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Abstract In this paper, a modification of general relativ-
ity is considered. It consists of generalizing the Lagrangian
of matter in a non-linear way, that is, replacing the curva-
ture scalar R by a function f (R, TμνTμν), where Tμν is the
energy–momentum tensor. The main objective is to inves-
tigate the issue of causality in this gravitational model. To
study the causality and/or its violation the Gödel-type solu-
tions are used. For such development, different matter con-
tents are chosen. A critical radius, beyond which causality
is violated, is calculated. It is shown that both causal and
non-causal solutions are allowed.

1 Introduction

General Relativity (GR) or Einstein’s theory of gravita-
tion [1,2], is the best theory of gravitation for describing
large-scale interactions. The GR has been successfully tested
through several observational results, such as the predicted
value for the advance of Mercury’s perihelion, the bending
of light around the Sun, gravitational redshift, detection of
gravitational waves, among others [3,4]. It is clear that GR
is an established theory, however some challenges need to
be resolved. The most important challenges are: (i) it is a
classical theory, i.e., there is no quantum version of GR as
there is for the other fundamental forces of nature and (ii) the
accelerated expansion of the universe, confirmed by various
observational tests [5–7]. Since GR does not explain these
problems, alternative theories are constructed and investi-
gated.

Over the years, some models have been proposed to try
to explain the accelerated expansion of the universe. There
are two different ways to develop these theories, one adds an
exotic component of energy, called dark energy [8–12], and
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the other modifies or generalizes the Einstein-Hilbert action.
Such modifications change the geometry or matter or both
parts of the Einstein field equations. The simplest extension
of GR is obtained by replacing the Ricci scalar R in the
Einstein-Hilbert action with a general function of R, lead-
ing to f (R) theories of gravity [13–15]. Another interesting
generalization is the f (R, T ) gravity, where the gravitational
action is an arbitrary function of the Ricci scalar R and of the
trace of the energy–momentum tensor T [16]. It is important
to note that f (R) and f (R, T ) are two of several models
of modified gravity theory. For a review of modified gravity
theories, see [17,18].

In this work, the f (R, T 2) gravity is considered. This
is a theory where the gravitational Lagrangian depends on
the Ricci scalar R and on the contraction of the energy–
momentum tensor with itself, i.e., T 2 = TμνTμν [19–21].
It should be noted that the field equations differ from GR
only in the presence of matter sources. The term f (TμνTμν)

can be introduced in different ways, which leads to differ-
ent versions of the theory. For example, the version with
f (TμνTμν) ∝ (TμνTμν)η is known as energy–momentum
powered gravity, where η is a constant. While the model with
f (TμνTμν) ∝ ln(TμνTμν) is called energy–momentum log
gravity. This theory has received a lot of attention and has
been studied in different contexts. In [22] the cosmic acceler-
ation via energy–momentum powered gravity has been stud-
ied. Cosmological models including bulk viscous cosmol-
ogy, loop quantum gravity, k-essence, and brane-world cos-
mologies in energy–momentum-squared gravity have been
discussed [21]. An extension of the standard �CDM model
in energy–momentum log gravity has been investigated [23].
Constraints on the energy–momentum squared gravity from
neutron stars and its cosmological implications have been
considered [24]. Spherically symmetric compact stars have
been analyzed [25]. Dynamical system analysis for vari-
ous types of gravity functions f (R, T 2) has been used and
the structure of the phase space and the physical implica-
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tions have been studied [26]. The viability of bouncing cos-
mology has been explored [27]. A generalized version of
energy–momentum squared gravity in the Palatini formal-
ism has been constructed [28]. Quasinormal modes of per-
turbed black holes have been discussed [29]. A particular
model of energy–momentum squared gravity, called scale-
independent energy–momentum squared gravity, has been
developed and some implications have been considered [30].
Although the energy–momentum squared gravity has been
tested in several contexts, the question of causality and its
possible violation has not been developed. Therefore, the
main objective of this paper is to address a study on causality.
For such a construction, the Gödel-type solution is consid-
ered.

