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Abstract Classical Yang–Baxter equation governing bi-
vector deformations of 10d supergravity is known to have no
solutions along non-abelian compact isometries. By provid-
ing explicit examples we show that this is in contrast to gen-
eralized Yang–Baxter equation governing tri-vector defor-
mations of 11d supergravity. We present deformations of the
AdS7×S

4 and flat backgrounds with isometries generated by
Killing vectors of a sphere. Isometries of the AdS space-time
are preserved by such deformations.

1 Introduction

When studying a ((super)conformal) quantum field theory
one is interested whether it belongs to a family of theories
connected by an RG flow or is an isolated point in the moduli
space. An RG flow from a UV fixed point can be triggered by
adding a(n ir)relevant operator, or by turning on VEV for an
operator (see e.g. [1,2]). An example of such irrelevant oper-
ator would be φ4 in the 4d theory of a real scalar field, that
flows to a free theory in the IR. Note that this operator is clas-
sically marginal and quantum irrelevant. A closely related but
different question is the study of manifolds of fixed points
generated by marginal operators in a given CFT [3–5]. In
contrast to a(n ir)relevant operator an exactly marginal oper-
ator does not trigger an RG flow changing a UV theory to a
different theory in IR. Instead the theory stands in the same
fixed point, that could be a fixed line or a fixed manifold. An
example of a family of (exactly) marginal operators generat-
ing a manifold of fixed point is the Leigh-Strassler deforma-
tion of d = 4 N = 4 super Yang–Mills theory preserving
N = 1 supersymmetry [6]. This two-parameter deformation
labeled by β and ρ can be described in terms of the following
superpotential
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W = Tr
[(
eiβΦ1Φ2Φ3 − e−iβΦ1Φ3Φ2

)

+ ρ
(
Φ2

1 + Φ2
2 + Φ2

3

)]
.

(1)

From the point of view of AdS/CFT correspondence the inter-
pretation of the ρ-deformation is not clear1 while the super-
gravity solution dual to the β-deformed SYM theory has been
presented in [8]. In the language relevant to the results of the
present paper this is a Yang–Baxter deformation of AdS5×S

5

background defined by a bivector β = ∂φ1 ∧ ∂φ2 , where
φ1,2 are coordinates along two isometric circles inside the
5-sphere. Such deformation breaks the internal SU(4) isom-
etry down to U(1) and hence breaks N = 4 supersymme-
try to N = 1. For the metric and the B-field the deformed
background G, B is related to the initial metric g and the
deformation bi-vector by

G + B = (g−1 + β)−1. (2)

A generalization of this approach to arbitrary backgrounds
with a set of at least two Killing vectors ka has been developed
in [9–14], where the bi-vector parameter has been taken in
the form

β = rabka ∧ kb, (3)

with a constant antisymmetric matrix rab = −rba . It has been
shown that in order for the map (2) (together with similar
maps for the RR sector) to generate a supergravity solution it
is enough that the matrix rab satisfies classical Yang–Baxter
equation

r [a1|b1|ra2|b2| fb1b2
a3] = 0 (4)

and the so-called unimodularity condition rab fabc = 0 intro-
duced in [15]. Here fabc denote structure constants of the

1 Although some progress has been made recently [7].
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algebra of Killing vectors [ka, kb] = fabckc, which is non-
abelian in the most general case. It is worth to mention, that
the notion of Yang–Baxter deformations has appeared earlier
in the context of deformations of 2d σ -models that preserve
integrability [16–18] (for a review see [19,20]). Assuming
that a background on which the string σ -model is integrable,
is dual to an integrable gauge theory, this allows to spec-
ulate that Yang–Baxter deformations generate families of
integrable CFT’s. To our knowledge no examples directly
supporting such a statement are known in the literature.

In the context of AdS/CFT correspondence, i.e. when the
initial background has an AdS factor, it is natural to consider
three separate cases, depending on whether all Killing vectors
are taken along (i) isometries of the AdS space, (ii) isometries
of the internal space (say a sphere), or (iii) are mixed. On top
of that a deformation can be abelian if all isometries com-
mute, or non-abelian if not. In the case of abelian isometries
the meaning of all three classes of YB deformations on the
gauge theory side is clear [8,21]: the deformation replaces
products of fields by star product defined by the action of the
isometry generators. For a deformation along two generators
Q1,2 schematically this can be written as

f g → f ∗ g = exp
[
β(Q f

1 Q
g
2 − Q f

2 Q
g
1)

]
f g, (5)

where the superscript indicates on which field a generator
acts. Here we see the crucial difference between deforma-
tions along external or mixed isometries and those along
internal isometries. With both generators taken along the
AdS space the above formula reproduces the well-known
Moyal star product rendering the deformed theory to be a
non-commutative gauge theory. The mixed case corresponds
to the so-called dipole deformation and eventually is also
adding non-locality to the theory [22,23]. Finally, taking both
isometries along the internal symmetry group we end up with
an expression like (1), where fields simply acquire additional
factors depending on their charges w.r.t. the isometry gen-
erators. This is precisely what happens in the case of the
Lunin-Maldacena deformation dual to the β-deformation of
Leigh-Strassler. We conclude that only deformations along
isometries of the internal compact space can be interpreted
as adding operators in the theory. Further extension of the
above logic for this kind of deformations to non-abelian
isometries is prevented by a Theorem stating that for com-
pact groups classical Yang–Baxter equation implies either
rab = 0 or fabc = 0 [24,25] (see Appendix A for a brief
review). Hence, along compact isometries only abelian bi-
vector Yang–Baxter deformations are allowed.

Recently a generalization of bi-vector Yang–Baxter defor-
mations to backgrounds of 11d supergravity has been pro-
posed [26–28]. These are generated by a tri- and a six-
vectors that is dictated by the structure of the correspond-

ing U-duality groups [29–31]. Explicit expressions are more
complicated than (2) and for the SL(5) case convenient for
backgrounds of the form M7 ×M4 we provide below in (20).
The tri-vector parameter Ω is again taken in the poly-Killing
ansatz

Ω = ρabcka ∧ kb ∧ kc, (6)

and a sufficient set of conditions for such deformation to
generate a solution to supergravity equations is

ρa1a2a3 fa2a3
a4 = 0,

ρa1[a2|a6|ρa3a4|a5| f |a7]
a5a6

− ρa2[a1|a6|ρa3a4|a5| f |a7]
a5a6

= 0.

(7)

The first line is an analogue of the unimodularity condition,
and the second line is usually referred to as the generalized
Yang–Baxter equation. The very first abelian example of such
tri-vector deformations has been presented in [8] although
from different premises. See also [32] for examples of such
deformations from generalized geometry. Since tri-vector
deformations can also be defined for type IIA/B supergrav-
ity backgrounds one becomes interested in the same ques-
tion: what gauge theory is dual to a given tri-vector defor-
mation? Given the results of [21] of particular interest are
deformations along compact isometries as these presumably
correspond to adding (exactly marginal) operators. Proba-
bly via somehow defined star tri-product (see e.g. [33] and
the review [34]). The Theorem that prevents non-abelian bi-
vector Yang–Baxter deformations along compact isometries
cannot immediately be applied to tri-vector as it essentially
involves matrices with two indices.

