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Abstract The scalar resonances X (3915), X (3960),

X0(4140) are considered as exotic four-quark states: cqc̄q̄,

csc̄s̄, csc̄s̄, while the X (3863) is proved to be the cc̄, 2 3P0

state. The masses and the widths of these resonances are
calculated in the framework of the Extended Recoupling
Model, where a four-quark system is formed inside the bag
and has relatively small size (<∼ 1.0 fm). Then the resonance
X (3915) appears due to the transitions: J/ψω into D∗+D∗−
(or D∗0 D̄∗0) and back, while the X (3960) is created due to
the transitions D+

s D−
s into J/ψφ and back, and the X0(4140)

is formed in the transitions J/ψφ into D∗+
s D∗−

s and back.
The characteristic feature of the recoupling mechanism is
that this type of resonances can be predominantly in the S-
wave decay channels and has J P = 0+. In two-channel
case the resonance occurs to be just near the lower threshold,
while due to coupling to third channel (like the cc̄ chan-
nel) it is shifted up and lies by (20–30) MeV above the
lower threshold. The following masses and widths are calcu-
lated: M(X (3915)) = 3920 MeV, �(X (3915)) = 20 MeV;
M(X (3960)) = 3970 MeV, �(X (3960) = 45(5) MeV,
M(X0(4140)) = 4120(20) MeV, �(X0(4140)) = 100 MeV,
which are in good agreement with experiment.

1 Introduction

In the region (3.9–4.2) GeV there are now three scalar res-
onances and the X (3915) was the first, observed by the
Belle in the e+e− → J/ψωK process [1]. Later this res-
onance was confirmed by the BaBar [2] and in several
other experiments [3]), in particular, in two-photon colli-
sions [4,5]. For some years this resonance was assumed
to be the conventional cc̄ meson – χco(2P), although this
interpretation has called out some doubts [6,7] (see discus-
sion in the reviews [8,9]) and does not agree with predic-
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tions in different relativistic potential models (RPM) [10–
13]. The experimental masses of the X (3915) and χc2(2P)

were found to be almost equal, while in the RPMs a smaller
mass, M(2 3P0) ∼= 3870 ± 30 MeV, and much larger mass
difference, δ20(2P) = M(χc2(2P) − M(χc0(2P) ∼= (70–
100) MeV, were predicted. Notice that large mass differ-
ence δ20 is kept even if the coupling of the χc0(2P) to
open channels is taken into account [14,15]. Such theo-
retical expectations were supported by the Belle observa-
tion of the wide scalar X (3860) resonance [16], both in
e+e− → J/ψD+D− and e+e− → J/ψD0 D̄0 decays,
which has the mass M = 3862+26

−32
+40
−82 MeV and large width

� ∼= 200 MeV. The existence of the scalar X (3860) reso-
nance is confirmed by the analysis of two-photon production,
γ γ → DD̄ in [17].

Very recently the LHCb [18] has observed two more scalar
resonances X (3960), X0(4140) in the D+

s D−
s mass spec-

trum in the B+ → D+
s D−

s K+ decays with the parame-
ters: M(X (3960)) = (3956 ± 5 ± 10) MeV, �(X (3960)) =
(43 ± 13 ± 8) MeV, M(X0(4140)) = (4133 ± 6 ± 6) MeV,
�(X0(4140)) = (67 ± 17 ± 7) MeV, both with J PC = 0++.
These new scalar resonances evidently look as exotic states
and the X (3960) was interpreted as the molecular D+

s D−
s

state within the QCD sum rules approach [19,20] and in
a coupled-channel model [21]; in [22] it appears due to
the triangle singularity, while in [23] the parameters of the
X (3960), as a diquark–antidiquark state, were obtained in
a good agreement with experiment, using the QCD sum
rules approach. Notice that the masses of the X (3960) and
X0(4140) resonances lie by ∼ 20 MeV above the thresholds:
D+
s D−

s and J/ψφ, respectively.
In our paper we assume that the X (3915) and both the

X (3960), X0(4140) belong to exotic four-quark states cqc̄q̄
and csc̄s̄ and to define their parameters we will use the
Extended Recoupling Model (ERM), recently suggested in
[24], which develops the Recouplimg Model, presented ear-
lier [25,26]. The ERM allows to calculate the mass and
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width of a scalar four-quark states, however, within suggested
mechanism such resonances cannot exist in the systems with
two identical mesons, like D+

