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Abstract Considering the nonlinearity of the Yang Mills
charge, we investigate the Joule–Thomson expansion for the
Einstein–Power–Yang–Mills AdS black holes in the context
of the gauge-gravity duality. Under this framework, we cal-
culate the Joule–Thomson coefficient, describe all relevant
inversion and isenthalpic curves in the temperature-pressure
plane that determining in this manner the corresponding cool-
ing and heating regions. Finally we analyze the effect of the
charge nonlinearity on the Joule–Thomson expansion.

1 Introduction

In recent decades, people confirm the fact that black holes are
thermodynamics systems [1–3] where its area is related with
entropy and its surface gravity is connected with tempera-
ture [4,5]. The following important step is to establish the
quantum gravity theory. The negative cosmological constant
in an Anti-de Sitter (AdS) spacetime with black hole will
lead to phase transitions of black holes [6,7]. And the corre-
sponding conjugate quantity of pressure in an extended phase
space for black holes is the volume [8]. The physical impli-
cation was related with the holography, where black holes
would being a system and dual to conformal field theories
[9]. That makes AdS black holes can be identical to the ther-
modynamics of ordinary systems and their thermodynamics
become more complete. Especially there exist several differ-
ent types of phase transition, the Van de Walls (VdW’s)-like
phase transition [10–12], reentrant phase transitions [13,14],
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the polymer-like phase transition [15], and the triple points
[16,17], along with the novel dual relation of HP phase tran-
sition [18]. Meanwhile, the inclusion of the pressure-volume
term in the thermodynamical first law makes other model
parameters as novel thermodynamical quantities [11] and
make it possible to regard AdS black holes as heat engines
[19,20]. All of those developments are in the subdiscipline,
black hole chemistry [21].

In the classical thermodynamics, there is a well known
process named the Joule–Thomson expansion, i.e., the gas
moves from a region of high pressure to a region of low pres-
sure via an equal velocity. Based on this, the JT effect of the
charged AdS black hole was firstly investigated in Ref. [22].
Subsequently the JT expansion becomes an active issue and
gets more attention, furthermore is extended to the study of
other black holes [23–28]. Additionally, at the linear level the
charged black holes in an AdS spacetime nearby the critical
point is of the scaling symmetries, S ∼ q2, P ∼ q−2, T ∼
q−1 [29,30]. It is natural to guess that whether the same
scaling symmetry still hole on for the non-linear charged
AdS black holes? There are lots of the generalization of the
linear charged AdS black hole solution: Einstein–Maxwell–
Yang–Mills AdS black hole [31], Einstein–Power–Yang–
Mills AdS black hole [32], Einstein–Maxwell–Power–Yang–
Mills AdS black hole [33], Einstein–Yang–Mills–Gauss–
Bonnet black hole [34], Einstein–Power–Maxwell–Power–
Yang–Mills-dilaton [35], and so on. An interesting non-linear
generalization of charged black holes involves a Yang–Mills
field exponentially coupled to Einstein gravity (i.e., Einstein–
Power–Yang–Mills gravity theory) because it possesses the
conformal invariance and is easy to construct the analogues of
the four-dimensional Reissner–Nordström black hole solu-
tions in higher dimensions. Additionally several thermody-
namical features of the EPYM AdS black hole in the extended
phase space have been exhibited [33,36,37]. Here we pay

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-11575-y&domain=pdf
mailto:duyzh22@sxdtdx.edu.cn
mailto:sxdtdx_liuxy@163.com
mailto:zhangyphysics@126.com
mailto:lizhao@lzu.edu.cn
mailto:gudujianghu23@163.com


426 Page 2 of 7 Eur. Phys. J. C (2023) 83 :426

attention on the JT expansion for the non-linear charged AdS
black hole in this theory.

In this paper we study and discuss the Joule–Thomson
expansion for black holes in the model of nonlinear electro-
dynamics (NED) coupled to gravity in AdS spacetime. The
interest to NED model [38] considered is due to its simplic-
ity: the metric function is expressed via simple elementary
function. This model was explored to study the supermassive
black hole M87* [38] and to construct non-singular model
of magnetized black hole [39]. In Sect. 2, we briefly review
the EPYM AdS black hole solution and its hawking tempera-
ture. In Sect. 3, we investigate the Joule–Thomson expansion
for the EPYM AdS black hole. A brief summary is given in
Sect. 4.

