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Abstract In this paper, we introduce a non-minimally cou-
pled varying speed of light and varying gravitational con-
stant cosmological toy model. Using the Eisenhart–Duval
lifting method, we extend the original minisuperspace of the
model and depict the evolution of the system in the pres-
ence of the potential term as a geometrical flow associated
with the lifted metric. We write the Dirac–Wheeler–DeWitt
equation, which solution is a spinor wave function of the
Universe. Then we find the solution of the Dirac–Wheeler–
DeWitt equation, which describes the emergence of two early
universe–antiuniverse pairs that differ with the conserved
quantity, which is an analog of the spin.

1 Introduction

In [1,2], it was shown that the extension of minisuperspace
using the Eisenhart–Duval lift [3–5] provides a natural frame-
work for introducing a Dirac-type equation. This equation
can replace the Wheeler–DeWitt equation, which, as a hyper-
bolic partial differential equation, does not necessarily pro-
vide a positively defined probability density. This issue was
addressed by introducing a Dirac-square root of the Wheeler–
DeWitt equation [6–9] which leads to ambiguities related
to factor ordering, or by using supersymmetric quantum
mechanics [10–15]. The crucial concept in the Eisenhart–
Duval lift is the notion of an extended minisuperspace, which
is obtained by adding an auxiliary dynamical variable to the
original set of variables defining the initial minisuperspace
associated with the considered dynamical system. This aux-
iliary variable parametrizes an additional dimension of the
extended minisuperspace. In such an extended minisuper-
space, the dynamics of the system, which generally is not
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a geodesic one in the presence of the potential term, can
be transformed into a geodesic dynamics associated with
the so-called lifted metric that is suitably defined on the
extended minisuperspace, since the “extended” equation of
motion is expressed by the Laplace–Beltrami operator and
thus exhibits covariance. Moreover, in [1,2] it was argued
that the requirement of the covariance in the extended min-
isuperspace resolves the problem of factor ordering and may
provide a consistent way to formulate the Dirac square root.

Most attempts to incorporate varying speed of light into
cosmological models result in a violation of Lorentz invari-
ance [16–21]. Such theories also violate general covariance,
which requires a preferred reference frame, usually iden-
tified as the cosmological frame. Nevertheless, some solu-
tions have been proposed that address the horizon, flatness,
and cosmological constant problem [16,17]. However, these
solutions come at the cost of postulating ad hoc the time
dependence of the speed of light, as the governing terms of
the speed of light dynamics are lacking in the action.

The varying speed of light and varying gravitational con-
stant cosmological model considered in this paper is based
on the model proposed in [18] that includes covariance and
the local Lorentz invariance in the case which allows for vari-
ation of the speed of light. In such a model, both the speed
of light and the gravitational constant are additional dynamic
degrees of freedom represented by the two scalar fields with
appropriate kinetic terms in the action. It was shown that such
model includes a scenario in which the Universe is created
in the process which is an analog of quantum scattering on
the potential barrier [22] (this is similar to what was found in
[23]), that the third quantization of the model leads to a sce-
nario of the emergence of the multiverse from nothing [24],
and that the created pairs of universes are entangled which
is reflected by non-vanishing entanglement entropy [25,26].
Third quantization of slightly different models, in which the
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fundamental constants undergo cyclic evolution [27], yields
insight into the relationship between quantum entanglement
and thermodynamics [28].

As discussed earlier, the solutions of Wheeler–DeWitt
equation which describes the canonically quantized model
of varying speed of light and gravitational constant, include
interesting cosmogenesis scenarios that are similar to those
found in string cosmological models [23,29,30]. In this
paper, we will investigate the potential implications of incor-
porating spinorial properties of the wave function as a solu-
tion to the Dirac-like equation in the quantized varying fun-
damental constants cosmological model, as such an approach
may lead to some novel features of quantum cosmogenesis.