In this work we search for solutions to the generalized
classical Yang–Baxter equation (7) for the Lie algebra of
the compact group SO(5). We find several such solutions
and construct the corresponding tri-vector deformations of
the AdS7 × S

4 and flat backgrounds, that solve equations
of 11d supergravity. In addition we find a large set of tri-
vector deformations that satisfy the first line of (7) and do
not satisfy the second line. In the special case of deformations
of 4d manifolds, that we focus here on, such deformations are
still solutions to supergravity equations. Since the AdS space
stays intact our solutions in principle can be understood as
dual to (exactly) marginal deformations of D = 6N = (2, 0)

theory dual to AdS7 ×S
4. The backgrounds we find preserve

no supersymmetry.
Structure of the paper is the following. In Sect. 2 we briefly

describe the relevant parts of the formalism of the SL(5)
exceptional field theory that provides a convenient packing
of supergravity fields for defining tri-vector deformations. In
Sect. 3 we provide explicit solutions to generalized Yang–
Baxter equation in terms of abstract so(5) generators in Car-
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tan basis, and construct their realization in terms of Killing
vectors on a sphere. In Sect. 4 we construct explicit examples
of tri-vector deformations of the AdS7 × S

4 and flat back-
grounds. Section 5 is devoted to discussion of the results, their
relevance to problems of gauge-gravity duality and possible
further extensions. In Appendix A we give details of the The-
orem stating that for compact groups only abelian solutions
of the classical Yang–Baxter equation are allowed.

2 Tri-vector deformations

Tri-vector generalized Yang–Baxter deformations of 11d
supergravity backgrounds have been observed in [26–28] as
special transformations within the group of local U-duality
transformations of exceptional field theory. In the special case
of group manifolds such deformations generate a family of
exceptional Drinfeld algebras [29,30]. To setup notations and
list expressions for further reference let us briefly review the
formalism. In this work we consider tri-vector deformations
within the SL(5) U-duality group, that given the truncation
of [26,27] restricts us to backgrounds of the form M7 × M4,
where M7 is a manifold of constant curvature. Exceptional
field theory is a U-duality covariant formulation of both 11d
and Type IIB supergravities, whose field content in the SL(5)
case is the following

gμν, Aμ
MN , BμνM , mMN . (8)

Here and in what follows we adopt the following index con-
ventions

μ, ν, · · · = 0, 1, . . . , 6 external curved indices,

m, n, k, l, · · · = 1, 2, 3, 4, internal curved indices,

M, N , K , · · · = 1, . . . , 5 indices labeling the 5 of SL(5),

a, b, c, d = 1, . . . , N indices labeling Killing vectors.

(9)

Hence, the fields of the theory include the 7d metric, ten
vector fields, five 2-forms and 14 scalar fields packed into
the coset representative

mMN ∈ SL(5)

SO(5)
. (10)

In general fields of exceptional field theory live on a spe-
cial extended space labeled by 10 coordinates X

MN and
satisfy a condition called the section constraint, that effec-
tively restricts this dependence and is needed for consis-
tency of local symmetries of the theory (for more details
see the reviews [35–38] and original papers [39,40]). Here
we assume that all fields depend only on coordinates of the
normal space-time (xμ, xm), hence for us equations of excep-
tional field theory are simply a more convenient form of equa-
tions of the conventional 11d supergravity.

We set Aμ
MN = 0 and BμνM = 0 following [26,27]

where it has been shown that such truncated equations of
exceptional field theory do not generate these gauge fields
again. Since we consider backgrounds of the form M7 × M4

we further assume that dependence of the external metric gμν

on the coordinates (xμ, xm) factorizes as follows

gμν = e−2φ(xm )g
1
5 (xm)ḡμν(x

μ), (11)

where g = det gmn is the determinant of the metric on M4.
Hence, full eleven-dimensional interval reads

ds2 = e−2φ(xm )ḡμν(x
μ)dxμdxν + gmn(x

m)dxmdxn . (12)

The metric gmn and the 3-form cmnk parameterize the coset

MMN = eφ

[
g− 1

2 gmn −vn

vm g
1
2 (1 + v2)

]
∈ GL(5)

SO(5)
(13)

related to mMN by a rescaling mMN = e−φg
1

10 MMN . Here
we define the vector

vm = 1

3!ε
mnklcnkl , (14)

assuming it only depends on the coordinates xm and use

εmnkl = g− 1
2 εmnkl as the totally antisymmetric tensor. The

introduced rescaling and factorization of coordinate depen-
dence are needed to define tri-vector deformation in the trun-
cation ansatz, that is a special SL(5) transformation acting
linearly at MMN and ḡμν . The latter is simply a singlet as
well as gμν , while the former transforms as

MMN → OM
K ON

LMKL ,

OM
N = exp

[
ΩmnkTmnk

]
M

N ∈ SL(5).
(15)

The generators (Tmnk)M
N are negative level generators

of SL(5) w.r.t. to the GL(1) factor in the decomposition
SL(5) ←↩ GL(1) × SL(4). To be more precise, generators
TM N of the algebra sl(5) in the fundamental representation
read

(TM
N )K

L = δM
LδK

N − 1

5
δM

N δK
L . (16)

Upon the decomposition the 5 breaks into 41+1−4 where the
subscript denotes weight w.r.t. the subalgebragl(1). Similarly
the adjoint decomposes as

24 → 10 + 45 + 4̄−5 + 150. (17)
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More explicitly we have

5 : V M → (Vm, V 5),

24 : TM
N → (Tm

5, Tm
n, T5

m).
(18)

For the deformation one takes (Tmnk)M
N = εmnkl(T5

l)M
N ,

that gives the following matrix

OM
N =

[
δm

n g
1
2 Wn

0 1

]
, (19)

where Wm = 1/3!εmnklΩnkl . Denoting fields of the
deformed background by capital letters Gμν , Φ, Gmn , Vm

we obtain the following transformation rules

K−1 = 1 + WmW
m − 2Wmvm + (

Wmvm
)2

,

Gμν = K− 1
3 gμν,

Gmn = K
2
3

(
gmn + (1 + v2)WmWn − 2v(mWn)

)
,

Cmnk = K−1
(
cmnk + (1 + 1

3!c
2)Ωmnk

)
.

(20)

In the last line indices on cmnk are raised by the inverse unde-
formed metric gmn , while indices of Cmnk are raised by the
inverse deformed metric Gmn . This set of transformations is
a generalization of the map (2).