An exact solution of the GR field equations was pro-
posed by Kurt Gödel in 1949 [31]. This solution describes a
pressureless perfect fluid in rotation, without expansion and
exhibits cylindrical symmetry. This cosmological model has
as its main characteristic the possibility of Closed Time-like
Curves (CTCs). These CTCs allow an observer to go back
into the past, which leads to the violation of causality. How-
ever, it is important to note that in GR the space-times locally
have the same causal structure of the special relativity. But
on a non-local scale, the causality can be violated. CTCs
is not a unique feature of the Gödel metric, there are other
cosmological models that exhibit similar curves, such as van
Stockum cylinder [32], Kerr space-time [33], cosmic string
[34], among others. In order to calculate a critical radius,
beyond which the causality is violated, a generalization of
the Gödel metric, called Gödel-type metric [35], is consid-
ered. In this context, let’s verify the consistency of the field
equations of f (R, T 2) gravity in a cosmological background
defined by the Gödel and Gödel-type metrics. Considering
different content of matter, causal and non-causal regions
arise in this gravitational model.

The present paper is organized as follows. In Sect. 2, an
introduction to the f (R, T 2) gravity is made. In Sect. 3, the
Gödel metric is introduced and the field equations are solved.
The causality problem is discussed. In Sect. 4, the Gödel-type
metric is considered. First, a perfect fluid is chosen as the
content of matter. In this case, the causality is naturally vio-
lated. A critical radius, which defines causal and non-causal
regions, is calculated. Then, in order to find a causal region,
different matter contents are introduced, such as perfect fluid
and a scalar field together and only a scalar field. In Sect. 5,
remarks and conclusions are presented.

2 f (R, T 2) modified gravity

In this section, the main objective is to obtain the field equa-
tions of f (R, T 2) gravity, with T 2 = TμνTμν . The action

that describes this theory is,

S = 1

2κ

∫ √−g
(
f
(
R, TμνTμν

) + 2�
)
d4x

+
∫

Lm
√−gd4x, (1)

where κ = 8πG with G being the gravitational constant, g
is the determinant of the metric, R is the Ricci scalar, � is
the cosmological constant, Lm is matter Lagrangian and Tμν

is the energy–momentum tensor which is defined as

Tμν = − 2√−g

δ(
√−gLm)

δgμν
. (2)

Considering thatLm depends only on the metric components,
and not on their derivatives, the energy–momentum tensor
becomes

Tμν = gμνLm − 2
∂Lm

∂gμν
. (3)

The variation of Eq. (1) leads to

δS = 1

2κ

∫ √−g

{
fRδR + fT 2δT 2 − 1

2
gμν f δg

μν

−gμν�δgμν + 1√−g
δ
(√−gLm

)}
d4x . (4)

Here, for simplicity, have been defined f = f (R, TμνTμν),
fR = ∂ f

∂R and fT 2 = ∂ f
∂T 2 . The variation of the Ricci scalar

is known and gives the result

δR = Rμνδg
μν + gμν�δgμν − ∇μ∇νδg

μν. (5)

Taking the variation ofT 2 with respect to the metric we obtain

	μν ≡ δ(TαβT αβ)

δgμν
= (δTαβ)

δgμν
T αβ + Tαβ

(δT αβ)

δgμν

= (δTαβ)

δgμν
T αβ + 2T α

μ Tνα + T αβ δTαβ

δgμν
. (6)

Using Eq. (3), the variation in the energy–momentum tensor
given in Eq. (6) is written as

(δTαβ)

δgμν
T αβ = −LmTμν − 1

2
T Tμν + 1

2
gμνLmT

−2
∂2Lm

∂gμν∂gαβ
T αβ. (7)

With this result, Eq. (6) becomes

θμν = −2Lm

(
Tμν − 1

2
gμνT

)
− T Tμν + 2T α

μ Tνα

−4T αβ ∂2Lm

∂gμν∂gαβ
. (8)
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Thus, returning to Eq. (4), the field equations of the f (R, T 2)

gravity model are given as

fR Rμν − 1

2
f gμν − �gμν + (

gμν∇α∇α − ∇μ∇ν

)

× fR = κ(Tμν − 1

κ
fT 2	μν). (9)

Note that for a proper choice of function f (R, T 2) other
modified gravities can be obtained, for example, f = f (R)

leads to f (R) gravity while f = f (R, T ) implies in the field
equations of f (R, T ) gravity theory.