Our paper is organized as follows. In Sect. 2 we describe
the non-minimally coupled varying speed of light c and vary-
ing gravitational constant G cosmological model and pro-
vide the description of its high-curvature limit. In Sect. 3
we follow the Eisenhart–Duval lifting scheme and formu-
late the dynamics of our model on the extended minisuper-
space. Then, utilizing the geometric nature of the dynamics
of our “lifted” system, we formulate the Dirac–Wheeler–
DeWitt equation. In Sect. 4 we obtain the solution to the
Dirac–Wheeler–DeWitt equation and establish its connec-
tion to the scenario of cosmogenesis. In Sect. 5 we give our
conclusions.

2 The non-minimally coupled varying c and G
cosmological model

Our model, which proposes variations in the speed of light
c and the gravitational constant G, is primarily represented
by the theory of non-minimally coupled bi-scalar gravity.
In this theory, the values of both fundamental constants are
connected to the values of the two scalar degrees of freedom
[22]. The model under consideration is based on the covariant
and locally Lorentz-invariant theory of varying speed of light,
as described in [18]. It is defined by the following action:

S =
∫ √−g

(
eφ

eψ

) [
R+Λ+ω(∂μφ∂μφ + ∂μψ∂μψ)

]
d4x,

(1)

where φ and ψ represent non-minimally coupled scalar
fields, R denotes the Ricci scalar, Λ acts as the cosmological
constant, and ω is a parameter of the model. The action speci-
fied in Eq. (1) was derived from the original Einstein–Hilbert
action by substituting the functions of the scalar fields φ and
ψ for the speed of light c and the gravitational constant G.

The exact connection between the scalar fields φ and ψ and
the constants c and G is given by the following formulas:

c3 = eφ, (2)

G = eψ. (3)

The application of the following fields transformations:

φ = β√
2ω

+ 1

2
ln δ, (4)

ψ = β√
2ω

− 1

2
ln δ, (5)

causes the original action (1) to take the form of the Brans–
Dicke action given by the following expression:

S =
∫ √−g

[
δ(R + Λ) + ω

2

∂μδ∂μδ

δ
+ δ∂μβ∂μβ

]
d4x .

(6)

The dependence of the speed of light on the space and time
variables causes a violation of the general covariance in our
model, which is a common characteristic of most theories
that propose a variable speed of light. To address this, a spe-
cific frame of reference, known as the “light frame”, must be
selected. This frame serves as the preferred reference frame
for the formulation of the model. Based on the proposal, out-
lined in [16,17], we identify the light frame for our model
with the cosmological frame defined by the FLRW metric:

ds2 = −N 2(dx0)2 + a2(dr2 + r2dΩ2), (7)

where N is the lapse function and a is the scale factor, both
dependent on the coordinate x0. The insertion of the metric
from Eq. (7) into Eq. (6) gives the following form of the
action of our model in the cosmological frame:

S = 3V0

8π

∫
dx0

(
−a2

N
a′δ′ − δ

N
aa′2 + Λδa3N

− ω

2

a3

N

δ′2

δ
− a3

N
δβ ′2

)
, (8)

where ()′ ≡ ∂
∂x0 . The solution to the model described by

action (8) expressed in the gauge defined by N = a3δ is
[22]:

a = 1

D2(eFx0
)
2

sinhM |√(A2 − 9)Λx0|
, (9)

δ = D6(eFx
0
)
6

sinhW |√(A2 − 9)Λx0| , (10)

where A = 1√
1−2ω

, M = 3−A2

9−A2 , W = 2A2

9−A2 while D and

F are the integration constants. The relation between x0 and
the rescaled cosmic time x̄0 is given by [22]:

x0 = 2√
(A2 − 9)Λ

arctanh
(
e
√

(A2−9)Λx̄0
)

, for x̄0 < 0,

x0 = 2√
(A2 − 9)Λ

arctanh
(
e−

√
(A2−9)Λx̄0

)
, for x̄0 > 0,

(11)
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Fig. 1 The evolution of the scale factor a (in black), the speed of light c
(in red), and the gravitational constant G (in blue) over time is presented
for x̄0 < 0 and x̄0 > 0, corresponding to the phase before and after the
curvature singularity, respectively

where as in [22] we restrict the considered class of models to
the cases with A2 > 9. The pre-big-bang contraction occur-
ring for x̄0 < 0, followed by the post-big-bang expansion
taking place for x̄0 > 0 are both described by the solution
given by (9) and (10), along with (11). The two phases are
separated by the curvature singularity at x̄0 = 0. The evolu-
tion of the fundamental constants c and G is also conveyed
in formulas (9) and (10). According to these formulas, the
gravitational constant G tends to zero while the speed of light
c becomes infinite as the universe approaches the curvature
singularity located at x̄0 = 0 (see Fig. 1).