To arrive at the generalized classical Yang–Baxter equa-
tion we take the tri-vector in the tri-Killing ansatz

Ωmnk = ρabcka
mkb

nkc
k, (21)

where ρabc is constant and completely antisymmetric. In
order for the above transformation to give a solution to 11d
supergravity equations it is sufficient to require

ρa1[a2|a6|ρa3a4|a5| f |a7]
a5a6

− ρa2[a1|a6|ρa3a4|a5| f ‖a7]
a5a6

= 0,

ρa1a2a3 f a4
a2a3

= 0.

(22)

The first is usually referred to as generalized Yang–Baxter
equation, while the second is referred to the unimodularity
condition in analogy with a similar condition for bi-vector
deformations. Relaxing the latter one arrives at a solution to
equations of a generalization of 11d supergravity constructed
in [41,42]. These are an 11d analogue of 10d generalized
supergravity equations of [43], that appear as a more general
requirement for kappa-symmetry of the string.

The above equation is equivalent to the vanishing R-flux
condition found in [26] as a sufficient condition for such
deformation to generate solutions. If the U-duality group is
bigger than SL(5), say it is E6, the conditions have to be

generalized to include additional 6-vector deformations [31]

Ωm1...m6 = ρa1...a6ka1
m1 . . . ka6

m6 . (23)

In [28] it has been shown that the conditions found in [31]
are sufficient for such polyvector deformations to generate
solutions.

3 Solutions to gCYBE for so(5)

We are looking at solutions of the following equations with
respect to ρabc

ρa1a2a3 f a4
a2a3

= 0,

ρa1[a2|a6|ρa3a4|a5| f |a7]
a5a6

− ρa2[a1|a6|ρa3a4|a5| f |a7]
a5a6

= 0,

(24)

where a1, a2, · · · = 1, . . . , N label isometries of the under-
lying manifold. We would be interested in both solutions of
the whole system and in solutions to the first and second
line separately. The first equation, that is the unimodularity
condition, is linear and finding all its solutions for a given
algebra is straightforward. We present all such solutions in
Sect. 4.3.

The second line in the case of interest is a set of 105
quadratic equations. Finding its general solution is compu-
tationally difficult. Hence, it is suggestive to investigate sim-
ple case to develop some intuition. For that let us start with
the most simple compact non-abelian group, that is SO(3).
Generators of the algebra so(3) in Cartan basis satisfy the
following commutation relations

[H, E] = 2E,

[H, F] = −2F,

[E, F] = H,

(25)

Structure constants fabc are then proportional to εabc imply-
ing that the unimodularity condition cannot be satisfied.
Hence, we learn that taking SO(3) as the isometry group
one cannot construct unimodular deformations. This how-
ever does not mean that such deformations cannot generate
solutions to 11d supergravity equations, as we show below.
The same is true for the so(4) algebra as it is simply a direct
sum of two so(3)’s. Hence, the first algebra that can in prin-
ciple render unimodular deformations is so(5), which we are
interested in here.

On the other hand deformations generated by so(3) isome-
tries trivially satisfy generalized Yang–Baxter equation sim-
ply because it involves antisymmetrization in four indices
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while we have only three generators. Hence, all such tri-
vector deformations are Yang–Baxter. This is the key obser-
vation we will be using in what follows, as a large class of
the solutions to (24) we find are build on so(3) subalgebras
of so(5).

3.1 Solutions in Cartan–Weyl basis

The compact group SO(5) is the isometry group of a 4-sphere
S

4 and hence our analysis will cover tri-vector deformations
of the AdS7×S

4 background. Generators MAB of the algebra
so(5) can be defined by the following commutation relations
in terms of rotations in a five-dimensional flat space:

[MAB, MCD] = 2ηA[CMD]B − 2ηB[CMD]A (26)

where here A, B,C, D = 1, . . . , 5 label the fundamental
representation of so(5) For our purposes it is convenient to
turn to the orthogonal Cartan–Weyl basis where the genera-
tors are expressed in terms of MAB as follows

H1 = iM12, H2 = iM34,

E1 = 1√
2

(
M45 + iM35

)
, E3 = 1√

2

(
M15 − iM25

)
,

E2 = 1

2

(
M23 + iM13 − M14 + iM24

)
,

E4 = 1

2

(
M23 + iM13 + M14 − iM24

)
, (27)

In these notations the generators E1 and E2 are the simple
roots of the algebra with coordinates (0, 1) and (1,−1) in
the orthogonal basis respectively. Given MAB are real (Her-
mitean), negative root generators Fi are related to positive
root generators Ei by conjugation:

Eα = −(Fα)∗, (28)

where α, β = 1, . . . , 4. The only non-vanishing commuta-
tion relations are the following

[H1, E2] = E2, [H2, E1] = E1, [E3, F3] = H1

[H1, E3] = E3, [H2, E2] = −E2, [E2, F2] = H1 − H2,

[H1, E4] = E4, [H2, E4] = E4, [E2, F2] = H1 − H2,

[E1, F1] = H2 [E4, F4] = H1 + H2,

[E2, F3] = F1, [E3, F1] = −E2, [E4, F3] = E1

[E1, E2] = E3, [E1, F3] = −F2, [E3, F2] = E1

[E1, E3] = E4, [E1, F4] = −F3, [E3, F4] = F1

[E4, F1] = −E3

(29)

(together with their conjugates) that can be nicely represented
by Hasse diagram depicted on Fig. 1

E4 E3

E1

E2

H1,2 F1

F2 F3 F4

Fig. 1 Weight diagram of the 10 of so(5). Blue arrows denote action
of F1, red arrows denote action of F2

To parameterize components of a tri-vector deformation
tensor it is convenient to label all the generators uniformly,
for which purpose we introduce indices a = {α, ᾱ, ∗, ∗̄} and
define

Ta = {Tα, Tᾱ, T∗, T∗̄} ≡ {Eα, Fα, H1, H2}. (30)

In these notations structure constants defined as usually as
[Ta, Tb] = fabcTc can be listed as follows

f∗ 2
2 = 1, f∗ 2̄

2̄ = −1, f1 2
3 = 1, f1 3̄

2̄ = −1,

f3 3̄
∗ = 1 f∗ 3

3 = 1, f∗ 3̄
3̄ = −1, f1 3

4 = 1,

f1 4̄
3̄ = −1, f34̄

1̄ = 1 f∗ 4
4 = 1, f∗ 4̄

4̄ = −1,

f1̄ 2̄
3̄ = −1, f2 2̄

∗ = 1, f4 1̄
3 = −1 f∗̄ 1

1 = 1,

f∗̄ 1̄
1̄ = −1, f1̄ 3̄

4̄ = −1, f2 3̄
1̄ = 1, f4 3̄

1 = 1

f∗̄ 2
2 = −1, f∗̄ 2̄

2̄ = 1, f1 1̄
∗̄ = 1, f3 1̄

2 = −1,

f4 4̄
∗ = 1 f∗̄ 4

4 = 1, f∗̄ 4̄
4̄ = −1, f3 2̄

1 = 1,

f2 2̄
∗̄ = −1, f4 4̄

∗̄ = 1.