s D+
s , D∗+

s , D∗+
s . This theoret-

ical prediction is supported by the Belle experiment [27]. In
the ERM the system of two mesons, e.g. (J/ψ + φ), can
transfer into another pair of the mesons (D+

s , D−
s ) by rear-

ranging confining strings and back in the infinite chain of
transformations, like J/ψφ → (D+

s D̄−
s ) → J/ψφ → ....

Note that such sequences can also be treated, for example, in
the standard OBE approximation with the meson exchanges,
which, however, does not produce the singularities near the
thresholds. In the coupled-channel models (CCM) [28–31]
the interaction between hadrons, like D+

s D−
s , J/ψφ, is usu-

ally neglected, while in the ERM such interaction is taken
into account, introducing the four-quark bag. It is important
that all hadrons involved have rather small sizes, ∼= (0.40–
0.55) fm and only ω(1S) has a bit larger r.m.s. ∼ 0.7 fm.
We would like to underline the characteristic features of the
ERM [24]: first, due to the string rearrangement of a four-
quark system the singularity lies close to the lower thresh-
old; second, this mechanism produces the resonance in the
S-wave hadron-hadron system and therefore, the quantum
numbers of these resonances J PC = 0++, 1++, 2++; third,
a resonance does not appear, if hadrons are identical.

In the literature there are still a controversy, concerning the
X (3915), and different interpretations were proposed. This
resonance was considered in the tetraquark model within the
Born–Oppenheimer approach in [32–35], due to the triangle
singularity [22] and the threshold effects [36], as the molec-
ular Ds D̄s bound state [37], or the lightest csc̄s̄ state [38]
and as the diquark–antidiquark state, using the QCD sum
rule method [23,39]. In contrast to a molecular structure of
four-quark states in the ERM these systems are assumed to
be compact systems, similar to the diquark–antidiquark states
studied in [40]. In such compact systems their wave functions
at the origin are not small and therefore they can be produced
in the γ γ transitions. At this point one can assume a possible
existence of at least two different but subsidiary mechanisms,
producing resonances in the four-quark and multiquark sys-
tems: first, the resonances, which are formed inside a com-
mon multiquark bag and connected (and independent) with
external channels. As a result these resonances could be seen
in all external channels. The theory of this type of approach
was suggested far ago in [41]. Within a diquark–antidiquark
model the compact Q2 Q̄2 resonances were already predicted
in 1988 [40]. Second type refers to the channel-coupling res-
onances where the internal multiquark region is only needed
to connect different channels with sufficient probability and
considered here Extended Recoupling Model belongs to this
second type. One can easily imagine the existence of mixed
type models and mechanisms where two dynamics interfere
with each other. In what follows we shall consider only the

ERM mechanism but in the final section we shall give a short
discussion of the general type models and their predictions.

In our paper we will shortly discuss the higher scalars,
X (4500), X (4700), observed by the LHCb [42–44], which
admit different interpretations.

The structure of the paper is as follows. In next section
we shortly remind the basic formulas in two-channel case
and give the values of the parameters, needed to define the
masses and widths of the recoupled four-quark resonances.
In Sect. 3 more general matrix representation of the ERM is
presented. In Sect. 4 we calculate the transition amplitudes
and give the masses and widths of the scalar resonances, and
compare them with experimental data. In Sect. 4 the masses
of high X (4500), X (4700) resonances, as the cc̄ states, are
discussed. Our conclusions are presented in Sect. 5.