By utilizing the field transformations given by:

X = ln(a
√

δ), Y = 1

2A
ln δ,

η = r(AY − 3X), x1 = r(3Y − AX), x2 = 2
√
Ṽ0β,

(12)

where Ṽ0 = 3V0
8π

and r = 2
√

Ṽ0
A2−9

the action (8) can be
transformed to the following form:

S =
∫

dx0
[

1

4
(η′2 − x ′2

1 − x ′2
2 ) + Λ̄e−2 η

r

]
, (13)

where Λ̄ = Ṽ0Λ. The Hamiltonian associated with the action
(13) reads:

H = π2
η − π2

x1
− π2

x2
− Λ̄e−2 η

r , (14)

where πη = η′
2 , πx1 = − x ′

1
2 and πx2 = − x ′

2
2 are the conju-

gated momenta. From the structure of the Hamiltonian (14),
it can be inferred that both πx1 and πx2 remain conserved
throughout the evolution. Consequently, the classical evolu-
tion can be seen as a particle scattering off the exponential
potential barrier. The solutions to the Hamilton’s equations

associated with the Hamiltonian (14) are as follows:

η = ln sinh |
√

(A2 − 9)Λx0|, (15)

x1 = −2πx1x
0 + E, (16)

x2 = −2πx2x
0 + P, (17)

where E and P are integration constants. Upon inspection of
the solution (15), it is evident that η can define two distinct
regimes. The first one is the high-curvature regime, which is
characterized by the vanishing scale factor a → 0 and cor-
responds to η → ∞. The second one is the low-curvature
regime, which is defined by higher values of the scale factor
a and occurs for η → −∞. Furthermore, it can be verified
that the high-curvature regime, specifically when η → ∞, is
characterized by the following asymptotic values of momen-
tum πη:

πη =
{√

Λ̄ (collapsing pre-big-bang solution)

−
√

Λ̄ (expanding post-big-bang solution).

As for the low-curvature regime (as η → −∞), we can
observe that:

πη =
{√

Λ̄e− η
r (collapsing pre-big-bang solution)

−
√

Λ̄e− η
r (expanding post-big-bang solution).

To derive the Wheeler–DeWitt equation that character-
izes the quantum mechanical aspect of the model, we imple-
ment the Jordan quantization rules which involve replac-
ing the canonical momenta with the corresponding opera-
tors according to the following scheme: πη → π̂η = −i ∂

∂η
,

πx1 → π̂x1 = −i ∂
∂x1

and πx2 → π̂x2 = −i ∂
∂x2

. The result-
ing Wheeler–DeWitt equation can be expressed as:

Φ̈ − ΔΦ + m2
e f f (η)Φ = 0, (18)

where (̇) ≡ ∂
∂η

, Δ = ∂2

∂x2
1

+ ∂2

∂x2
2

and m2
e f f (η) = Λ̄e− 2

r η.

3 Quantization of the non-minimally coupled varying c
and G cosmological model: the
Dirac–Wheeler–DeWitt equation

We will be following the Eisenhart–Duval lifting scheme
[3,4] adjusted to the cosmological setup based on the scalar–
tensor gravity [1,2,5]. In this method the minisuperspace
associated with considered model is extended by introduc-
ing additional dynamical variable which makes possible to
describe the evolution of the system in purely geometrical
terms even in the presence of the potential. In other words
the nongeometrical evolution can be depicted as a geodesic
flow in the extended minisuperspace, that respects the lifted
metric (the metric on the extended minisuperspace) since
the Hamiltonian of the lifted system is represented by the
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Laplacian. The starting point is the Lagrangian defined by
the action (13) which reads as:

L = 1

4
(η′2 − x ′2

1 − x ′2
2 ) + Λ̄e−2 η

r . (19)

The lifted Lagrangian associated with (19) is the following
[1]:

Lext = 1

2

(
η′2

2
− x ′2

1

2
− x ′2

2

2
− x ′2

3

2Λ̄e−2 η
r

)
, (20)

where x3 parametrizes an additional degree of freedom of
the extended minisuperspace. The metric of the extended
minisuperspace (the lifted metric) is then given by [1]:

G̃αβ = diag

(
1

2
,−1

2
,−1

2
,

−1

2Λ̄e−2 η
r

)
. (21)

Since, the Hamiltonian constraint

1

2
G̃αβ P̃α P̃β = 0, (22)

where P̃α = G̃αβx ′β, is conformally invariant, namely, it is
essentially the same as G̃αβ → Ω2G̃αβ, we will be using the
following conformally equivalent extended minisuperspace
metric

Gαβ = Ω2G̃αβ, (23)

with Ω2 =
[
2Λ̄e−2 η

r

] 1
n−2

, where n stands for the dimension

of the extended minisuperspace. Since in our case n = 4 the
conformal factor is given by:

Ω2 =
√

2Λ̄e− η
r . (24)

Thus, the conformally equivalent extended minisuperspace
metric is the following:

Gαβ = diag

⎛
⎝

√
Λ̄

2
e− η

r ,−
√

Λ̄

2
e− η

r ,−
√

Λ̄

2
e− η

r ,
−e

η
r√

2Λ̄

⎞
⎠ .

(25)

The covariant Wheeler–DeWitt equation for the extended
case is given by:

1√−G
∂α(

√−GGαβ∂βΦ) = 0, (26)

where G is the determinant of Gαβ. Substitution of (25) into
(26) leads to the following Wheeler–DeWitt equation for the
extended minisuperspace:

∂2
ηΦ − ∂2

x1
Φ − ∂2

x2
Φ − Λ̄e−2 η

r ∂2
x3

Φ = 0. (27)

If we impose the condition

∂2
x3

Φ = −Φ, (28)

the Wheeler–DeWitt equation for the extended minisuper-
space (27) reduces to the initial one (18).

As in the case of Wheeler–DeWitt equation we will use the
covariance in the extended minisuperspace as guiding prin-
ciple which leads to the proper form of the Dirac–Wheeler–
DeWitt equation [1,2]. Since the Dirac equation without the
mass term has the conformal covariance [31] we will again
use (25) as the lifted metric. Thus, the covariant Dirac–
Wheeler–DeWitt equation is:

γ̂ αDαΨ ≡ γ Ae α
A DαΨ = 0, (29)

where γ A are Dirac matrices:

γ 0 =
(
I 0
0 −I

)
, γ k =

(
0 σk

−σk 0

)
, (30)

with k = 1, 2, 3, σk being Pauli matrices and I being an
identity matrix. The coefficients e α

A in (29) are four vector

fields defined by the expression ηAB = e α
A e β

B Gαβ and Dα

is a covariant derivative given by:

Dα = ∂α + Γα, (31)

where

Γα = 1

2
ωABαΣ AB (32)

with the spin connection ωABα defined as:

ωABα = Gνμe
μ

A ∇αe
ν

B (33)

and

Σ AB = 1

4

[
γ A, γ B

]
. (34)

The explicit form of the vector field e α
A is given by:

e α
A = diag

⎛
⎝

(
Λ̄

2

)− 1
4

e
η
2r (1, 1, 1) ,

(
2Λ̄

) 1
4 e− η

2r

⎞
⎠ (35)

and the non-vanishing elements of the spin connection ωABα

are:

ω101 = 1

2r
, ω011 = − 1

2r
,

ω202 = 1

2r
, ω022 = − 1

2r
,

ω303 = −e
η
r

2r
√

Λ̄
, ω033 = e

η
r

2r
√

Λ̄
. (36)

The explicit form of the Dirac–Wheeler–DeWitt equation in
the extended minisuperspace is then given by:
[
γ 0

(
∂

∂η
− 1

4r

)
+γ 1 ∂

∂x1
+γ 2 ∂

∂x2
+

√
Λ̄e− η

r γ 3 ∂

∂x3

]
Ψ =0.