(31)

In principle, both ρ’s with three and six indices can be
turned on in the most general case. Our analysis using Wol-
fram Mathematica code shows that for the so(5) algebra all
solutions to gCYBE together with the unimodularity con-
straint generate complex Ω = ρabcTa ∧Tb ∧Tc. Such defor-
mation tensors are apparently of no interest as they generate
complex solutions to supergravity equations. Hence, we con-
clude that there are no real solutions to the set of equations
(24) for the algebra so(5). Closer inspection of the condi-
tions gives a hint that such strong restriction comes from an
interplay between the unimodularity constraint, linear in ρ’s,
and the generalized Yang–Baxter equation, quadratic in ρabc .
Note however, that to generate solutions of 11d supergrav-
ity one is not necessarily interested exclusively in solutions
to generalized Yang–Baxter equations together with the uni-
modularity constraint. First, as we discuss below and in more
details in [28] for SL(5) tri-vector deformations it is sufficient
to impose only the unimodularity constraint. Such deforma-
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tions are not Yang–Baxter. Second, to find Yang–Baxter tri-
vector deformed solutions to 11d supergravity equations one
may only satisfy the second line in (24) and to require

Jmn = ρabc fbc
dka

mkd
n = 0. (32)

In other words unimodularity constraint might be not satis-
fied, however give zero when contracted with Killing vec-
tors. These two observations considerably simplify the prob-
lem and in this work we a heading at solutions of this type,
leaving the most general analysis of the equations (24) for a
future work. Hence, we are interested in (i) solutions to the
unimodularity constraint and (ii) non-unimodular solutions
to gCYBE. The former we analyze in Sect. 4.3, while here
we focus at the latter.

It appears that the unimodularity condition imposes pretty
strong constraints on ρabc, such that solving gCYBE with-
out it becomes a computationally involved task. Since we are
interested in proving that gCYBE has non-trivial solutions
along compact isometries it is natural to focus at finding of
particular examples, leaving full analysis to a future work.
For that we recall the observation made in the beginning of
this section that so(3) trivially solves gCYBE. Hence, we
consider so(3) subalgebras of so(5). These appear to gener-
ate solutions to generalized Yang–Baxter equation, which
are however non-unimodular. In addition, to demonstrate
that the space of solutions to generalized YB equation is
not exhausted by taking so(3) subalgebras we have found
a different type of solution by introducing an object sa,bc

that is inverse to ρabc in the sense of rectangular matrices.
Altogether our solutions can be collected as follows

Ω̂1 = a1 E2 ∧ F2 ∧ (H1 − H2)

+ a2 E4 ∧ F4 ∧ (H1 + H2)

Ω̂2 = a
(
E1 +

√
2

3
εE2

)
∧

(
F1 +

√
2

3
εF2

)
∧ (2H1 + H2)

Ω̂3 = a E1 ∧ F1 ∧ H2

Ω̂4 = a E3 ∧ F3 ∧ H1

Ω̂5 = a
(
E2 + εE4

) ∧ (
F2 + εF4

) ∧ H1

Ω̂6 = a
[
E1 ∧ E2 ∧ F3 + E1 ∧ E3 ∧ F4 − E3 ∧ F1 ∧ F2

− E4 ∧ F1 ∧ F3 + E1 ∧ F1 ∧ H2 + E3 ∧ F3 ∧ H1

+ E2 ∧ F2 ∧ (H1 − H2) + E4 ∧ F4 ∧ (H1 + H2)
]
,

(33)

where ε = ±1. We are using hats to distinguish deforma-
tion written as wedge products of abstract generators from
tri-vectors define as their geometric realizations in terms of
Killing vectors. Note, that Ω̂1 is a two-parametric solution,
while in general a sum of two solutions to gCYBE is not a

solution. The reason is that a procedure of generating solu-
tion to generalized YB equation analogous to that of Belavin-
Drinfeld for the usual classical YB equation is not applicable,
since it is not clear what general condition can be imposed
for a sum of two solutions of gCYBE to be also a solution.
All five solutions above are real, i.e. Ω̂∗ = Ω̂ , hence they
generate real 11d backgrounds. However, there is a subtlety
when trying to realize the above in terms of Killing vectors
of the underlying space, to which we return momentarily.

The above results provide explicit examples that gener-
alized Yang–Baxter equation in contrast to classical Yang–
Baxter equation allows solutions that belong to g ∧ g ∧ g

where g is algebra of a compact Lie group. We find that
when g = so(5) there are no real solutions to both unimod-
ularity condition and generalized YB equation. The same is
true for su(3) where already unimodularity condition cannot
be satisfied on itself. This suggests to consider larger and/or
different compact groups e.g. su(4), so(6), usp(6), etc. Note
however, that this does not mean that the obtained solutions
cannot generate solutions to ordinary 11d supergravity equa-
tion. We will discuss this immediately.

3.2 Geometric realization

To consider the solutions to generalized Yang–Baxter equa-
tion found above as deformations of supergravity back-
grounds the so(5) generators must be realized as Killing
vectors of the underlying space-time. For our applications
here that include deformations of the internal 4-sphere of the
AdS7 × S

4 and a and 3-sphere of R
1,10, the most convenient

way to proceed is to start with rotation generators Mμν of a
5-dimensional Euclidean plane:

Mμ̂ν̂ = 1

2

(
yμ̂∂ν̂ − yν̂ ∂μ̂

)
, (34)

where μ̂, ν̂ = 1, . . . , 5. Apparently these form the same
so(5) algebra as (26) and hence for the generators (27) in
the Cartan–Weyl basis we have

H1 = i

2

(
y1∂2 − y2∂1

)
,

H2 = i

2

(
y3∂4 − y4∂3

)
,

E1 = i

2
√

2

[(
y3 − iy4

)
∂5 − y5

(
∂3 − i∂4

)]
,

E2 = i

4

[(
y1 − iy2

)(
∂3 + i∂4

) − (
y3 + iy4

)(
∂1 − i∂2

)]
,

E3 = 1

2
√

2

[(
y1 − iy2

)
∂5 − y5

(
∂1 − i∂2

)]
,

E4 = i

4

[(
y1 − iy2

)(
∂3 − i∂4

) − (
y3 − iy4

)(
∂1 − i∂2

)]
.

(35)
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As before negative root generators Fi are simply complex
conjugates of Ei . It is worth to mention that we still consider
the so(5) algebra of Reals and the complex combinations
are taken merely for convenience of further calculations. All
final results are real and can be equivalently written in terms
of Mμν properly restricted to the submanifolds at question.

