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Abstract We provide two novel ways to compute the sur-
face gravity (κ) and the Hawking temperature (TH ) of a sta-
tionary black hole: in the first method TH is given as the
three-volume integral of the Gauss–Bonnet invariant (or the
Kretschmann scalar for Ricci-flat metrics) in the total region
outside the event horizon; in the second method it is given as
the surface integral of the Riemann tensor contracted with the
covariant derivative of a Killing vector on the event horizon.
To arrive at these new formulas for the black hole temper-
ature (and the related surface gravity), we first construct a
new differential geometric identity using the Bianchi iden-
tity and an antisymmetric rank-2 tensor, valid for spacetimes
with at least one Killing vector field. The Gauss–Bonnet ten-
sor and the Gauss–Bonnet scalar play a particular role in this
geometric identity. We calculate the surface gravity and the
Hawking temperature of the Kerr and the extremal Reissner–
Nordström holes as examples.

1 Introduction

Black hole physics, from the vantage point of both observa-
tions and theory, is in a remarkable state of development.
Rotating Kerr metric [1], as the vacuum solution of Ein-
stein field equations, describe all the observed properties of
these black holes with just two parameters: the mass of the
black hole m and the rotation parameter a which is related
to the angular momentum of the black hole as a = J/m (see
[2] for a detailed exposition.) These two parameters arise
as integration constants in the solution of the partial differ-
ential equations; but they can be represented as geometric
invariants through the usual ADM [3,4] construction which
expresses the mass and angular momentum as integrals of
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the first derivatives of the metric tensor at spatial infinity [5].
Besides these parameters, the black hole is expected to have
thermal properties: for example, an equilibrium black hole
obeys the four laws of black hole physics [6–8]. An explic-
itly gauge invariant derivation of the black hole laws of black
hole thermodynamics was given recently in [9].

Thermodynamics of black holes is currently only under-
stood at a semi-classical level [10]; and hence a proper micro-
scopic understanding of this issue is important for quantum
gravity. In black hole thermodynamics, the notion of surface
gravity, associated to a Killing (or event) horizon, plays a
major role as it is directly related to the zeroth law and the
uniform temperature assigned to a black hole. Surface grav-
ity is usually defined as the nonaffinity coefficient (κ) in the
null Killing vector field ζμ given as:

ζμ∇μζ ν = −κζ ν, (1)

which is to be computed on the event horizon. We must keep
in mind the well-known ambiguity in the definition of surface
gravity here: if the integral curves of the null Killing vector
ζμ are restricted to be affinely parameterized, then ∇ζ ζ = 0
and κ disappears. So affine parameterization should not be
imposed. Furthermore, a constant scaling of ζμ → aζμ, also
scales κ → aκ . So one must fix the normalization ζμ away
from the horizon where it is not null, an issue to which we
shall come back below. For two wonderful expositions of
this topic, see [11,12]. As demonstrated in these works in
a pedagogical manner, one can show that the surface grav-
ity as defined above (1) is constant on the horizon which,
even at a cursory level, suggests a direct connection of the
event horizon (or the black hole) with an object with constant
temperature that is in equilibrium with its surrounding.

Here we provide a completely unexpected formulation of
surface gravity which matches the usual formulation (1) for
stationary black holes. Our definition is valid for generic
spacetime dimensions larger than 3, and for generic grav-
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Fig. 1 M denotes the four (or generically n > 3) dimensional space-
time, B represents the three (or generically n − 1) dimensional ball
for which the boundary is the cross section of the event horizon. Also,
M̄ = M − B × [−T, T ] denotes the region of the spacetime between
the event horizon and the boundary of the black hole at infinity. To
not deal with a trivial divergence over the time integral for stationary
spacetimes, we have taken the time dimension to run over the interval
[−T, T ]. The boundary of M̄, ∂M̄, consists of the event horizon as
a 3 (generically (n − 1)) dimensional degenerate hypersurface and the
boundary at infinity

ity theories. But, in particular, for four dimensional vacuum
black holes, we show that the surface gravity is proportional
to the volume integral of the Kretschmann scalar outside the
black hole region. It is well-known that the Kretschmann
scalar diverges for a black hole in some region inside the
event horizon and this scalar has been used to detect the
singularity of black hole spacetimes see [13] for use of the
scalar curvature invariants on the detection of other invari-
ants of black holes. Here we have shown another use of
Kretschmann curvature invariant: its integral over the spatial
section of the spacetime outside the black hole yields the sur-
face gravity and hence the associated Hawking temperature
[10] given in geometric units as