(37)

The reduction of the extended Dirac–Wheeler–DeWitt equa-
tion (37) to the initial minisuperspace can be obtained by the
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application of the assumption which reads:

1

i

∂

∂x3
Ψ = Ψ. (38)

4 Spinor wave function of the Universe in the
non-minimally coupled varying c and G model

The solution of the Dirac–Wheeler–DeWitt equation (37)
reduced with condition (38) to the initial minisuperspace is:

Ψ = 1√
2

⎛
⎜⎜⎝

φ1 + ϕ1

φ2 + ϕ2

φ1 − ϕ1

φ2 − ϕ2

⎞
⎟⎟⎠ , (39)

with

φ1 = ei
�k·�xe−iααikr− 1

4 (C1U (ikr + 1, 2ikr + 1, 2iα)

+C2L
2ikr
−ikr−1(2iα)

)
, (40)

φ2 = ei
�k·�xe−iααikr− 1

4 (C3U (ikr, 2ikr + 1, 2iα)

+C4L
2ikr
−ikr (2iα)

)
, (41)

ϕ1 = ei
�k·�xe−iααikr− 1

4 (C5U (ikr, 2ikr + 1, 2iα)

+C6L
2ikr
−ikr (2iα)

)
, (42)

ϕ2 = ei
�k·�xe−iααikr− 1

4 (C7U (ikr + 1, 2ikr + 1, 2iα)

+C8L
2ikr
−ikr−1(2iα)

)
, (43)

where �k = (k1, k2), �x = (x1, x2), k =
√
k2

1 + k2
2, U and

L are the confluent hypergeometric function of the second
kind and the associated Laguerre polynomial, respectively,
α = r

√
Λ̄e− η

r and {C1,C2,C3,C4,C5,C6,C7,C8} denotes
a set of integration constants.

We introduce a new representation in which the solution
(39) takes simpler form. The unitary matrix that defines such
a representation is:

F = 1√
2

(
I I
I −I

)
, (44)

and the transformed wave function (39) is given by:

ΨF = FΨ =

⎛
⎜⎜⎝

φ1

φ2

ϕ1

ϕ2

⎞
⎟⎟⎠ . (45)

We notice that the unitary transformation given by (44) leaves
the four momentum operator unchanged. It also preserves the
form of the x3-axis projection spin operator Σx3 given by:

Σx3 = 1

2

(
σ3 0
0 σ3

)
. (46)

Let us define now the four spinor wave functions each sepa-
rately solving the Dirac–Wheeler–DeWitt equation (37):

Ψ+,+ 1
2

= Aei
�k·�x e−iααikr− 1

4

⎛
⎜⎜⎝

L2ikr
−ikr−1(2iα)

0
U (ikr, 2ikr + 1, 2iα)

0

⎞
⎟⎟⎠ ,

(47)

Ψ+,− 1
2

= Bei
�k·�x e−iααikr− 1

4

⎛
⎜⎜⎝

0
U (ikr, 2ikr + 1, 2iα)

0
L2ikr−ikr−1(2iα)

⎞
⎟⎟⎠ ,

(48)

Ψ−,+ 1
2

= Cei
�k·�x e−iααikr− 1

4

⎛
⎜⎜⎝
U (ikr + 1, 2ikr + 1, 2iα)

0
L2ikr

−ikr (2iα)

0

⎞
⎟⎟⎠ ,

(49)

Ψ−,− 1
2

= Dei
�k·�x e−iααikr− 1

4

⎛
⎜⎜⎝

0
L2ikr

−ikr (2iα)

0
U (ikr + 1, 2ikr + 1, 2iα)

⎞
⎟⎟⎠ ,

(50)

where A, B, C and D are some constants. The spinor
wave functions (47), (49) in the low-curvature regime for
η → −∞ (α → ∞) represent the positive and the negative
frequency modes, respectively, with 1/2 spin along x3 axis,
while (48), (50) represent the positive and the negative fre-
quency modes, respectively, with −1/2 spin along x3 axis
since in this regime:

i
∂

∂η
Ψ+,± 1

2
= πη(−∞)Ψ+,± 1

2
(51)

and

i
∂

∂η
Ψ−,± 1

2
= −πη(−∞)Ψ−,± 1

2
, (52)

where πη(−∞) =
√

Λ̄e− η
r .