2 The two-channel approach in the Extended
Recoupling Model

We study the experimental process where, among other prod-
ucts, two hadrons are produced and one pair of hadrons (the
pair 1) can transfer into another pair of hadrons (the pair
2). In [24] the probability amplitude of this transition was
denoted as V12(p1,p2), with p1,p2 – relative momenta of
the hadrons, referring to the pair 1 and 2. If an infinite set
of the transformations was supposed and the total produc-
tion amplitude A2 of the pair 2 was written as a product
of the slowly varying function F(E) and the singular fac-
tor f12(E) = 1

1−N , then the amplitude A2 = F(E) f12(E).
This definition of the transition amplitude V12 = V21 dif-
fers of that in other approaches, where one or more the
OBE diagrams with meson exchanges are taken. In the ERM
[24] the process occurs through the intermediate stage of the
Quark Compound Bag (QCB) [41,45–47], where all quarks
and antiquarks of two hadrons are participating in the string
recoupling and, possibly, the spin recoupling. Denoting the
QCB wave functions as 	(qi ) (i = 1, 2, 3, 4) and the two-
hadron wave functions as 
i (h1, h2), the amplitude V12 can
be written as,

V12 = (
1(ha1hb1)	(qi ))(	(qi )
2(ha2hb2)

= V1(p1)V2(p2), (1)

i.e. the amplitude V12 = 1
1−N acquires the factorized form:

V12(p1,p2) = v1(p1)v2(p2) with the factor N , written as

N = z(E)I1(E)I2(E). (2)

Here z = z(E) can be called the transition probability, while
I1(E), I2(E) are the following integrals (see [24]):

Ii (E) = vi Givi =
∫

d3 pi
(2π)3

v2
i (pi )

E ′(pi ) + E ′′
(pi ) − E

, (3)
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where the hadron energies E ′(pi ), E
′′
(pi ) in the i-th pair

near thresholds, E ′(p) = p2

2m′ + m′, include corresponding
thresholds Eth

i and the reduced masses μi , namely,

Eth
i = m′(i) + m

′′
(i), μi = m′(i)m ′′

(i)

m′(i) + m ′′
(i)

. (4)

The result of the integration in Ii (E) can be approximated
by the form:

Ii = consti
1

νi − i
√

2μi (E − Eth
i )

. (5)

with μi , defined in (4), while νi is expressed via the param-
eters of the hadron wave functions, which were calculated
explicitly in [24]. Here we would like to underline that the
transition probability z(E) appears to be the only fitting
parameter in the ERM.

The whole series of the transitions from the pair 1 to 2 and
back is summed up to the amplitude f12,

f12(E) = 1

1 − z I1 I2
, Ii = 1

νi − i
√

2μi (E − Eth
i )

, (6)

where νi are found from the four-quark wave functions, as
in [40,45]. The form of Eq. (6) takes place for the energies
E > E1, E2, while for E < E1, E2, i.e. below thresholds,

the amplitude f1 =
(

1
ν1+√

2μ1(|E−E1|)
)

. It is important that

in the ERM the process proceeds with the zero relative angu-
lar momentum between two mesons, L = 0, otherwise the
transition probability z12(E) is much smaller and a resonance
may not appear.

Note also that if the recoupling mechanism is instan-
taneous, or the transition from one pair of the mesons to
another proceeds instantaneously, then the transition ampli-
tude V (12) does not factorize into V (1)V (2); such an
assumption was used in the original Recoupling Model [25].
However, in this approximation, e.g. for the Tcc resonance
agreement with experiment was not reached [25]. On the con-
trary, in the ERM [24] the recoupling mechanism proceeds
in two stages: at first stage the hadrons h1, h2 collapse into
common “compound bag” [41,45], where the four quarks
are kept together by the confining interaction between all
possible quark pairs. This compound bag has its own wave
function 	i (q1, q2, q3, q4) and the probability amplitude of
the h1, h2 → 	 transition, which defines the factor V1(p1)

in Eq. (2). In a similar way the transition from the Bag state
to the final hadrons h3, h4 defines the factor V2(p2) and we
obtain the relation:

v1(pi ) =
∫

d3q1...d
3q4ψh1ψh2	i (q1, ..q4), (7)

and similar equation for v2(p2), replacing h1, h2 by h3, h4.
From vi (pi ) the function Ii (3) is defined and using (6), one
obtains νi .

Now we give experimental data and corresponding the
ERM parameters, referring to the four-quark systems, cqc̄q̄
for X (3915) and csc̄s̄ for the X (3960), X0(4140). We give
also the threshold energies E1, E2.