TH = κ

2π
. (2)

In what follows, we will show that κ can be expressed as the
total three-volume integral of the Kretschmann scalar, where
the integration domain is outside the black hole region, that
is from the event horizon to spatial infinity of the spacetime.
Equivalently, it can also be expressed as a surface integral (see
Fig. 1 (1)) on the cross section of the event horizon with an
integral that involves the Riemann tensor and the covariant
derivative of the timelike or any other Killing vector. Our
formulation is geometric in the sense that it is valid for any
gravity theory, for any n ≥ 4 dimensions. The contents of a
theory enter only after the geometric identity (13).

To derive the new formulas for surface gravity and the
black hole temperature , let us start with the construction of
a new geometric identity.

2 Construction of the geometric identity

In [14,15], we introduced the following P-tensor

Pν
μβσ := Rν

μβσ + δν
σGβμ − δν

βGσμ + Gν
σ gβμ − Gν

βgσμ

+
(
R

2
− 
(n + 1)

n − 1

)
(δν

σ gβμ − δν
βgσμ). (3)

where Gν
β := Rν

β − 1
2 Rδ

β
ν + 
δ

β
ν . The P-tensor (which van-

ishes identically in three dimensions) satisfies the symmetries
of the Riemann tensor and its contraction yields the Einstein
tensor, Pν

μvσ = (3−n)Gμσ . In fact, one of our motivations
was to find a rank (1, 3) tensor whose contraction is not the
Ricci tensor, but the Einstein tensor. This P-tensor does the
job. Moreover, as defined above, this tensor vanishes identi-
cally for maximally symmetric spacetimes; but when 
 = 0,
it vanishes for flat spacetimes. Perhaps, the most important
property of the P-tensor is that, unlike the Riemann tensor,
it is divergence-free for all twice differentiable metrics on a
spacetime

∇νPνμ
βσ = 0. (4)

This fact yields rather remarkable consequences for the
underlying manifold. Let Fβσ be a generic antisymmetric
tensor. Then, contracting (4) with Fβσ yields

∇ν(Pνμ
βσFβσ ) = Pνμ

βσ ∇νFβσ . (5)

Let χσ be a generic vector field on the manifold. Then, we
take a particular Fβσ such that χσ be its potential as

Fβσ = 1

2

(∇βχσ − ∇σ χβ
)
, (6)

and decompose χσ as follows

χσ := ξσ + ψσ , (7)

where ξσ is a Killing vector ( i.e. ∇βξσ + ∇σ ξβ = 0) and
ψσ is a generic vector. Then Fβσ becomes

Fβσ = ∇βξσ + 1

2

(∇βψσ − ∇σ ψβ
)
. (8)

Using the Killing identity, ∇ν∇βξσ = Rσβ
νλξ

λ [16], the
right hand side of Eq. (5) can be written as

Pνμ
βσ ∇νFβσ = Pνμ

βσ R
σβ

ν
λξλ + ∇ν(Pνμ

βσ ∇βψσ ).

(9)

We will now write the contraction of the Riemann and the P-
tensors, Pνμ

βσ Rσβ
νλ, in terms of the Gauss–Bonnet tensor

[17,18]

Hμν := 2
(

2RRμν − 2Rμανβ R
αβ + Rμαβσ Rν

αβσ

− 2RμαR
α
ν − 1

4
gμνχGB

)
, (10)
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where the Gauss–Bonnet invariant, χGB , reads as

χGB := Rμαβσ R
μαβσ − 4RμνR

μν + R2. (11)

Note that Hμν vanishes identically in four dimensions, while
χGB can be written as the divergence of a vector field, albeit in
a non-covariant way. (Vanishing ofHμν in four dimensions is
not obvious from the definition (10), but a detailed derivation
was given in [17] and a concise one in [18]). Then in generic
n spacetime dimensions, one has an identity

Pνμ
βσ R

σβ
ν

λ = −1

2
Hμλ − 1

4
gμλχGB + 2
(n − 3)

(n − 1)
Rμλ.