The general solution of (37) that holds for any value of
the curvature which reads as:

ΨG = Ψ+,+ 1
2

+ Ψ+,− 1
2

+ Ψ−,+ 1
2

+ Ψ−,− 1
2

= ei
�k·�x e−iααikr− 1

4

×

⎛
⎜⎜⎝
A L2ikr

−ikr−1(2iα)+C U (ikr + 1, 2ikr + 1, 2iα)

B U (ikr, 2ikr + 1, 2iα)+D L2ikr−ikr (2iα)

A U (ikr, 2ikr + 1, 2iα)+C L2ikr
−ikr (2iα)

B L2ikr
−ikr−1(2iα)+D U (ikr + 1, 2ikr + 1, 2iα)

⎞
⎟⎟⎠ ,

(53)

represents purely quantum state in the high-curvature limit
for η → ∞ since in such limit (53) it is not peaked over
any classical trajectory. This can be seen by inspecting (53)
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which in the limit η → ∞ has the following form:

lim
η→∞ ΨG = ei

�k·�x e−iαα− 1
4

×

⎛
⎜⎜⎝

A d αikr + C(aα−ikr + bαikr )

B ikr (aα−ikr − bαikr ) − D d αikr

A ikr (aα−ikr − bαikr ) − C d αikr

B d αikr + D(aα−ikr + bαikr )

⎞
⎟⎟⎠ , (54)

where

a = Γ (2ikr)

ikrΓ (ikr)
(2i)−2ikr , (55)

b = Γ (2ikr)

−ikrΓ (−ikr)
(56)

and

d = Γ (ikr)

Γ (−ikr)Γ (2ikr + 1)
. (57)

The formula (53) shows that in the low-curvature limit for
η → −∞ from the pure quantum regime there emerge clas-
sical trajectories that represent the expanding post-big-bang
universe–antiuniverse pair with the spin projection 1

2 (Ψ−,+ 1
2

for the universe and Ψ+,+ 1
2

for the antiuniverse) and the
expanding post-big-bang universe–antiuniverse pair with the
spin projection − 1

2 (Ψ−,− 1
2

for the universe and Ψ+,− 1
2

for
the antiuniverse). The scenario discussed here differs from
the scenario of cosmogenesis, which involves creation of the
Universe via quantum scattering on the exponential poten-
tial barrier in the minisuperspace, that appears in the non-
minimally coupled varying constants cosmological model,
where the ordinary Wheeler–DeWitt equation provides a
solution representing the quantum state of the Universe [22].

5 Conclusions

We have shown that the Eisenhart–Duval lift which is based
on the extension of the initial minisuperspace of the model
by adding an auxiliary dimension may efficiently be applied
in the context of non-minimally coupled varying speed of
light and varying gravitational constant model which results
in transforming the evolution of the system in the presence of
time-dependent mass term into a geodesic evolution compati-
ble with the lifted metric. It should be stressed that the covari-
ance in the extended minisuperspace constitutes a guiding
principle that leads to the proper equation of motion [1,2]. In
particular we have used this principle in order to construct in
a consistent way the Dirac–Wheeler–DeWitt equation which
incorporates the spinorial characteristics into the wave func-
tion of the Universe. This new quality seems to be particularly

interesting since it may substantially influence the distribu-
tion when considering an ensemble [2]. We have also shown
that there exist the solutions to the Dirac–Wheeler–DeWitt
equation that asymptotically, in the low-curvature regime,
can be interpreted as the positive and negative frequency
modes with the conserved quantity, which is an analog of the
spin projection. It should be stressed, however, that asymp-
totically these solutions exhibit decoupling of the spin analog
from the Universe trajectory in the extended minisuperspace
which is expected since the analogous situation occurs in
case of Dirac equation description of the free electron.