The parameters of the four-quark resonances

(1) X (3915), J P = 0+, �(exp .) = 20(5) MeV [1,3],
J/ψω → D∗ D̄∗, E1 = 3.880, E2 = 4020, μ1 =
M(J/ψ)M(ω)
M(J/ψ)+M(ω)

= 0.624, μ2 = M(D∗)M(D̄∗)
M(D∗)+M(D̄∗) = 1.050

(all in GeV). From [24] ν1(J/ψω) = 0.21 GeV,
ν2(D∗ D̄∗) = 0.44 GeV.

(2) X (3960), J P = 0+, �(exp .) = 43(21) MeV [18],
[J/ψφ] → [D−

s D+
s ], E1 = 3.936, E2 = 4116, μ1 =

MJ/ψ Mφ

MJ/ψ+Mφ
= 0.767, μ2 = M(D+

s )M(D−
s )

M(D+
s +M(D−)

= 0.984;
ν1(J/ψφ) = 0.265, ν2 = 0.424 (all in GeV).

(3) X0(4140), J P = 0+, �(exp .)=67(24) MeV [18],
[J/ψφ] → [D∗−

s D∗+
s ], E1 = 4.116, E2 = 4.224, μ1 =

0.767, μ2 = 1.056, ν1 = 0.265, ν2 = 0.410 (all in
GeV).

Here q can be u, d quarks. To define the structure of the
cross sections we start with the value of the recoupling prob-
ability z = 0.2 GeV2 and the parameters from the item 1) to
obtain the distribution | f12(E)|2; the values of | f12(E)|2 will
be given in Sect. 4. In the amplitude f12(E) the resulting sin-
gularity can be found in the form of (6) and for equal threshold
masses it produces a pole nearby thresholds; however, real
distance between the thresholds is large, ∼ 100 MeV, and
the actual singularity structure can be more complicated.

3 The matrix approach in the ERM

In previous section we have presented the ERM equations in
the case of two channels, which are convenient to define the
mass of a resonance. However, they do not allow to study
some details of the process, or to consider a larger number
of channels, which can have a influence at the properties of a
four-quark system. Therefore here we present a more general
representation of the amplitude using the unitarity relation,
when the standard form of the transition amplitudes fi j (E)

(for L = 0) is

fi j − f ∗
j i =

∑
n

2ikn fin f
∗
jn, (8)

or the unitarity relation can be realized through the M-matrix
representation,

f̂M = 1

M̂ − i k̂
, (9)

where f̂ , M̂, k̂ are the matrices in the channel numbers [31].
In some cases instead of the M̂ it is more convenient to use
the K̂ matrix, M̂ = −K̂−1, where the matrix elements (m.e.)
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Mik(E) are the real analytic functions of E with the dynam-
ical cuts. For two-channel system f̂M can be written as

f̂M = 1

M̂ − i k̂
= N̂

D(E)
, (10)

with

N̂ =
(
M22 − ik2 −M21

−M12 M11 − ik1

)
. (11)

Here

D(E) = (M11 − ik1)(M22 − ik2) − M12M21. (12)

One can easily establish the relation between the equations
(10)–(12) and the amplitude f12(ERM) (6) in two-channel
case, which is a partial case of these equations:

f12(ERM) = N11N22

D(E)
, D(E) = (ν1 − ik1)(ν2 − ik2) − z,

(13)

and

z = M12M21, νi ≡ Mii (E). (14)

One can see that for z > 0 the values νi = Mii are real
analytic functions of E . In the ERM [24] νi were positive
constants (defined via the parameters of the compound bag
model), while in general case Eqs. (12)–(14) include other
transition m.e.s fik . Later in our analysis we will be interested
only in the denominator D(E) (12) and the factors in (13),
(14), which fully define the position of a resonance.

The value of z, in principle, can be calculated within the
ERM, however, it can depend on many unknown parameters,
and at the present stage we prefer to keep z as a single fitting
parameter. It can be shown that z depends on the width of a
resonance, but weakly depends on the resonance position.