(12)

Inserting (8, 12) in Eq. (5), one arrives at the desired
geometric identity which is valid for any smooth metric

∇ν(Pνμ
βσ ∇βξσ ) (13)

=
(

2
(n − 3)

(n − 1)
Rμλ − 1

2
Hμλ − 1

4
gμλχGB

)
ξλ.

Note that, at the end of the construction, the non-Killing
part of the χσ vector dropped in the last equation, and only
the Killing part survived. So this identity is valid only for
spacetimes that have at least one Killing symmetry, otherwise
one does not have this identity.

As the identity (13) is a vector identity, its prone to another
covariant derivative. Let us show that, without a constraint
on the geometry beyond the assumption of the existence of
a Killing symmetry, the covariant derivative of the identity
vanishes automatically. This really is desired, otherwise the
underlying geometry would be further constrained. So we
have

∇μ∇ν(Pνμ
βσ ∇βξσ )

= ∇μ

(
2
(n − 3)

(n − 1)
Rμλ − 1

2
Hμλ − 1

4
gμλχGB

)
ξλ. (14)

Let us concentrate on the left-hand side which reads

∇μ∇ν(Pνμ
βσ ∇βξσ ) = 1

2
[∇μ,∇ν](Pνμ

βσ ∇βξσ )

= Rμν
ν

λ(Pλμ
βσ ∇βξσ )

+ Rμν
μ

λ(Pνλ
βσ ∇βξσ )

= −Rμλ(Pλμ
βσ ∇βξσ )

+ Rνλ(Pνλ
βσ ∇βξσ ). (15)

In the last two lines, each term vanished identically since
the Ricci tensor is symmetric while the term in the paren-
thesis is anti-symmetric. So the lest-hand side of (14) van-

ishes identically. Let us check the right-hand side of that
equation. Since ξ is a Killing vector ∇ξ ξ = 0. Since the
geometry is invariant along the flow of this Killing vector,
we have ∇ξ R = ξμ∇μR = 0, which can also be easily
shown. Similarly ∇ξχGB = 0. As the Gauss–Bonnet tensor
Hμλ comes from the variation of a diffeomorphism invari-
ant action, it satisfies covariant conservation ∇μHμλ = 0 So
the right-hand side of (14) boils down to 2
(n−3)

(n−1)
ξλ∇μRμλ

which vanishes identically upon use of the Bianchi Identity
∇μRμλ = 1

2∇λR plus the identity ξμ∇μR = 0 coming from
the Killing vector identity. So to some up: covariant deriva-
tive of (13) vanishes for all smooth geometries. And as we
have just shown, since the right-hand and the left-hand van-
ishes independently, identically, this allows us to define two
equivalent covariantly conserved currents :

J μ := ∇ν(Pνμ
βσ ∇βξσ ) (16)

and

J μ =
(

2
(n − 3)

(n − 1)
Rμλ − 1

2
Hμλ − 1

4
gμλχGB

)
ξλ. (17)

We shall use both of these two give two different expressions
for the surface gravity and temperature of a stationary black
hole.

Since, up to now, we have not assumed any field equations,
in principle we can consider any gravity theory, but to derive
the consequences of (13) for our World, let us consider four
dimensional manifolds that satisfy the cosmological Einstein
theory with matter. Then, one has Gμν = κN Tμν , with κN =
8πGn
c4 ; and as stated above the Gauss–Bonnet tensorHμν = 0

in four dimensions, yielding

∇ν(Pνμ
βσ ∇βξσ ) =

(
−1

4
gμλRραβσ R

ραβσ

+ κ2
N g

μλT̃αβ T̃
αβ − 1

4
gμλκ2

N T̃
2 + 2


3
κ T̃μλ

)
ξλ, (18)

where we have expressed the right-hand side of the iden-
tity in terms of the(modified) energy momentum tensor:
T̃μν := Tμν − 1

2gμνT + 

κN

gμν . In particular, one of the
main applications of this construction will be the astrophys-
ically relevant Kerr black hole for which 
 = 0 and in a
vacuum, Tμν = 0, and hence (18) reduces to

J μ = ∇ν(Pνμ
βσ ∇βξσ ) = −1

4
ξμRραβσ R

ραβσ . (19)

So on the right-hand side the Gauss–Bonnet invariant
reduced to the Kretschmann scalar for Ricci flat metrics i.e.
the metrics solving vacuum Einstein equation.