The considered model is defined by the action which is
similar to the low-energy effective action of the string cos-
mological models [23,29,30], therefore, besides the ordi-
nary post-big-bang expanding phase of the evolution it also
provides the pre-big-bang cosmological scenario. We have
found that the spinor wave function of the Universe which
is a solution to the Dirac–Wheeler–DeWitt equation in the
high-curvature (near big-bang) regime describes the highly
unclassical behavior since it is not peaked over any classical
trajectory. On the other hand, in the low-curvature regime (far
from the big-bang) the wave function is peaked over classi-
cal paths which can be interpreted as a transition from pure
quantum behavior to the quasi-classical one and emergence
of the two post-big-bang expanding universe–antiuniverse
pairs with the opposite spin orientations.

Within the concept of the multiverse, there is a growing
approach that regards the minisuperspace as the fundamen-
tal arena for physical phenomena to take place [23,26,29,30,
32–39]. Particular models include different types of interac-
tions between the wave functions that represent individual
universes [26,32,35–39]. This may suggest that a compre-
hensive inclusion of spin in quantum cosmology requires an
application of third quantization procedure [2], in which the
third-quantized action is invariant with respect to some kind
of local symmetry.
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Appendix A: The Eisenhart–Duval lift, the extended
Wheeler–DeWitt and the Dirac-like equations for a cos-
mological system

A.1 The essentials of the Eisenhart–Duval lift

The Eisenhart–Duval lift [3–5] is a formalism that can be
used to represent physical systems subjected to conser-
vative forces as an equivalent free system moving on a
higher-dimensional curved manifold. Let us start with the
Lagrangian for a system of n degrees of freedom (fields):

L = 1

2
ki j (ϕ

1, . . . , ϕn) ϕ̇i ϕ̇ j − V (ϕ1, . . . , ϕn), (A.1)

where ϕi (t) represent a homogeneous scalar field, ki j is the
metric tensor in the configuration space, V (ϕ1, . . . , ϕn) rep-
resents the potential while the overdot denotes differentiation
with respect to t. Variation of (A.1) with respect to ϕi gives
the following equations of motion:

ϕ̈i + Γ i
jk ϕ̇ j ϕ̇k = − ki j V, j , (A.2)

where the symbol, i denotes differentiation with respect to
ϕi , ki j satisfies kilkl j = δij and

Γ i
jk = 1

2
kil

(
k jl,k + kkl, j − k jk,l

)
. (A.3)

We can see that (A.2) formally represents a geodesic equa-
tion of a particle that is subjected to a force. By utilizing
the Eisenhart–Duval lift formalism, we can expand upon this
geometric interpretation by generating a manifold of higher
dimension for the field space. This manifold will be charac-
terized by trajectories that follow geodesics as described by
Eq. (A.2) but without any external force. For this purpose
we introduce an auxiliary field χ and the so called “lifted”
Lagrangian which reads:

L̃ = 1

2
ki j (ϕ

1, . . . , ϕn) ϕ̇i ϕ̇ j + 1

2

M4

V (ϕ1, . . . , ϕn)
χ̇2,

(A.4)

where M denotes an arbitrary constant. Such a “lifted”
Lagrangian can be written as follows:

L̃ = 1

2
GAB φ̇Aφ̇B, (A.5)

where φA = {ϕi , χ} and

GAB =
⎛
⎝ki j 0

0
M4

V

⎞
⎠ . (A.6)

We notice that the Lagrangian (A.5) is identical to the
Lagrangian of a free particle moving in a curved spacetime
equipped with metric GAB which means that the trajectories
of the system are identical to the geodesics of the extended
manifold. It can be shown that the geodesics of the extended

manifold correspond to the trajectories of the original sys-
tem described by equations (A.2). A detailed proof of this
correspondence can be found in [5].