In the next sections, the field equations (9) will be con-
sidered to investigate whether this gravitational model allows
for the existence of CTCs, which leads to non-causal regions.
First, the original Gödel solution is analyzed, and then a gen-
eralized model is studied.

3 Gödel metric in f (R, T 2) gravity

The Gödel metric was proposed by mathematician and logi-
cian Kurt Gödel in 1949 [31]. It is an exact solution of the
field equations of general relativity that allows the existence
of Closed Time-like Curves (CTCs). This means that an
observer moving on a CTC can find a point in the future
that is also his starting point in the past. It is worth noting
that the existence of CTCs in the Gödel metric is considered
paradoxical, as it allows past and future events to interact.
However, the exact solution of the Gödel metric is interest-
ing from a theoretical point of view and has been studied in
several areas of physics and mathematics. The line element
that describes this universe is given as

ds2 = a2
(
dt2 − dx2 + e2x

2
dy2 − dz2 + 2exdtdy

)
, (10)

where a is a positive constant. The main ingredients asso-
ciated with Eq. (10) for working with Eq. (9) are: (i) the
components of metric and its inverse

gμν = a2

⎛
⎜⎜⎝

1 0 ex 0
0 −1 0 0

ex 0 e2x

2 0
0 0 0 −1

⎞
⎟⎟⎠ , (11)

gμν = 1

a2

⎛
⎜⎜⎝

−1 0 2e−x 0
0 −1 0 0

2e−x 0 −2e−2x 0
0 0 0 −1

⎞
⎟⎟⎠ ; (12)

(ii) the non-zero Ricci tensor components

R00 = 1; R02 = ex ; R22 = e2x , (13)

and (iii) Ricci scalar

R = 1

a2 . (14)

In addition to these geometry elements, a matter content must
be considered. Here, a perfect fluid is chosen, whose energy–
momentum tensor is defined as

Tμν = (ρ + p)uμuν − pgμν, (15)

where ρ is the energy density, p is the pressure and u is a
unit time-like vector whose covariant components are uμ =
(a, 0, aex , 0). Explicitly, the components of the energy–
momentum tensor are given as

Tμν =

⎛
⎜⎜⎝

ρa2 0 ρa2ex 0
0 pa2 0 0

ρa2ex 0
(
ρ + p

2

)
a2e2x 0

0 0 0 0

⎞
⎟⎟⎠ . (16)

Taking the Lagrangian Lm = −p, which describes a per-
fect fluid, and the energy–momentum tensor defined in Eq.
(15), the tensor 	μν given in Eq. (8) can be written as

Θμν = −(ρ2 − p2)uμuν, (17)

whose components are

Θμν =

⎛
⎜⎜⎝

−(ρ2 − p2)a2 0 −(ρ2 − p2)a2ex 0
0 0 0 0

−(ρ2 − p2)a2ex 0 −(ρ2 − p2)a2e2x 0
0 0 0 0

⎞
⎟⎟⎠ . (18)

Now, let’s write the set of field equations. However, it is
important to note that the Ricci scalar is a constant value,
which implies that the field equation (9) reduces to

fR Rμν − 1

2
f gμν − �gμν = κ

(
Tμν − 1

κ
fT 2	μν

)
. (19)

Consequently, the components of the field equations become

fR
a2 − 1

2
f − � = κρ + fT 2(ρ2 − p2), (20)

fR
a2 − 1

4
f − �

2
= κ

(
ρ + p

2

)
+ fT 2(ρ2 − p2), (21)

1

2
f + � = κp. (22)

Such a set of equations has the solution

� = 1

2
(2κp − f ), (23)

ρ = −
a2κ ±

√
4a2 fR fT 2+4a4 f 2

T 2 p2−4a4 fT 2 pκ + a4κ2

2a2 fT 2
.

(24)

It is important to observe that the f (R, T 2) modified gravity
allows the Gödel solution, then the existence of CTCs is
possible and the causality can be violated in this gravitational
theory. Although this is the same consequence obtained in
general relativity, the conditions (23) and (24) for solving the
set of equations are different. These conditions are strongly
dependent on the function f (R, T 2) and the matter content.
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In addition, assuming f (R, T 2) = R in Eq. (19) the results
of general relativity are recovered.

In the next section, the Gödel metric is generalized in
order to obtain more information about causality violation.
To discuss the possibility of finding causal and non-causal
regions, different matter contents are considered.