Now we consider three channels case to study more real-
istic case and choose the situation, when a resonance lies
above the threshold 3. Here we do not need to specify the
channel 3, which for example, may be a conventional cc̄ state
with J PC = 0++. We introduce the 3 × 3 amplitude f̂M (E)

with three thresholds Ei (i = 1, 2, 3) and the momenta
ki = √

2μi (E − Ei ), μi = m1i m2i
m1i+m2i

, and Ei = m1i + m2i .
Here m1i ,m2i are the masses of two hadrons in the channel
i . In this case the form of Eq. (9) is kept,

f̂3(E) = N̂3

D3(E)
,

D3(E) = ((M11 − ik1)(M22 − ik2) − M12M21))(M23 − ik3)

+
M, (15)

where 
M is


M = M31M12M23 + M32M21M13

−M13M31(M22 − ik2) − M32M23(M11 − ik1).(16)

For the energy E below the thresholds, 1 and 2, −ik1 =
|k1|,−ik2 = |k2|, and the factor 
M is a real function of
E . For the threshold 3 below thresholds of 1 and 2 one can
define the poles of the amplitude f̂3, or the zeroes of D3(E),
and rewrite the Eq. (15) as,

D3 = (M11 − ik1)(M22 − ik2) − z̃(E), (17)

where the transition probability z̃(E)

z̃(E) = M12M21 − 
M(M33 + ik3)

M2
33 + k2

3

(18)

One can see that z̃(E) acquires imaginary part, which can be
of both signs. Therefore the influence of the third (or more)
open channels, lying below the thresholds E1, E2 in the 2×2
matrix f12(E), may be important in some cases. The channel
3 can be taken into account, introducing complex values of
z(E), which can depend on the energy as in Eq. (18).

4 The masses and widths of the scalar resonances

We start with the X (3915) resonance and consider the fol-
lowing recoupling process: J/ψω → D∗ D̄∗. At first we look
at two-channel situation and choose the recoupling param-
eter z2 = 0.18 GeV2. For the X (3915) structure – cqc̄q̄
the parameters μi , νi , Ei are given in the item 1) of Sect. 2.
Then inserting all parameters to the Eq. (13), one obtains
the distribution | f12(E)|2 ( f2 ≡ f12). Its values for differ-
ent E are given in Table 1, which show that the maximum
takes place at E = 3880 MeV, just near the lower thresh-
old, and �2 = �(2 − channels) ∼= 15 MeV. In experiment
for this resonance, observed by the Belle group in the pro-
cess e+e− → e+e− J/ψω [1], the larger mass M(exp .) =
(3918.4±1.9) MeV and �(exp .) = (20 ±5) MeV [3] were
obtained.

In the case of 3-channels, when e.g. the coupling to the cc̄
channel is taken into account, the factor z3(E) acquires an
imaginary part. In this case we calculate the amplitude f3(E),
taking z3 = (0.18 − i0.20) GeV2; the values of | f3(E)|2 are
given in Table 1.

From Table 1 one can see that in the 3-channel case the
peak is shifted up by ∼ 35 MeV and corresponds the mass
ER ∼= 3.915 GeV and the width �3 ∼= 20 MeV, which are in
good agreement with the experimental mass and �(exp.) =
20(5) MeV [3].

Table 1 The values of the | f12(E)|2 for X (3915)

E(GeV) 3.85 3.86 3.88 3.89 3.90 3.91 3.915 3.93

| f2(E)|2 3.04 3.68 63.08 25.02 8.33 2.13 1.65 1.72

| f3(E)|2 1.82 1.79 1.03 1.50 3.30 348.4 360 243
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Table 2 The transition probability | f12|2 as a function of the energy E
for the X (3960) resonance

E(GeV) 3.85 3.88 3.89 3.92 3.95 3.97 4.00 4.05

| f12|2(z = 0.30) 3.93 28.6 7.89 3.20 2.28 2.00 1.38 1.50

| f3|2(z = 0.30 − i0.30) 2.0 1.43 4.02 23.7 198 500 142.3 42.2

Table 3 The values of the | f12(E)|2 and | f3(E)|2 for the X0(4140)

E(GeV) 4.00 4.07 4.12 4.17 4.22

| f12(E)|2(z = 0.35) 3.40 8.67 3.86 1.27 0.45

| f3|2(z = 0.2 − i0.2) 4.54 12.87 32.12 13.7 0.66

The scalar resonance X (3960) with J PC = 0++ was
recently observed by the LHCb in the B+ → J/ψφK+
[18] and within the ERM it can be explained due to the
infinite chain of the transitions: J/ψφ → D+

s D−
s and

back. In two-channel approximation the X (3960) parame-
ters (νi , μi , Ei , (i = 1, 2) are given in the item 2) (Sect. 2),
which are used to define the amplitude (13). First, we choose
z2 = 0.30 GeV2 and calculate the transition amplitudes
| f12(E)|2; their values are given in the Table 2.