Direct substitution of the above into (33) gives that Ω3 =
Ω4 = Ω5 = Ω6 = 0 are trivial, and hence only Ω1 and
Ω2 can be used to generate tri-vector deformations. This fol-
lows from the following simple observations. First notice that
the sets {E1, F1, H2} and {E3, F3, H1} form so(3) subalge-
bras of so(5). The same is true for {E2, F2, H1 − H2} and
{E4, F4, H1 + H2}, however for the former two sets we have

E1 ∧ F1 ∝ ∂5 ∧ H2,

E3 ∧ F3 ∝ ∂5 ∧ H1,
(36)

that is not true for the latter two. Hence, multiplying the first
by H2 or the second by H1 one gets zero. The reason is that
the generators {E1, F1, H2} are realized as an algebra of rota-
tional isometries of the 3D space parametrized by coordinates
{y3, y4, y5}. It is easy to see that in this case E ∧ F ∧ H is
always zero. In contrast the same is not true for the latter two
sets of generators. The fact that there is no such a coordinate
transformation can be seen in the so-called toroidal coordi-
nates (see below), where the angle ξ corresponding to the
action of the generator H1 − H2 enters with an additional
factor of 1/2 in the generators E2 and F2.

3.2.1 Isometries of S4

Embedding of a 4-sphere of radius r into the five-dimensional
flat Euclidean space is given by the condition

(y1)2 + (y2)2 + (y3)2 + (y4)2 + (y5)2 = r2. (37)

Let us turn to coordinates
(
ρ, φ, σ,ψ, r

)
such that transla-

tion along the angles φ and ψ correspond to the action of the
Cartan operators H1 and H2 respectively. Explicitly the tran-
sition to these so-called toroidal coordinates on the 4-sphere
has the following form

y1 = ρ cos φ, y3 = σ cos ψ

y2 = ρ sin φ, y4 = σ sin ψ,

(y5)2 = r2 − ρ2 − σ 2,

(38)

where φ,ψ ∈ [0, 2π ] and ρ2 + σ 2 ≤ r2. Fixing r = R =
const we obtain the metric on the S

4

ds2 = dρ2+ρ2dφ2+dσ 2+σ 2dψ2+
(
ρdρ + σdσ

)2

R2 − ρ2 − σ 2 . (39)

Similarly the rotational Killing vectors of the R
5 that form

the group SO(5) can be written as follows

k∗ = i

2
∂φ, k∗̄ = i

2
∂ψ ,

k1 = − i

2
√

2
e−iψ (

R2 − ρ2 − σ 2)(∂σ − iσ−1∂ψ

)
,

k2 = − i

4
σe−iψ−(

∂ρ − iρ−1∂φ

) + i

4
ρe−iψ−(

∂σ + iσ−1∂ψ

)

k3 = − 1

2
√

2
e−iφ(

R2 − ρ2 − σ 2)(∂ρ − iρ−1∂φ

)
,

k4 = − i

4
σe−iψ+(

∂ρ − iρ−1∂φ

) + i

4
ρe−iψ+(

∂σ − iσ−1∂ψ

)
, (40)

where we define ψ± = φ ± ψ for compact notations. The
tri-vector deformation tensor then takes the following simple
form

Ω1 = (a1 + a2)
(
ρ2 + σ 2)

(
1

ρ
∂ρ − 1

σ
∂σ

)
∧ ∂φ ∧ ∂ψ .

(41)

As it has been mentioned in the previous section ρabc

generating the above tri-vector are not unimodular, i.e.

ρacd fcd
d �= 0. (42)

However, for a deformation to generate a supergravity solu-
tion it is enough that this expression contracted with Killing
vectors vanishes. Explicitly one needs

Jmn = 1

4
ρacd fcd

bka
mkb

n = 0. (43)

This condition is satisfied when a1 = a2 = κ , and in what
follows we will always assume that. In this case the tri-vector
deformations of supergravity backgrounds that we consider
below are again solutions to the equations of 11d supergrav-
ity.

3.2.2 Isometries of R4

In what follows we will also be interested in tri-vector defor-
mations of the flat 11d Minkowski space, or speaking more
precisely in its 4D Euclidean part R

4. This space has com-
pact SO(4) isometry whose embedding in the SO(5) isometry
considered above is given by choosing x5 = 0, i.e. we con-
sider only rotations that keep the planes (m, 5) fixed. Again it
is convenient to choose toroidal coordinates on the 3-spheres
of the R

4:

y1 = ρ cos φ, y3 = σ cos ψ,

y2 = ρ sin φ, y4 = σ sin ψ,
(44)

123
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with the radial distance given by r2 = ρ2 +σ 2. Now φ,ψ ∈
[0, 2π ] and ρ, σ > 0. The metric takes the following form

ds2 = dρ2 + ρ2dφ2 + dσ 2 + σ 2dψ2. (45)

Hence, we are dealing with only k∗, k∗̄, k2, k4 whose expres-
sions in the chosen bases are given above. Apparently the
tri-vector Ω4 has the same form

Ω1 = 2(a1 + a2)
(
ρ2 + σ 2)

(
1

ρ
∂ρ − 1

σ
∂σ

)
∧ ∂φ ∧ ∂ψ, (46)

however with a different range of the coordinates ρ and σ ,
which now can be arbitrarily large. The non-unimodularity
tensor Jmn again vanishes for a1 = a2 = κ , that we will
always assume in what follows.

4 Examples

Let us now use the results of the previous section to tri-
vector deform the particular solutions to 11d supergravity
equations: the AdS7 ×S

4 background and the flat space-time
R

1,10. Both backgrounds fit the truncation ansatz and hence
the methods of [26,27] briefly reviewed in Sect. 2 can be
immediately applied. Note, that in general the deformation
does not respect all isometries of the initial background be it
a 4-sphere or a flat manifold, that is expected. To determine
the subalgebra of the preserved isometries it is suggestive
to investigate which of the initial Killing vectors commute
with the deformation, or in other words along which the Lie
derivative of Ωmnk vanishes. Explicit calculation gives:

Lk∗Ω1 = Lk∗Ω1 = 0

Lk2Ω1 = −2iκe−iψ− (
ρ2 + σ 2)

(
σ

ρ2 ∂ρ + ρ

σ 2 ∂σ

)
∧ ∂φ ∧ ∂ψ

Lk4Ω1 = −2iκe−iψ− (
ρ2 + σ 2)

(
σ

ρ2 ∂ρ + ρ

σ 2 ∂σ

)
∧ ∂φ ∧ ∂ψ

Lk1Ω1 = −2e−iψ y5κ
(
ρ2 + σ 2)

(
− 1

ρ
∂ρ ∧ ∂σ

+i
1

σρ
∂ρ ∧ ∂ψ − i

1

σ 2 ∂σ ∧ ∂ψ

)
∧ ∂φ

Lk3Ω1 = −2e−iφ y5κ
(
ρ2 + σ 2)

(
− i

1

σ
∂ρ ∧ ∂σ

− 1

σρ
∂φ ∧ ∂σ − 1

ρ2 ∂ρ ∧ ∂φ

)
∧ ∂ψ . (47)

We see, that at most the isometries along the Cartan genera-
tors H1,2 can be preserved. As we discuss below this maxi-
mally possible isometry group of the deformed background
might be broken by a gauge choice of the 3-form and the
actual isometry group becomes smaller.