4 Gödel-type metric in f (R, T 2) modified gravity

A generalization of the Gödel solution, known as a Gödel-
type solution, was developed in [35]. In this section, the main
objective is to investigate the consistency of the Gödel-type
metric in f (R, T 2) theory, as well as to analyze the con-
ditions that lead to non-causal regions. Then, if causality is
violated, the critical radius will be calculated. In cylindrical
coordinates, the Gödel-type metric is given as

ds2 = [dt + H(r)dφ]2 − dr2 − D2(r)dφ2 − dz2, (25)

where the functions H(r) and D(r) must obey the relations

H ′(r)
D(r)

= 2ω, (26)

D′′(r)
D(r)

= m2. (27)

Here, the prime means derivative with respect to r , and ω and
m are free parameters.

The Gödel-type metrics can be classified into three differ-
ent classes, i.e., (i) hyperbolic class (m2 > 0), (ii) trigono-
metric class (m2 < 0) and (iii) linear class (m2 = 0). In this
work, only the hyperbolic class is considered. For this class,
the functions H(r) and D(r) are defined as

H(r) = 4ω

m2 sinh
2
(mr

2

)
, (28)

D(r) = 1

m
sinh(mr). (29)

In order to analyze the possibility of occurrence of CTCs,
the line element (25) is written as

ds2 = −dt2 − 2H(r)dtdφ + dr2 + G(r)dφ2 + dz2, (30)

where G(r) = D2(r) − H2(r). The circles defined by
t, z, r = const , lead to the existence of CTCs whenG(r) < 0
for a certain range of r . In this context, a critical radius,
beyond which the causality is violated, is obtained, i.e.,

rc = 2

m
sinh−1

(
4ω2

m2 − 1

)−1

. (31)

From the critical radius, it is important to notice that, for
m2 = 2ω2 the original Gödel solution is recovered and for
m2 = 4ω2 the critical radius becomes infinite, implying a
causal universe. Therefore, form2 ≥ 4ω2 there are no Gödel-
type CTCs, and causality violation is avoided.

To solve the field equations more simply, a new basis is
chosen [35]. Then the metric (30) becomes

ds2 = ηABθ Aθ B =
(
θ0

)2 −
(
θ1

)2 −
(
θ2

)2 −
(
θ3

)2
,

(32)

with ηAB = (+,−,−,−) and θ A = eAμdx
μ. The Latin

letters denote the transformed space and eAμ are the tetrads.
The components of θ A are

θ(0) = dt + H(r)dφ, (33)

θ(1) = dr, (34)

θ(2) = D(r)dφ, (35)

θ(3) = dz (36)

and components of the tetrads are

e(0)
0 = 1, e(0)

2 = H(r), e(1)
1 = 1, e(2)

2 = D(r), e(3)
3 = 1.

(37)

The inverse of tetrads, which satisfies the condition eAμe
μ
B =

δAB , has the following non-zero components

e0
(0) = e1

(1) = e3
(3) = 1, e0

(2) = −H(r)

D(r)
, e2

(2) = D−1(r).

(38)

On this new basis, a flat space-time, the non-zero components
of the Ricci tensor are

R(0)(0) = 2ω2, (39)

R(1)(1) = R(2)(2) = 2ω2 − m2, (40)

the scalar curvature is R = 2(m2 − ω2) and the non-zero
components of the Einstein tensor are

G(0)(0) = 3ω2 − m2, (41)

G(1)(1) = G(2)(2) = ω2, (42)

G(3)(3) = m2 − ω2. (43)

Now the field equations of f (R, T 2) gravity will be solved
for three different matter contents: (i) perfect fluid, (ii) perfect
fluid plus scalar field and (iii) scalar field.