As we have shown in the general case above, above we
have ∇μJ μ = 0, which yields a true conservation law
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∂μ(
√−gJ μ) = 0 which can be integrated over the space-

time
∫
M d4x∂μ(

√−gJ μ) = 0.
Let us consider the consequences of this expression for

black hole spacetimes. For a detailed discussion of this type
of construction, please see the third section in [19]. To be
concrete, let ξμ be a time-like Killing vector and let � be a
spatial hypersurface (which will be specified below) in the
total spacetime M and let nmu be its (inward-pointing) unit
time-like normal vector, and γi j be the induced metric on �.
Then

∫
�
d3y

√
γ nμJ μ is independent of time and the choice

of the spatial hypersurface as per conservation. So then we
have the following exact relation

∫
�

d3y
√

γ nμ∇ν(R
νμ

βσ ∇βξσ )

= −1

4

∫
�

d3y
√

γ nμξμRραβσ R
ραβσ , (20)

where in vacuum, for Ricci flat metrics, the P reduced to
the Riemann tensor. We can use the Stokes’ theorem on the
left-hand side as follows∫

�

d3y
√

γ nμ∇ν(R
νμ

βσ ∇βξσ )

=
∫
∂�

d2z
√

γ (∂�) nμσνR
νμ

βσ ∇βξσ (21)

where ∂� is the (spacelike) boundary of the spacelike surface
� while σν is its spacelike outward unit normal vector and
γ

(∂�)
μν := gμν + nμnν − σμσν is the induced metric on it.

Introducing the antisymmetric binormal as

εμν := 1

2

(
nμσν − nνσμ

)
, (22)

we can rewrite (21) as∫
�

d3y
√

γ nμ∇ν(R
νμ

βσ ∇βξσ )

=
∫
∂�

d2z
√

γ (∂�)εμνR
νμ

βσ ∇βξσ . (23)

So then we have the main identity

∫
∂�

d2z
√

γ (∂�)εμνR
νμ

βσ ∇βξσ (24)

= −1

4

∫
�

d3y
√

γ nμξμRραβσ R
ραβσ .

To proceed, let us now specify the hypersurface �. To be
mathematically somewhat rigorous, let us take the time inter-

val to be compact t ∈ [−T, T ] and let T → ∞ at the end.
Then, as depicted in Fig. 1,M̄ = M−B× [−T, T ] denotes
the spacetime region between the event horizon of the black
hole and the boundary of the black hole at infinity. HereM is
the total spacetime and B denotes the three dimensional ball
of which the boundary is the two dimensional cross section
of the event horizon. Also, ∂M̄ denotes the disconnected
boundary of that region: one at spatial infinity ∂M, the other
on the event horizon S2 × [−T, T ]. Under these considera-
tions the hypersurface for asymptotically flat spacetimes is
given as � = R

3 − B, with two a disconnected boundary
composed of an S2 as the cross section of the event horizon
and another S2 at spatial infinity.

The expression (24) is an identity for all Ricci flat metrics
in four dimensions. One important point to note is the fol-
lowing, for black holes the Kretschmann scalar is divergent
somewhere inside the event horizon (defining the real singu-
larity of the black hole); and its integral over the totality of
the spacetime is also clearly divergent, but here we restrict
the integration domain to the spatial region outside the black
hole for which the integral is finite. Let us understand the
content of the identity, (24), in the case of the Kerr metric.

Application to the Kerr black hole

The coordinates in which the metric is written does not
change our construction as we need the Kretschmann scalar,
but since we also need a Killing vector field, it is best to take
coordinates in such a way that one of them is a Killing coor-
dinate. To this end, one can take the Ricci flat Kerr metric in
the Kerr-Schild form [20]

ds2 = ds̄2 + 2mr

ρ2

(
kμdx

μ
)2

, (25)

where ρ2 := r2 + a2 cos2 θ and with the seed metric given
as

ds̄2 = −dt2 + ρ2dr2(
r2 + a2

) + ρ2dθ2

+
(
r2 + a2

)
sin2 θdφ2, (26)

The vector kμ, which is null with respect to both the seed and
the full metric, is given as

kμdx
μ = dt + ρ2dr(

r2 + a2
) − a sin2 θdφ.

