Next, performing the Fourier transform of Eq. (A5) and
defining hi j as μi j/a one gets,

μ̈i j + (H + 16πGη)μ̇i j

+
(
k2

a2 − ä

a
− H2 − 16πGηH

)
μi j = 0 (A6)

Defining conformal time τ as dt = adτ and using it in
Eq. (A6) leads to

μ′′
i j + 16πGηaμ′

i j

+
(
k2 − a′′

a
− 16πGηaH

)
μi j = 0 (A7)

where ′ denotes derivatives with respect to τ . On sub-horizon
scales k2 >> a′

a , Eq. (A7) reduces to,

μ′′
i j + 16πGηaμ′

i j + k2μi j = 0. (A8)

Let A×,+ = rμi j represent the amplitude of the two polar-
ization modes × and + of the radial component of the wave.
Then, at large distances from the source, A satisfies the fol-
lowing 1-D wave equation,

Ä + βa Ȧ + k2A = 0 (A9)

where β ≡ 16πGη. Assuming the solution of Eq. (A9) is of
the form,

A(τ, ω) = Ã(ω)eikr−
∫
iωdτ . (A10)

and substituting Eqs. (A10)) in (A9), gives us the dispersion
relation,

− ω2 − iβaω + k2 = 0 (A11)

Separating the real and imaginary part of k, k = kR + ikI ,
(Eq. A11) in conjugation with the weak damping approxi-
mation β << ω, and keeping only the leading order terms
gives us,

kR = ω

kI = βa

2

(A12)
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Presence of imaginary part of k, kI results in attenuation of
the wave. Equation (A10) now becomes,

A(τ, ω) = Ã(ω)eikRr−
∫
iωdτ × e−kI r . (A13)

The strain hi j of the GW in cosmic time t now becomes,

hi j = Ã(ω(t))

L0
eikRr−

∫
iωpdt × L0e− β

2 L

L
(A14)

where L = ar is the source distance, L0 is the source dis-
tance for zero shear viscosity and ωp = ω

a is the physical
angular frequency. Therefore, the attenuation factor is given

by L0e
− β

2 L

L where β ≡ 16πGη.
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