4.1 Perfect fluid

In this subsection, the perfect fluid is taken as the content of
matter. The energy–momentum tensor describing this matter
in flat space-time is given as

TAB = (ρ + p) uAuB − pηAB, (44)

where uA = (1, 0, 0, 0) and TAB = eμ
Ae

ν
BTμν . The non-zero

components are

T(0)(0) = ρ, T(1)(1) = T(2)(2) = T(3)(3) = p (45)
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and its trace, T = TABηAB , is

T = ρ − 3p. (46)

In a similar way, the tensor (17) in this space-time becomes

	AB = −
(
ρ2 − p2

)
uAuB . (47)

The non-zero component is

	(0)(0) = −
(
ρ2 − p2

)
(48)

and its trace is given as

	 = −
(
ρ2 − p2

)
. (49)

In local Lorentz co-frame the field equations (9) becomes

fR RAB − 1

2
f ηAB − �ηAB + (

ηAB∇α∇α − ∇A∇B
)
fR

= κ(TAB − 1

κ
fT 2	AB). (50)

Considering that the Ricci scalar is a constant and taking the
trace of this Eq. (50) as an important constraint, the field
equations take the form

fRGAB = κTAB − fT 2	AB − 1

2

{
f + κT − fT 2	

}
ηAB .

(51)

Then, the field equations for the Gödel-type metric with mat-
ter content (44) are given by

2 fR
(

3ω2 − m2
)

+ F = κ (ρ + 3p) + fT 2

(
ρ2 − p2

)
,

(52)

2 fR
(
ω2

)
− f = κ (ρ − p) + fT 2

(
ρ2 − p2

)
,

(53)

2 fR
(
m2 − ω2

)
− f = κ (ρ − p) + fT 2

(
ρ2 − p2

)
.

(54)

Equations (53) and (54) lead to

fR
(

2ω2 − m2
)

= 0. (55)

Assuming that fR > 0, Eq. (55) gives

m2 = 2ω2. (56)

This condition defines the original Gödel universe. There-
fore, the f (R, T 2) gravity theory with a perfect fluid as mat-
ter content allows the existence of CTCs which implies a vio-
lation of the causality. In order to obtain more details about
the causality violation, the critical radius is calculated. The
remaining field equations imply

m2 fR + f = κ (ρ + 3p) + fT 2

(
ρ2 − p2

)
, (57)

m2 fR − f = κ (ρ − p) + fT 2

(
ρ2 − p2

)
, (58)

that lead to

m =
√

2κρ + f + 2 fT 2
(
ρ2 − p2

)
2 fR

. (59)

With this result, the critical radius reads

rc = 2sinh−1(1)

√
2 fR

2κρ + f + 2 fT 2
(
ρ2 − p2

) . (60)

Therefore, there is a causality violation beyond this critical
radius, which explicitly depends on the choice of the function
f (R, T 2), its derivatives with respect to R and T 2, and the
matter content.

4.2 Perfect fluid with scalar field

In the last subsection, it was seen that when the content of
matter is just a perfect fluid the causality violation arises
naturally. In an attempt to find a causal solution for the Gödel-
type metric in f (R, T 2)gravity, let us consider that the matter
distribution has two ingredients, a fluid perfect and a scalar
field. Then the total energy–momentum tensor is given

TAB = T (M)
AB + T (S)

AB , (61)

where T (M)
AB is the energy–momentum tensor of the perfect

fluid, Eq. (44), and T (S)
AB is the energy–momentum tensor

associated with a scalar field, given by

T (S)
AB = ∂Aφ∂Bφ − 1

2
ηAB ηCD∂Cφ∂Dφ. (62)

For simplicity, and following [35], let’s assume that the scalar
field takes the form φ(z) = ez+const , where e is a constant.
Thus, the non-zero components are given as

T (S)
(0)(0) = −T (S)

(1)(1) = −T (S)
(2)(2) = T (S)

(3)(3) = e2

2
. (63)

The trace of the total energy–momentum tensor is

T = T (M)
AB ηAB + T (S)

AB ηAB = ρ − 3p + e2. (64)

Considering that the Lagrangian describing the scalar field
is given by

LS
m = ηMN∇Mφ∇Nφ, (65)

the total tensor 	AB can be written as

	AB = 	
(M)
AB + 	

(S)
AB, (66)

where 	
(M)
AB and 	

(S)
AB are the parts associated with the perfect

fluid and the scalar field, respectively.
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Taking these ingredients, the field equations are given as

2 fR
(

3ω2−m2
)

+ f = κ (ρ+3p) + fT 2

(
ρ2−p2

)
,

(67)

2 fR
(
ω2

)
− f = κ (ρ − p) + fT 2

(
ρ2−p2

)
,

(68)

2 fR
(
m2−ω2

)
− f = κ (ρ − p) +2κe2+ fT 2

(
ρ2−p2

)
.