For more details on the Kerr metric, see [21]. The outer event
horizon is located at rH = m + √

m2 − a2; and the surface
gravity, κ , at the event horizon can be easily computed from
the usual definition via the formula (1), with the Killing vec-
tor field

ζ = ∂t + ΩH∂φ, (27)
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which is the horizon-generating null Killing vector field.
Here ΩH is the angular velocity of the event horizon given
as

ΩH = a

r2
H + a2

, (28)

which makes ζμζμ = 0 on the event horizon
As mentioned in the paragraph below (1), ζμ has a scaling

ambiguity: the choice (27) with the factor 1 in front of the
timelike Killing vector removes this ambiguity which is the
common practice that is consistent with the laws of black
hole mechanics. So, using (27) in (1) one arrives at the known
result [11] for the surface gravity of the Kerr black hole

κ = r2
H − a2

2rH (r2
H + a2)

, (29)

and the Hawking temperature follows from (2).
Let us now show how our integral formula (24) reproduces

this result in a completely different manner. One can compute
either the left-hand side or the right-hand side of the identity
(24), as they are equal, the result of course does not matter.
Defining the right-hand side of (24) as

E [ξ ] := −1

4

∫
�

d3y
√

γ nμξμRραβσ R
ραβσ , (30)

The Kretschmann scalar K ≡ Rραβσ Rραβσ for the metric
(25) can be computed to be

K = −96m2 A

B
(31)

where

A = a6 cos(6θ) + 10a6 − 180a4r2 + 240a2r4

+6a4
(
a2 − 10r2

)
cos(4θ)

+15a2
(
a4 − 16a2r2 + 16r4

)
cos(2θ) − 32r6, (32)

and

B =
(
a2 cos(2θ) + a2 + 2r2

)6
. (33)

The induced metric γ in the hypersurface � follows from
(25) by setting t =constant, that is

ds̄2
γ = ρ2dr2(

r2 + a2
) + ρ2dθ2 +

(
r2 + a2

)
sin2 θdφ2, (34)

and the vector kμ reduces to

kμdx
μ = ρ2dr(

r2 + a2
) − a sin2 θdφ.

Taking the time-like Killing vector ξ = (1, 0, 0, 0) and com-
puting the time-like unit normal nμ to the hypersurface � as

nμ = −

⎛
⎜⎜⎝ 1√

1 + 4mr(a2+r2)
(a2+r(r−2m))(a2 cos(2θ)+a2+2r2)

, 0, 0, 0

⎞
⎟⎟⎠

(35)

Then plugging all these into (30) and carrying out the volume
integral over the ranges r ∈ [rH ,∞] and θ ∈ [0, π ], φ ∈
[0, 2π ] that cover �, yields

E [∂t ] = −16πrHm2(r2
H − a2)

(r2
H + a2)3

. (36)

This expression has the correct behavior for the surface grav-
ity, for example it vanishes exactly for the extremal Kerr
metric for which a = m and rH = m. For the subextremal
Kerr metric, one must introduce a constant coefficient which
is akin to the scaling ambiguity in (1). In fact, this is evi-
dent from the choice of the Killing vector above: we chose
ξ = (1, 0, 0, 0), but any other choice ξ̃ = (c, 0, 0, 0), with c
a constant, would scale κ . So one has the surface gravity of
the Kerr metric

κ = − 1

32π

(
a

mrH�H

)2

E [∂t ] , (37)

which is equivalent to (29). For the Schwarzschild black hole,
a = 0 and one finds the correct limit κ = 1

4m .
Defining the dimensionless rotation parameter of the black

hole as α := a/m and the tangential speed of the horizon as
vH = rH�H , the prefactor in (37) reads as the dimension-
less ratio (α/vH )2. so for the Kerr black hole, the Hawking
temperature simply reads as

TH =
(

a

16πmrH�H

)2 ∫
�

d3y
√

γ nμξμRραβσ R
ραβσ ,

(38)

where, again, the integral is outside the black hole region.
Equivalently, from (24) one can calculate the same integral
on the surface of the event horizon.