In the two-channel approximation the numbers from Table
2 show the peak at E = 3940 MeV, near D+

s D−
s thresh-

old, and �(2 − ch.) ∼= 15 MeV. In the 3-channel case the
mass of the X (3960) resonance is shifted up to the position
M(3−ch.) = 3970 MeV and the width increases to the value
�(th.) ∼= 45(5) MeV; these values are in agreement with
the experimental numbers: M(X (3960)) = 3956(15) MeV,
�(X (3960)) = (43 ± 21) MeV [18].

In [18] the LHCb has reported about another, the X0(4140)

resonance, with J PC = 0++, in the B+ → D+
s D−

s K+
decay. Its mass M(X0(4140) = 4133(12) MeV is close to
the J/ψφ threshold. We consider this resonance as the csc̄s̄
system and first calculate the squared amplitudes | f12(E)|2 in
two-channel case, taking the parameters μi , νi , Ei from the
item 3) of Sect. 2. In this 2-channel case: J/ψφ and D∗+

s D∗−
s

the transition probability z2 = 0.35 is taken and the calcu-
lated values of | f12|2 are given in Table 3.

In three-channel case the channel D+
s D−

s is added as the
third one, then the values | f3|2 are calculated for z3 = 0.20−
i0.20 and given in Table 3.

From Table 3 one can see the peak at ER = (4.09 ±
0.01) GeV, �(th.) = 60 MeV in two-channel approxima-
tion and the peak at ER = (4.12±0.02) GeV with the width
�(th.) ∼= 100 MeV in tree-channel case, which are in good
agreement with the experimental mass M(X0(4140)) =
(4133 ± 12) MeV and �(X0(4140)) = (67 ± 24) MeV [18].

Our numbers in Tables 1, 2 and 3 show that in two-channel
case the resonance always lies just near the lower threshold,
however, if the coupling to the third channel is taken into
account, then it is shifted up and its position occurs to be close
to the experimental number. The masses and widths of the

Table 4 The ERM predictions for the masses and widths (in MeV) of
exotic resonances with J PC = 0++

Resonance M(th.) M(exp.) �(th.) �(exp.)

X (3915) 3920 3918 (2) 20 20(5) [3]

X (3960) 3970 3956(15) 45(5) 43(21) [18]

X0(4140) 4120(20) 4133(12) 100 67(24) [18]

exotic resonances, X (3915), X (3960), X0(4140), defined in
the ERM, are given in the Table 4 together with experimental
data.

From Table 4 one can see that in the ERM the predicted
masses and the widths of the scalar four-quark resonances are
in good agreement with experiment, if besides two channels,
which creates the resonance, the coupling of the resonance
to third channel is taken into account.

Comparing our results with those in literature, one can
notice that our conclusions on the four-quark structure of the
X (3915), X (3960, X0(4140)) also agree with the analysis in
the paper [36], based on the coupled channel model of the cc̄
and meson-meson systems. Notice that the general structure
of the channel-coupling matrix elements in both approaches
is similar.

5 The scalar X(4500), X(4700) resonances

High scalar resonances X (4500), X (4700), or χc0(4500),

χc0(4700), [42], were studied in many papers and for them
two interpretations were suggested. First, the X (4500) and
X (4700) are considered as the cc̄ states – 4 3P0 and 5 3P0

and their masses were calculated in relativistic quark mod-
els, where coupling to open channels was taken into account
[14,15,48]. In [48] the influence of open channels is studied
using the so-called screened potential [11], while in [13] the
spectrum was calculated using the relativistic string Hamilto-
nian [49,50] with the flattened confining potential [51]; this
flattening effect arises due to creation of virtual qq̄ pairs.
Notice that the flattened confining potential appears to be uni-
versal for all types of the mesons and it produces the hadronic
shifts down ∼ (100−130) MeV for the 4P, 5P charmonium
states and gives the masses of the 4 3P0, 5 3P0 states in a rea-
sonable agreement with experiment [13]. On the contrary,
in [52], within the 3P0 model, much smaller shifts due to
the coupled-channel effects, <∼ 30 MeV, were obtained for
the 4 3P0, 5 3P0 states, while in [48] these states acquire too
large mass shifts for the chosen screened potential.