4.1 AdS7 × S
4

AdS7xS4
Let us start with the AdS solution, that is of interest for

holography applications. Explicitly the metric and the 4-form
field strength have the following form

ds2 = R2ds2
S4 + 4R2ds2

AdS7
,

F4 = 3

R
VolS4 .

(48)

Here R is a constant that has the meaning of the radius of
the AdS space and of the sphere. In the language of excep-
tional field theory the AdS space will be external while the
sphere will be internal. Hence, the tri-vector deformation acts
only along the coordinates on the sphere while the AdS part
of the metric only acquires a prefactor. In the language of
AdS/CFT correspondence such a deformation corresponds
to an exactly marginal deformation of the dual gauge theory
(leaving certain issues, such as stability, aside).

In the toroidal coordinates on the 4-sphere (ρ, φ, σ, ψ)

defined in (38) the field strength takes the following form

F = 3
R5ρσ√

R2 − ρ2 − σ 2
dρ ∧ dφ ∧ dσ ∧ dψ. (49)

The particular form of its gauge potential Cmnk depends on
a gauge choice, and we find it convenient to set

Cρσφ = 3

2
R5 ρσ√

R2 − ρ2 − σ 2
(φ + ψ),

Cρσψ = −3

2
R5 ρσ√

R2 − ρ2 − σ 2
(φ + ψ).

(50)

In this case components of the vector vm become simply

vψ = 3

2
(φ + ψ), vφ = 3

2
(φ + ψ). (51)

One finds that in the chosen gauge the vector vm is orthogonal
to the 1-form Wm = 1/3!εmnklΩ

nkl that is

Wρ = κR−1ρ
ρ2 + σ 2

√
R2 − ρ2 − σ 2

,

Wσ = κR−1σ
ρ2 + σ 2

√
R2 − ρ2 − σ 2

.

(52)

Hence, given Wmvm ≡ 0 the function K takes the following
simple form

K−1 = 1 + κ2 (ρ2 + σ 2)3

R6 (53)
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Finally, we write the deformed background as follows

ds2 = K
2
3

[
R2ds2

S4 − 3R6κr3+ψ+

2
√

1 − r2+
dr+

(
dψ−r2− + dψ+r2+

)

+ κ2r6+R4
(
9R4r2+ψ2+ + 4

)

4(1 − r2+)
dr2+

]
+ 4R2K− 1

3 ds2
AdS7

,

F =
[

3
(
2 + 4κ2r6+ + 27κ2r8+R4ψ2+

)

2k5/6
(
κ2r6+ + 1

)

+
3κ

√
1 − r2+r2+

(
4 + 2κ2r6+ + 3r2+R4ψ2+

(
5κ2r6+ + 8

))

2k5/6R2
(
κ2r6+ + 1

)
2

]

× dρ ∧ dφ ∧ dσ ∧ dψ

(54)

where we denote r2± = ρ2 ± σ 2 and ψ± = φ ± ψ . Note that
this is a solution to 11d supergravity equations as the tensor
Jmn = 0 and the generalized Yang–Baxter equation holds.
In the language of exceptional field theory this means that
generalized fluxes for this solution are precisely the same as
those for the initial AdS7 × S

4 background.
We see that both the metric and the field strength do not

depend on φ −ψ that indicates the remaining U(1) isometry
corresponding to the action of H1 − H2. The other isometry
commuting with Ωmnk that is H1 + H2 is broken since the
background explicitly depends on the corresponding angle
coordinate ψ+. The reason for this comes from the gauge
choice for the gauge potential we made above. Note first
that Lie derivative of such chosen Cmnk along k∗ + k∗̄ can
be undone by a gauge transformation, hence H1 + H2 is an
isometry of the initial background as expected. This how-
ever is no longer true for the deformed background since the
gauge potential enters the transformation non-linearly, and
the transformation ψ+ → ψ+ +χ(ψ+) cannot be undone by
a gauge transformation. This manifests itself in the explicit
dependence on ψ+. It is also evident that the background
does not preserve any supersymmetry as it simply does not
pass the test of [44]. This is in consistency with the result of
[4] stating that there are no supersymmetric marginal defor-
mations of the D = 6 N = (2, 0) theory.

4.2 Flat space-time

To illustrate how gauge choice for the 3-form field affects the
set of remaining isometries of the deformed background let
us consider the case of an 11d flat space-time with vanishing
3-form. The metric is given by

ds2 = ds2(R4) + ds2(R1,6), F4 = 0, (55)

with the obvious notations. As before the flat 7-dimensional
space-time is considered to be the external space-time of the
SL(5) exceptional field theory, while the 4d Euclidean space

is understood as the internal. The deformation will be along
the so(4) subalgebra of so(5) with the deformation tensor
given by

W = κ
(
ρ2 + σ 2

)
(ρdρ + σdσ). (56)

Acting as before we obtain for the deformed background the
following expressions

K−1 = 1 + κ2(ρ2 + σ 2)3

ds2 = K− 1
3 ds1,6 + K

2
3 ds4

+K
2
3 κ2

(
ρ2 + σ 2

)2
(ρdρ + σdσ)2,

F = 3κK− 5
6

(
ρ2 + σ 2

) 2 + κ2
(
ρ2 + σ 2

)3

(
1 + κ2

(
ρ2 + σ 2

)3
)2

×dρ ∧ dφ ∧ dσ ∧ dψ. (57)

This is again a solution to 11d supergravity equations since
the generalized Yang–Baxter equation holds and the tensor
Jmn = 0. We see that in this case the whole U(1) × U(1)

isometry generated by the Cartan subalgebra is preserved.

4.3 Non-YB unimodular deformations

Searching for tri-vector deformed supergravity backgrounds
one recalls that in the SL(5) theory, i.e. when the internal man-
ifold is four-dimensional, the unimodular condition alone is
sufficient for such a deformation to generate a supergravity
solution. The same is true for bi-vector deformations ruled
by the O(3,3) double field theory, i.e. when a deformation
is given by Killing vectors of a 3d manifold. Interested in
poly-vector deformations as solution generating transforma-
tions one certainly can drop the Yang–Baxter condition and
search for all possible solutions to the unimodularity con-
straint. Hence, we are looking for all solutions to the follow-
ing linear equations

ρacd fcd
b = 0, (58)

where fabc are structure constants of so(5). We find in total
12 independent (complex) solutions, whose linear combina-
tions again give a valid unimodular deformation. In terms of
the so(5) generators in the Cartan basis these read