In Fig. 2, we have plotted the Kretschmann scalar K (31)
for the Kerr black hole. Even though this curvature scalar
diverges on a ring inside the event horizon, diagnosing the
true singularity of spacetime, its finite outside the event hori-
zon. Moreover, as is the premise of this work, as we have
shown, its spatial volume integral is also finite and is related
to the surface gravity.

Let us give a non-vacuum example: the extremal charged
Reissner–Nordström metric which is a solution to Einstein–
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Fig. 2 Plot of the Kretschmann scalar K (31) for the Kerr black hole
with a = 1/3, m = 1; and for the interval r ∈ [rH = 1.94, 3.5],
θ ∈ [0, π ] . The figure is depicted to show how the total Kretschmann
scalar of the rotating black hole over the spatial region outside the black
hole region can give a finite result

Maxwell theory. The metric is the of the following form

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dθ2 + sin2 θdφ2) (39)

where we keep f (r) arbitrary for now but will specify in a
moment. The metric is not Ricci-flat generically, so we must
now apply the full identity (13). We assume 
 = 0 and in
four dimensions, we we already noted, the Gauss–Bonnet 2-
tensor vanishes, but the Gauss–Bonnet scalar does not. For
(39), we have

χGB =
4

(
( f − 1) f ′′ + (

f ′)2
)

r2 (40)

for f (r) = 1 − 2m/r + q2/r2, for the time-like vector ξ =
(1, 0, 0, 0), the relevant expression

E [ξ ] := −1

4

∫
�

d3y
√

γ nμξμχGB, (41)

yields

E [ξ ] = 8π

r5
H

(
2r2

Hm
2 − 3rHmq2 + q4

)
, (42)

which vanished identically for the extremal case of q = m,
that is rH = m. This yield κ = 0 and so TH = 0 as expected.
For the non-extremal case, the constant in front of the Killing
vector must be taken not 1.

Finally, let us also note a rather interesting connection
(which needs to be better studied) of the above construction
with our earlier work [14,15]. The linearized version of the
main identity (13) yields the conserved charges (mass and
angular momentum) written in terms of not the derivatives of
the metric deviations but in terms of the explicitly diffeomor-
phism invariant linearized Riemann tensor for asymptotically

anti-de Sitter spacetimes [14,15] as

Q
(
ξ̄
) = k

∫
∂�̄

dn−2x
√

γ̄ ε̄μν

(
Rνμ

βσ

)(1) F̄βσ , (43)

with the constant coefficient k = (n − 1)(n − 2)/[8(n −
3)
G�n−2] and the barred quantities refer to the AdS back-
ground; and 2F̄βσ = ∇̄β ξ̄σ − ∇̄σ ξ̄β .

3 Conclusions

We have given two new expressions for surface gravity and
the associated temperature for black holes. Broadly speak-
ing both surface gravity and the temperature of a black hole
is directly related to the total (integrated) quadratic curva-
ture invariant outside the black hole region. This is a rather
important result which directly links the surface gravity to
a curvature invariant and the integration clearly shows the
non-locality of the surface gravity concept.

Our construction was based on a divergence-free rank four
tensor and an antisymmetric rank two tensor built from the
covariant derivative of any Killing vector field: we found an
identity (13) valid for all spacetimes of generic n > 3 dimen-
sions. A curious fact is that the Gauss–Bonnet tensor Hμν

(which comes from the variation δg
∫
dnx

√−gχGB) and the
Gauss–Bonnet scalar, χGB , appears on the right-hand side of
the expression. When this expression is integrated in a region
of spacetime for which the integrals are finite, one obtains an
identity, which in four dimensional Ricci flat metrics yield
(24). Remarkably the left-hand side or the right-hand side
of this identity is related to the Hawking temperature (and
the surface gravity) of the black hole. We realized this upon
the computation for extremal black holes; the integrals van-
ish identically and for Schwarzschild black holes they yield
the surface gravity κ = 1/4m which are the known results.
Therefore, besides the usual way of defining the surface grav-
ity via the null geodesic generator as in (1), our construction
gives two novel definitions one of which includes the integral
of the Kretschmann scalar in the part of the spacetime outside
the black hole region, and the other one being an integral of
the Riemann tensor (in the Ricci flat case it is actually the
Weyl tensor) contracted with the covariant derivative of any
Killing vector field.
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