2 EPYM AdS black hole and Hawking temperature

The action for four-dimensional Einstein–Power–Yang–
Mills (EPYM) gravity with a cosmological constant � was
given by [32,40–42]

I = 1

2

∫
d4x

√
g

(
R − 2� − Fγ

)
(1)

with the Yang–Mills (YM) invariantF and the YM field F (a)
μν

F = Tr(F (a)
μν F (a)μν), (2)

F (a)
μν = ∂μA

(a)
ν − ∂ν A

(a)
μ + 1

2ξ
C (a)

(b)(c)A
(b)
μ A(c)

ν . (3)

Here, Tr(F (a)
μν F (a)μν) = ∑3

a=1 F
(a)
μν F (a)μν , R and γ are the

scalar curvature and a positive real parameter, respectively;
C (a)

(b)(c) represents the structure constants of three-parameter

Lie group G; ξ is the coupling constant; and A(a)
μ represents

the SO(3) gauge group Yang–Mills (YM) potentials defin-
ing by the Wu–Yang (WY) ansatz [43–46]. Variation of the
action with respect to the spacetime metric gμν yields the
field equations

Gμ
ν + �δμ

ν = Tμ
ν, (4)

Tμ
ν = −1

2

(
δμ

νFγ − 4γ Tr
(
F (a)

νλ F (a)μλ
)
Fγ−1

)
. (5)

Variation with respect to the 1-form YM gauge potentials
A(a)

μ and implement the traceless yields the 2-forms YM
equations

d
(

	F(a)Fγ−1
)

+ 1

ξ
C (a)

(b)(c)Fγ−1A(b) ∧	 F(c) = 0, (6)

where F(a) = 1
2 F

(a)
μν dxμ ∧ dxν, A(b) = A(b)

μ ∧ dxμ, and
	 stands for the duality. It is obviously that for the case of
γ = 1 the EPYM theory reduces to the standard Einstein–
Yang–Mills (EYM) theory [34]. In this work our issue is paid
on the role of the non-linear YM charge parameter γ .

Here we should point out that the non-Abelian property
of the YM gauge field is expressed with its YM potentials

A(b) = q

r2C
(a)
(i)( j)x

i dx j , r2 =
3∑
j=1

x2
j , (7)

andq is the YM charge, the indices (a, i, j) run the following
ranges: 1 ≤ a, i, j ≤ 3. The coordinates xi take the fol-
lowing forms: x1 = r cos φ sin θ, x2 = r sin φ sin θ, x3 =
r cos θ. Since we have utilized the WY ansatz for the YM
field, the invariant for this field takes the form [47–49]

Tr(F (a)
μν F (a)μν) = q2

r4 . (8)

This form leads to the disappearance of the structure con-
stants which can be described the non-Abelian property of
the YM gauge field. Therefore, under the condition of the WY
ansatz we may focus on the role of the non-linear YM charge
parameter, instead of the non-Abelian character parameter.

The metric for the four-dimensional EPYM AdS black
hole is given as follows [50],

ds2 = − f (r)dt2 + f −1dr2 + r2d�2
2, (9)

where

f (r) = 1 − 2M̄

r
+ r2

l2
+

(
2q2

)γ

2(4γ − 3)r4γ−2 . (10)

Here d�2
2 is the metric on unit 2-sphere with volume 4π and

q is the YM charge, l is related to the cosmological constant:
l2 = − 3

�
, γ is the non-linear YM charge parameter and

satisfies γ > 0 [41]. The event horizon of the black hole is
obtained from the relation f (r+) = 0. The mass parameter
of the black hole can be expressed in terms of the horizon
radius as

M̄ = r+
2

(
1 + r2+

l2
+ 2γ−1q2γ

(4γ − 3)r4γ−2
+

)
. (11)

We can also obtain the Hawking temperature of the black
hole from Eq. (10) as follows

T = 1

4πr+

(
1 + 8π P̄r2+ −

(
2q2

)γ

2r (4γ−2)
+

)
. (12)

From Eqs. (11) and (12) we can calculate the critical value
of thermodynamical quantities which are presented in Sec.
III A in Ref. [36]. Next we will investigate the effect of the
nonlinearity on JT expansion for the AdS black hole in the
Einstein-Power Yang-Mills gravity theory.