Ω̂1c
uni = F3 ∧ F4 ∧ (H2 − H1) + F1 ∧ F2 ∧ F4

Ω̂2c
uni = E1 ∧ F2 ∧ (H2 + H1) + E4 ∧ F2 ∧ F3

Ω̂3c
uni = E3 ∧ E4 ∧ F1 − E2 ∧ E4 ∧ H1 + E1 ∧ E2 ∧ E3

Ω̂4c
uni = E1 ∧ F3 ∧ (H1 + H2) + (

E1 ∧ F1 + E3 ∧ F3

−E4 ∧ F4
) ∧ F2 + F2 ∧ H1 ∧ H2

Ω̂5c
uni = E2 ∧ E3 ∧ (H1 + H2) − E2 ∧ E4 ∧ F1

Ω̂6c
uni = E1 ∧ (E2 ∧ F2 − 2E3 ∧ F3 + E4 ∧ F4) +

123
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+2 (E3 ∧ F2 + E4 ∧ F3) ∧ H1

+3E4 ∧ F1 ∧ F2 − 4E1 ∧ H1 ∧ H2

Ω̂7c
uni = −E3 ∧ E4 ∧ F2 + E1 ∧ E4 ∧ (H1 − H2)

Ω̂8c
uni = (E1 ∧ E2 + E4 ∧ F1) ∧ F3

+(E4 ∧ F4 − 2E1 ∧ F1 − E2 ∧ F2) ∧ H1

+(E1 ∧ F4 − F1 ∧ F2) ∧ E3

Ω̂9c
uni = (E1 ∧ E2 + E4 ∧ F1) ∧ F3

+(E2 ∧ F2 + E4 ∧ F4 − 2E3 ∧ F3) ∧ H2

+(E1 ∧ F4 − F1 ∧ F2) ∧ E3

Ω̂10c
uni = −E4 ∧ F2 ∧ H2 + E1 ∧ (E3 ∧ F2 − E4 ∧ F3)

Ω̂11c
uni = (E1 ∧ F1 + E2 ∧ F2 − E3 ∧ F3) ∧ E4

+E1 ∧ E3 ∧ H1 − E1 ∧ E3 ∧ H2 − E4 ∧ H1 ∧ H2

Ω̂12c
uni = 2E4 ∧ F3 ∧ H2 − 2E3 ∧ F2 ∧ H2 + E1 ∧ E2 ∧ F2

−2E1 ∧ E3 ∧ F3 + E1 ∧ E4 ∧ F4 + E4 ∧ F1 ∧ F2

(59)

Although one is apparently interested in real solutions we
intentionally write the above as complex combinations of the
generators. The reason is that since the unimodularity condi-
tion is a linear equation a linear combination of its solutions
is again a solution. Hence, to end up with a valid unimodu-
lar non-Yang–Baxter real tri-vector deformation one simply
takes a general combination of the above and of their complex
conjugates.

Instead of presenting explicitly the most general back-
ground resulting from a tri-vector deformation by a most
general real linear combination of the above expressions,
we write explicitly tri-vectors for each deformation on the
4-sphere as the most interesting case. To realize the above
in terms of wedge products of the Killing vectors on the
4-sphere it is convenient to use semi-flat coordinates rather
than the toroidal coordinates employed above. The reason is
that to be expressed in the most compact form each deforma-
tion requires its own choice of coordinates, while in semi-flat
coordinates all the above can be written in an acceptable form.
For the sphere S

4 the coordinates are defined as follows

xi = yi for i = 1, 2, 3, 4,

(y5)2 = r2 − xi xi .
(60)

Then the 3-vector realizations of the above deformations
become

Ω1c
S

= −2y5u+v+du+ ∧ dx34 − u+2y5dv+ ∧ dx12,

Ω2c
S

= v−2y5du+ ∧ dx34 − 2u+v−y5dv+ ∧ dx12

Ω3c
S

= −u−2 εi jkl

3! xldxi jk − 2i(y5)2u−du− ∧ dx34

Ω4c
S

= −iu+v−
εi jkl

3! xldxi jk − (y5)
2 (

v−du+ ∧ dx34

−u+dv− ∧ dx12)

Ω5c
S

= 2u−v+y5du− ∧ dx34 − u2−y5dv+ ∧ dx12

Ω6c
S

= −i4y5v−
εi jkl

3! xldxi jk + i
5

2
y5v−dx12 ∧ (−x3dx4

+x4dx3) + 1

4
dv− ∧ dx12y5(5x2

3 + 5x2
4 + 8y2

5 − 4r2)

Ω7c
S

= iv−2y5du− ∧ dx34 + i2u−v−y5dv− ∧ dx12

Ω8c
S

= εi jkl

3! xldxi jk
(
x2

1 + x2
2 − 2(y5)2

)

+2(y5)2(dx234x1 − dx134x2)

Ω9c
S

= εi jkl

3! xldxi jk
(
x2

3 + x2
4 − 2(y5)2

)

+2(y5)2(dx124x3 − dx123x4)

Ω10c
S

= −v2−
εi jkl

3! xldxi jk − i2(y5)2v−dv− ∧ dx12

Ω11c
S

= iu−v−
εi jkl

3! xi dx jkl

+(y5)
2 (

v−du− ∧ dx34 + u−dv− ∧ dx12)

Ω12c
S

= i8y5v−
εi jkl

3! xldxi jk + i2y5v−dx12 ∧ (−x3dx4

+x4dx3) + dv− ∧ dx12y5(x2
3 + x2

4 − 4y2
5 ) (61)

where we denote dxi j = dxi ∧ dx j , u± = x1 ± i x2 and
v± = x3 ± i x4 for compact notations.

To conclude this section we note that the 3-vectors pre-
sented above generate in general a 24-parametric deforma-
tion of AdS7×S

4, that preserves the AdS symmetry and satis-
fies equations of 11d supergravity. Interestingly enough these
also include the deformation considered in the beginning
of this Section for which explicit metric and field strength
have been presented. Although this is generated by a non-
unimodular Ω̂1 satisfying generalized Yang–Baxter equa-
tions, the corresponding tensor Jmn vanishes. We find that
a combination of Ω̂1c

Suni and Ω̂2c
Suni generates precisely the

same tri-vector Ωmnk as Ω̂1. Although it is tempting to state
that the 24-parameter family of deformation found above
exhausts all tri-vector deformations that generate a solution
to 11d supergravity equations, this might not be true. Simply
for the reason, that a non-unimodular Ω̂ might give vanishing
Jmn . However, already in this form the results seem interest-
ing for further investigation from the holographic point of
view.

5 Discussion

In this work we consider tri-vector deformations of 11d
supergravity backgrounds fitting the framework of the SL(5)
exceptional field theory, i.e. transformations generated by
Ωmnk = ρabcka ∧ kb ∧ kc, where ka are Killing vec-
tors of a four-dimensional submanifold and ρabc is con-
stant and totally antisymmetric. In particular we focus at the
AdS7 × S

4 and R
1,10 solutions to 11d supergravity equa-

tions. The Killing vectors are taken along non-commuting
compact isometries of the 4-sphere and of a 3-sphere inside
the flat space-time respectively. We find that generalized clas-
sical Yang–Baxter equation (gCYBE), that is a condition for

123



Eur. Phys. J. C (2023) 83 :399 Page 11 of 13 399

such a deformation to generate a supergravity solution, has
non-trivial solutions. This is in contrast to the standard clas-
sical Yang–Baxter equation relevant to bi-vector deforma-
tions generated by β = rabka ∧ kb, which has no solutions
with non-commuting Killing vectors along compact isome-
tries (see Appendix A).