(69)

This set of equations can be reduced to

κe2 = fR(m2 − 2ω2), (70)

κp = 1

2
fR(2ω2 − m2) + f

2
, (71)

κρ + fT 2

(
ρ2 − p2

)
= 1

2
fR(6ω2 − m2) − f

2
. (72)

Analyzing these equations, a causal Gödel-type solution
arises and is given by

m2 = 4ω2, (73)

fR = κe2

2ω2 , (74)

κp = −κρ + fT 2

(
ρ2 − p2

)
= −ω2 fR + f

2
. (75)

It is important to emphasize that the condition m2 = 4ω2

leads to rc → ∞. Therefore, for this combination of perfect
fluid and scalar field as matter content, a causal Gödel-type
universe is allowed, i.e., the causality violation is avoided.

4.3 Scalar field

In order to find other causal Gödel-type solutions, let’s
assume that the only source of energy and matter is a scalar
field φ(z). Following the same steps as in the last subsection,
it is shown that a unique class of Gödel-type solutions arises,
i.e.

m2 = 4ω2, (76)

fR = κe2

2ω2 , (77)

f = κe2. (78)

Therefore, this solution leads to an infinite critical radius, as
a consequence, causality breaking is not allowed and there
are no CTCs in this Gödel-type universe. A similar analysis
has been developed for the f (R) theory [36].

In addition to the investigation developed here, it is impor-
tant to discuss whether the field equations of f (R, T 2) can
have the form of a perfect fluid. This characteristic implies
that any source of field equations that can be reformulated
into a perfect fluid form is suitable for solving system dynam-
ics. Considering the definition of perfect scalars, it has been

shown that the field equations of some extended theories
of gravity contain perfect fluid terms [37–40]. In order to
develop such an analysis for the energy–momentum-squared
gravity, let’s write the field equation (9) considering the
energy–momentum tensor for the perfect fluid given in Eq.
(15) and the expression for 	μν given in Eq. (17). For sim-
plicity, it is chosen f (R, T 2) = R + λT 2, where λ is an
integer. Then the Ricci tensor assumes the perfect fluid form,
i.e.,

Rμν = agμν + buμuν (79)

with

a = R

2
+ 1

2
λT 2 + � − κp, (80)

b = κ(ρ + p) + fT 2(ρ2 − p2). (81)

This reinforces the idea that any term beyond the Ricci cur-
vature scalar R in the gravitational action can be modeled as
a perfect fluid. This result does not change the discussions
developed in previous sections about Gödel-type universes
in their behavior in f (R, T 2) gravity.

5 Conclusion

The energy–momentum-squared gravity has been consid-
ered. This is a class of theories that generalize GR by
adding higher order terms of the form TμνTμν to the mat-
ter Lagrangian. In this context, the Gödel and Gödel-type
solutions have been used to discuss the issue of causality
and its violation. For a fluid perfect as the content of mat-
ter, it has been shown that the Gödel metric is the solution
of f (R, T 2) gravity for specific values of the energy den-
sity ρ and the cosmological constant �. This result leads
to a violation of causality. At an appropriate limit, the GR
results are recovered. For more details about this violation,
the Gödel-type is introduced. For simplicity, a local frame
is used. In this context, different contents of matter are cho-
sen. Using a perfect fluid as the matter content, the solution
of the field equations shows that the violation of causality
arises naturally. Here a finite critical radius, which explicitly
depends on the function f (R, T 2) and of matter content, is
calculated. The next investigation changes the matter con-
tent, now a perfect fluid plus a scalar field is considered. Our
results lead to an infinite critical radius, therefore violation
of causality is avoided. A similar result is obtained when
only one scalar field is taken as matter content. Therefore,
the energy–momentum-squared gravity allows Gödel-types
solutions, and as a consequence, both causal and non-causal
regions emerge for different matter contents. Furthermore,
the study developed in this paper is a generalization of the
results obtained for f (R) and f (R, T ) theories. In addition,
it is important to note that when the matter term is switched
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off, our results recover the results obtained by f (R) grav-
ity [36]. In this case, the definition of causal and non-causal
regions (which are given by the critical radius) continues to
depend on the matter content that is introduced through the
energy–momentum tensor.
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