3 Joule–Thomson expansion

More recently, the authors of [22] have investigated the
Joule–Thomson (JT) expansion for AdS charged black holes
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with the aim to confront the resulting features with those of
Van der Waals fluids. The extension to the charged black hole
solution in the presence of the quintessence field [51] and
rotating-AdS black hole [23] have also been considered. JT
expansion [52] is a convenient isoenthalpic tool that a thermal
system exhibits with a thermal expansion. It is worth noting
that when expanding a thermal system with a temperature
T , the pressure always decreases yielding a negative sign to
∂P . In this section, we will investigate the Joule–Thomson
expansion of the RN-dS spacetime. In JT expansion for the
Van der Waals system as well as AdS black holes, gas/black
hole phase is passed at high pressure through a porous plug or
small value in the low-pressure section of an adiabatic tube,
and the enthalpy remains constant during the expansion. The
expansion is characterized by a change in temperature rela-
tive to pressure. The JT coefficient, which can describe the
expansion process, is read as

a =
(

∂T

∂P

)
H

, (13)

where the enthalpy is related with the internal energy

H = U + PV . (14)

We can judge whether the system is in a cooling process or
in a heating process by the positive or the negative for the
JT coefficient. Namely, if the temperature of the system is
increasing with the decreasing of pressure, the JT coefficient
is negative and the system is in the heating process, while if
the temperature is decreasing with the decreasing of pressure,
the JT coefficient is positive and the system is in the cooling
process.

In this part, we will investigate the JT expansion of the
EPYM AdS black hole. As we know, when the system is
in the JT expansion, the enthalpy of system is fixed. In the
extended phase space, the mass parameter of AdS black hole
is corresponding to the enthalpy and it only just keep a con-
stant when the system is in a JT process. The Joule-Thomson
coefficient can be expressed as

H = M̄, a =
(

∂T

∂ P̄

)
H

=
(

∂T

∂ P̄

)
M̄,q

=
(

∂T

∂r+

)
M̄,q

/ (
∂ P̄

∂r+

)
M̄,q

(15)

In order to study the JT expansion of the system more easier,
we rewritten the temperature and the pressure as

T = 1

2πr+

(
−1 + 3M̄

r+
− γ 2γ q

(4γ − 3)r4γ−2
+

)
, (16)

P̄ = 3

8πr2+

(
−1 + 2M̄

r+
− 2γ−1q

(4γ − 3)r4γ−2
+

)
. (17)

From above equations, the JT coefficient becomes

a = 2r+
3

1 − 6M̄
r+ + γ (4γ−1)2γ q

(4γ−3)rγ−2
+

1 − 3M̄
r+ + γ 2γ q

(4γ−3)rγ−2
+

= 4r+
3

2 + 8π P̄r2+ − [2γ (4γ−1)−3]2γ q

2(4γ−3)r4γ−2
+

1 + 8π P̄r2+ − 2γ q

2r4γ−2
+

. (18)

The JT coefficient will be divergent at the point r+m , which
is satisfied the following equation

1 − 8π P̄r2+m − 2γ q

2r4γ−2
+m

= 0. (19)

It is very interesting that at the point r+m the hawking tem-
perature in Eq. (12) is just zero, which indicates that the
divergent point of the JT coefficient will be reveal the certain
information of the extreme EPYM AdS black hole.

In the following, we will focus on the minimum inverse
temperature, the minimum inverse mass parameter, the isoen-
thalpic and inverse curves of this system. When the JT coef-
ficient and the temperature are both zero in Eq. (18), the
horizon radius satisfies

r4γ−2
i =

[
2γ (4γ − 1) − 3

]
2γ q

4(4γ − 3)
, (20)

then substituting the above expression into Eq. (16), the min-
imum inverse temperature reads

Tmin
i = 8γ 2 − 10γ + 3

4π(8γ 2 − 2γ − 3)

×
([

8γ 2 − 2γ − 3
]

2γ q

4(4γ − 3)

)−1/(4γ−2)

. (21)

The ratio between the minimum inverse temperature and the
critical one becomes

Tmin
i

Tc
=

(
8γ 2 − 10γ + 3

)
(4γ − 1)

4
(
8γ 2 − 2γ − 3

)
(2γ − 1)

×
(

8γ 2 − 2γ − 3

4γ (4γ − 3)(4γ − 1)

)−1/(4γ−2)

. (22)