We find explicit examples of such solutions to gCYBE
and present explicit expressions for the deformed metric and
4-form field strength for the simplest of them. In addition
we find a 24-parameter family of unimodular deformations
that do not satisfy gCYBE, however still generate solutions
to supergravity equations. This is a specific property of the
SL(5) theory related to the dimension four of the manifold.
All found deformations are non-abelian in the sense that they
cannot be presented in the form Ω = k1 ∧k2 ∧k3 with all k’s
commuting. Certainly, our solutions also cannot be presented
in the form Ω = β∧k, where k commutes with all generators
inside β. Existence of such solutions with non-abelian β is
forbidden by the theorem in Appendix A.

These results seem to be of interest in the context of
AdS/CFT correspondence. Given the classification of [21]
bi-vector deformations of AdSd ×M10−d type solutions gen-
erated by Killing vectors of the compact manifold M10−d

correspond to adding an exactly marginal operator to the
dual CFT. The well-known example is the β-deformation
of [6]. Similarly one may interpret tri-vector deformations
along compact isometries: since the whole AdS isometry
group is intact conformal symmetry of the dual theory does
not change. Hence, it is natural to suggest that all such tri-
vector deformations correspond to exactly marginal defor-
mations. Our results show that in the tri-vector case one can
go beyond simple abelian deformations. Certainly the issue
of stability of the deformation has still to be investigated and
further research is necessary to give precise interpretation
of our solutions in terms of deformations of the D = 6
N = (2, 0) theory. For certain we known that all these
are non-supersymmetric since the condition of [44] does not
hold. This is in consistency with [4] stating that there are no
supersymmetric relevant or marginal deformations in D = 6
SCFT’s. It would be interesting to find gauge theory dual to
our solutions in the six-dimensional theory.

Natural question is: whether our results can be applied
to backgrounds dual to theories that are not IR free? More
concretely: is it possible to find tri-vector non-abelian defor-
mations along compact isometries of the AdS5 × S

5 back-
ground? Since this is a solution to Type IIB supergravity
equations the formalism of [26,27] does not directly apply.
However, on the other hand, exceptional field theory contains
Type IIB supergravity and poly-vector deformations in prin-
ciple survive the embedding. Moreover, it is natural to expect
that these will be governed by precisely the same gCYBE as
in the 11d case probably with additional terms on the RHS
related to the SL(2) S-duality symmetry. Given it is true the

solutions Ω̂1 and Ω̂2 we have found above will generate non-
supersymmetric exactly marginal deformations of D = 4
N = 4 SYM. Hence the question of defining poly-vector
deformations in Type IIB theory is of most interest.

Another interesting question is: to what extent it is possi-
ble to extend the AdS/CFT correspondence beyond ordinary
supergravity to cover backgrounds of generalized supergrav-
ity in 10d [43] or in 11d [41,42]? Such backgrounds are
generated by non-unimodular bi- and tri-vector deformations
respectively with non-vanishing Im or Jmn . To our knowl-
edge there has been no particular progress in that direction.
The reason might be simple: all bi-vector deformations along
compact isometries are abelian and hence trivially unimod-
ular. Bi-vector deformations along non-compact isometries
that break AdS symmetries and generate non-commutative
field theories can easily be made unimodular. Hence, in
whole non-triviality this question arises when dealing with
tri-vector deformations. All our examples are either unimod-
ular or have vanishing Jmn hence keep the deformed back-
grounds in the set of supergravity solutions.

Finally, the most straightforward extensions of the results
presented here are the following. First, more extensive anal-
ysis of generalized Yang–Baxter equations already for the
algebra so(5) is required. Although we have found that
together with the unimodularity condition it has only com-
plex solutions, it is worth to search for the most general set of
solutions that give Jmn = 0 and hence generate 11d super-
gravity solutions. Second, it would be interesting to apply
the same approach to the AdS4 × S

7 background using the
solutions we found here for so(5) and also more general solu-
tions for the full SO(8) isometry group. The results can be
compared to the results of [32] where marginal deformations
of the dual three-dimensional theory have been considered
using generalized geometry.
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Appendix A: Bi-vector deformations on compact isome-
tries

Classical Yang–Baxter equation takes the form:

r i1kr i2l f i3
kl + r i3kr i1l f i2

kl + r i2kr i3l f i1
kl = 0. (62)

If we define inverse for r matrix s, we can get next equation,
by multiplying (62) with si1α si2β si3γ :

f i
αβ siγ + f i

γαsiβ + f i
βγ siα = 0. (63)

Also, by defining s as two-form B and remembering point
of structure constant f , we can rewrite (63) as 2-cocycle
condition:

B ([x, y] , z) + B ([z, x] , y) + B ([y, z] , x) = 0, (64)

where x, y, z - elements of subalgebra L of some compact
algebra g, on which we define (62). Without limiting the
generality, we can thing,that B(∗, ∗) is non-degenerate form,
which means that � a0 ∈ g : B(a0, x) = 0, ∀x ∈ g.

Next we can write as definition of non-abelian solution
as condition ∀x, y ∈ L , [x, y] �= 0. Let ’s prove, that if
g is simple and compact, that L is abelian. First, because
L ,obviously, is compact, we can use some special theorem,
with which we can say, that L is direct sum of something
semisimple derived algebra L ′, and center of L defined as
ξ (L):

L = L ′ ⊕ ξ (L) (65)

Note, that derived algebra L ′ is such subalgebra of L , that
L ′ ≡ [L , L], and ξ (L) ∈ {∀x, y ∈ L|[x, y] = 0}. We can
write (64) with ∀x, y ∈ L ′ and ∀z ∈ ξ (L), which implies,
by definition, B ([x, y] , z) = 0, and because x, y ∈ L ′,
∃ω ∈ L ′ : ω = [x, y], then:

B (ω, z) = 0,∀z ∈ ξ (L) ,∀ω ∈ L ′ (66)

On the other hand, since L ′ is semisimple, the restriction of B
to L ′ is a coboundary, i.e. there exists a non-zero functional
f on L ′ such that B(w1, w2) = f ([w1, w2]), ∀w1, w2 ∈ L ′.
Let a0 be the element of L ′ which corresponds to f via the
isomorphism L ′ ∼= (L ′)∗ defined by the Killing form. Then
∀w ∈ L ′ one has

B(a0, w) = K (a0, [a0, w]) = K ([a0, a0], w) = 0. (67)

Together with (65) and (66), (67) implies that

B(a0, l) = 0, (68)

∀l ∈ L . Thus B is degenerate on L, which is a contradiction.
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