Model-independent analysis of the cc̄ spectrum can also
be done by means of the Regge trajectories, if they are defined
not for the meson mass M(nL) but for the excitation energy:
E(nL) = M(nL) − 2m̄Q [53,54], where m̄Q is the current
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Table 5 The Regge trajectory predictions for the masses of the char-
monium n 3P0 states (in MeV)

state M(nP) exp. mass

1 3P0 3429 3414.8(3))

2 3P0 3863 3862+26
−32 [16]

3 3P0 4194 abs.

4 3P0 4473 4474 ± 6 [42]

5 3P0 4719 4694 ± 4+16
−3 [42]

6 3P0 4941 abs

heavy quark mass [13]:

(M(n 3P0) − 2m̄c)
2 = 1.06 + 1.08nr , (inGeV2);

n = nr + 1, m̄c = 1.20 GeV 2. (19)

This Regge trajectory gives M(4 3P0) = 4.474 GeV and
M(5 3P0) = 4.719 GeV, in good agreement with the LHCb
data [42] (see Table 5).

In Table 5 the masses M(2 3P0) = 3863 MeV, M(4 3P0)

= 4473 MeV and M(5 3P0) = 4719 MeV, show very
good agreement with those of χc0(3862) [16], X (4500)

and X (4700) [42]. At present other high excitations with
J P = 1+, 2+ (n = 4, 5) are not yet found and their observa-
tion would be very important to understand the fine-structure
effects of high charmonium, in particular, the fine-structure
splitting have to decrease for a screened GE potential.

Notice that the resonance X (4700) lies very close to the
ψ(2S)φ threshold and this fact indicates a possible connec-
tion between the cc̄ and the csc̄s̄ states. The four-quark
interpretation of the X (4500), X (4700) was discussed in
different models [19], [55–58], where in the mass region
(4.4–4.8) GeV the radial or orbital excitations of a diquark–
antidiquark systems can exist.

6 Conclusions

In our paper the scalar resonances X (3915), X (3960),

X0(4140) are assumed to be the four-quark states, produced
due to recoupling mechanism, when one pair of mesons can
transform into another pair of mesons infinitely many times.
These resonances do not exist in the cc̄ spectrum. As the
four-quark states they have several specific features:

1. The resonance appears only in the S-wave decay chan-
nel.

2. Within the ERM it lies rather close to the lower threshold.
3. The scalar four-quark resonance can be created in two

channel case due to transitions between channels, but
it can also be coupled to another channel 3, e.g. the cc̄
channel.

4. These resonances have no large sizes, being the com-
pact systems, and this fact may be important for their
observation. In the case of the X (3915) this statement is
confirmed by the Belle analysis of the Q2 distribution of
the X (3915) → J/ψω decays in [59].

The masses and widths of the X (3915), X (3960), X0(4140),
presented in Table 4, are obtained in a good agreement with
experiment. At this point one might ask the question: why
two four-quark resonances with identical sets of quarks –
X (3960), X0(4140) have so different masses if they are
formed by the same ERM mechanism ? The answer to this
question follows from the basic equation (6), where these
two resonances are defined by different equations and coin-
cidence of the resulting poles would be unlikely. The typical
mass difference of the resulting resonances is expected of
the order of the corresponding threshold mass difference,
E2 − E1 = 180MeV , which indeed takes place. In a dif-
ferent mechanism, where both resonances are produced by
the same four-quark internal bound state, these resonances
would be shifted because of different overlap matrix elements
of the internal four-quark wave function and external hadron
wave functions. This topic was widely discussed already in
the framework of the quark-nuclear wave functions, see e.g.
[60,61]
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