It is obviously that the ratio is independent with the YM
charge and its behavior is exhibited in Fig. 1. Note that as
γ → ∞, the above ratio is approach to 1/2. For the non-
linear YM field (i.e., γ �= 1), this ratio is not equal to 1/2,
which is just different from that for the linear YM field in this
theory as well as the Einstein–Maxwell theory [23,53]. This
difference is induced by the non-linear YM field, or maybe
the modification of the thermodynamical volume. Especially,
as 1 < γ this ratio is bigger than 1/2 and it is less than 1/2
for 1/2 < γ < 1. In addition when the pressure is zero and
the temperature is the minimum inverse temperature, we can
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Fig. 1 The behavior of the ratio between the minimum inverse tem-
perature and the critical one with the non-linear YM parameter

obtain the minimum inverse mass by substituting Eq. (20)
into Eq. (11) as

M̄min = 8γ 2 − 2γ − 1

2
(
8γ 2 − 2γ − 3

)

×
((

8γ 2 − 2γ − 3
)

2γ q

4(4γ − 3)

)1/(4γ−2)

. (23)

Since in the JT process of this system the black hole mass
parameter M̄ is unchanging, thus we can check out that
whether the system is in a JT process through the minimum
inverse mass parameter. That means a JT process of the sys-
tem can be survive when M̄ ≥ M̄min . Note that whenγ → ∞
the limitation of the minimum inverse mass approaches 1

23/4

and it is independent with the YM charge. Furthermore as
3/4 < γ , M̄min > 0 and it is decreasing with the non-linear
YM charge parameter γ .

As the JT coefficient is zero, we can obtain the inverse
pressure and temperature from Eqs. (12) and (18) as

P̄i = 1

8πr2
i

(
−2 +

[
2γ (4γ − 1) − 3

]
2γ q

2(4γ − 3)r4γ−2
i

)
, (24)

Ti = 1

4πri

(
−1 + γ 2γ q

r4γ−2
i

)
, (25)

where the lower index “i” stands for the inverse meaning.
Therefore we can exhibit the inverse curve in the P̄ − T
plane with different values of the YM charge q and the non-
linear charge parameter γ from above equations in Fig. 2.
From Fig. 2 we can see that there exists a inverse curve of the
EPYM AdS black hole with the given parameters and it is not
a circled one. The inverse temperature is increasing with the
increasing of q and γ . On the other hand, to better understand
the Joule–Thomson expansion from Eqs. (16) and (17) we
can depict the isoenthalpic curves, the inverse curves, and the
effects of q, γ on them in Fig. 3. The result shows that the
inverse curve divide the isoenthalpic one into two parts: one

Fig. 2 The inverse curves Ti − P̄i with different values of γ (see the
left) and of q (see the right). In the left the non-linear charge parameter
γ is set to 0.85 (the black dashed line), 0.9 (the red thick line), and 1

(the blue thick line). In the right the YM charge is set to 0.85 (the black
dashed line), 1 (the red thick line), and 1.2 (the blue thick line)
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Fig. 3 The isoenthalpic and inverse curves with different values of the mass parameter
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is the cooling phenomena with the positive slope of the P̄−T
curves, the other is the heating process with the negative slope
of the P̄ − T curves. And both the inverse temperature and
pressure are increasing with the increasing of the non-linear
YM charge parameter, while they are decreasing with the
YM charge.

4 Discussions and conclusions

In this manuscript we have analyzed the Joule–Thomson
expansion of the EPYM AdS black hole in the expanded
phase space. Considering the similar process of the gas
expansion from a higher pressure section to a lower one by
maintaining the fixed enthalpy, we applied it to the EPYM
AdS black hole where the mass parameter is identified as
enthalpy. Through the analysis of the Joule–Thomson coeffi-
cient we calculated the minimum inverse temperature and
mass parameter, which could check out where a Joule–
Thomson process of the system can be survive. We also pre-
sented the inverse curves in the P̄ − T plane and the cor-
responding isenthalpic curves. Above the inverse curve we
obtained the cooling region, while below the inverse curve
it corresponds to the heating one. Especially the effect of
the Yang Mills charge nonlinearity on the Joule–Thomson
expansion was also investigated. The corresponding result
can be summarized in the following

• The ratio between the minimum inverse temperature
and the critical temperature is independent with the YM
charge and approaches to 1/2 as γ → ∞. When γ = 1
it equals to 1/2 and it is bigger than 1/2 for 1 < γ , while
less than 1/2 for 1/2 < γ < 1.

• The minimum inverse mass parameter is independent
with the YM charge as γ → ∞, it is positive in the
range of 3/4 < γ and is decreasing with the increasing
of the non-linear YM charge parameter.

• Both the inverse temperature and pressure are increasing
with the increasing of the non-linear YM charge param-
eter, while they are decreasing with the YM charge.
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