A.2 The extended Wheeler–DeWitt equation for a
homogeneous and isotropic Universe

The Eisenhart–Duval method can be extended to the quantum
level described by the Wheeler–DeWitt equation, at least for
a homogeneous and isotropic model of the Universe with a
single scalar field defined by the following action [1]:

S =
∫

d4x
√−g

[
1

2κ2 R−1

2
(∂μϕ)(∂μϕ) − V (ϕ)

]
, (A.7)

where V (ϕ) is a potential term. For the FLRW metric given
by:

ds2 = −N 2dt2 + a2(t)dΩ2
3 , (A.8)

where dΩ2
3 represents a maximally symmetric three-space

with a constant Ricci curvature (3)Ri j = 2Kgi j , where K
is a constant, and N is the lapse function, the corresponding
Lagrangian is:

L = − 1

2N
aȧ2 + 1

2N
a3ϕ̇2 − NU (a, ϕ), (A.9)

whereU (a, ϕ) = a3V (ϕ)− 1
2 Ka (while deriving the formula

above it was assumed that κ2 = 6).
The Hamiltonian associated with (A.9) is:

H = −1

2

Π2
a

a
+ 1

2

Π2
ϕ

a3 +U (a, ϕ), (A.10)

where Πa = − aȧ
N and Πϕ = a3ϕ̇

N are the conjugate
momenta. By substituting appropriate operators for the con-
jugate momenta in accordance with the Jordan rules Πa →
−i ∂

∂a and Πϕ → −i ∂
∂ϕ

one finds the standard Wheeler–
DeWitt equation for the cosmological system:
[

1

as+1

∂

∂a
as

∂

∂a
− 1

a3

∂2

∂ϕ2 + 2U (a, ϕ)

]
Φ = 0, (A.11)

where the number s accounts for an ambiguity in factor order-
ing.

The corresponding lifted Lagrangian is [1,5]:

L̃ = −1

2
aȧ2 + 1

2
a3ϕ̇2 + 1

2

χ̇2

2U (a, ϕ)
= 1

2
G̃MN ẊM Ẋ N ,

(A.12)

where

G̃MN = diag(−a, a3, [2U (a, ϕ)]−1) (A.13)

is the metric of the extended minisuperspace and XM =
(a, ϕ, χ). We notice that the Hamiltonian constraint for the
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lifted system:

1

2
G̃MN P̃M P̃N = 0, (A.14)

where P̃M = G̃MN Ẋ N , exhibits conformal invariance
G̃MN → Ω2G̃MN for an arbitrary function Ω(XM ). With
the gauge choice:

GMN = 2U (a, ϕ)G̃MN (A.15)

(in the case of n dimensions one should take GMN =
[2U (a, ϕ)] 1

n−2 G̃MN ) the extended Wheeler–DeWitt equa-
tion can be obtained by using the covariant Laplace–Beltrami
operator on the extended minisuperspace which reads:

1√−G
∂M

[√−GGMN ∂NΦ
]

= 0. (A.16)

By imposing the condition − ∂2

∂χ2 Φ = Φ the extended
Wheeler–DeWitt equation (A.16) can be reduced to the stan-
dard Wheeler–DeWitt equation given by (A.11) [1].

A.3 The extended minisuperspace Dirac-like equation

Previous studies that aimed to take the square root of the
Wheeler–DeWitt equation exhibited arbitrariness in handling
the potential term [6–9]. The idea here is to apply the covari-
ance principle in the extended minisuperspace, similarly as in
the case of the extended Wheeler–DeWitt equation, in order
to establish a consistent approach for dealing with the poten-
tial term, and thus, provide a systematic approach for deter-
mining the form of the extended minisuperspace Dirac-like
equation. The Dirac-like equation in the extended minisuper-
space can be formulated as [1]:

γ̂ αDαΨ ≡ γ Ae α
A DαΨ = 0, (A.17)

where the vital role is played here by the extended minisuper-
space metric GMN in a particularly chosen gauge (see (23) or
(A.15)). It is worth emphasizing that the solutions provided
by (A.16) and (A.17) are physically inequivalent solutions
[1,2].
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