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Abstract In this study, we present an exact dirty/hairy
black hole solution in the context of gravity coupled min-
imally to a nonlinear electrodynamic (NED) and a Dilaton
field. The NED model is known in the literature as the square-
root (SR) model i.e., L ∼ √−F . The black hole solution
which is supported by a uniform radial electric field and a sin-
gular Dilaton scalar field is non-asymptotically flat and sin-
gular with the singularity located at its center. An appropriate
transformation results in an interesting line element ds2 =
−

(
1 − 2 M

ρη2

)
ρ2

(
η2−1

)
dτ 2 +

(
1 − 2 M

ρη2

)−1

dρ2 +�2ρ2d�2

with two parameters – namely the mass M and the Dilaton
parameter η2 > 1 (�2 = 1

η2 ) – which may be simply consid-
ered as the dirty Schwarzschild black hole. This is because
with η2 → 1 the spacetime reduces to the Schwarzschild
black hole. We show that although the causal structure of
the above spacetime is similar to the Schwarzschild black
hole, it is thermally stable for η2 > 2. Furthermore, the tidal
force of this black hole behaves the same as a Schwarzschild
black hole, however, its magnitude depends on η2 such that
its minimum is not corresponding to η2 = 1 (Schwarzschild
limit).

1 Introduction

The terminology “dirty” black hole that has been introduced
by Matt Visser in [1] refers to black holes surrounded by
some kind of classical matter such as electromagnetic or
scalar fields. In the latter case, the black holes are also called
“hairy”. Therefore, in this regard the Schwarzschild black
hole which is characterized only by its mass is not dirty,
however, the Reissner–Nordström black hole is a dirty one
whose dirt is the electromagnetic static field. In a system of
gravity coupled to electromagnetism, adding Dilaton [2–4],
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axion [5–7], Dilaton and axion [8] or Abelian Higgs field
[9] results in some interesting dirty black holes. The effects
of the dirtiness matter fields are on the physical structure
of the black holes, for instance, in the Hawking temper-
ature [1], gravitational wave astronomy [10], quasinormal
modes [11–14] and tidal force [15]. In [16], Bronnikov and
Zaslavskii have studied generic static spherically symmetric
dirty/hairy black holes supported by an energy-momentum
tensor expressed by T ν

μ = diag (−ρ, pr , pt , pt ) . In the lat-
ter equation, ρ, pr , and pt , respectively, are the energy den-
sity, the radial and transverse pressure of the matter field
which is supposed to be in equilibrium with the black hole.
In particular, they investigated the equilibrium conditions
between the black hole and the classical matter field sur-
rounding the black hole in terms of the radial pressure to
density ratio i.e., w = pr

ρ
[16]. Accordingly, the following

two cases were reported upon which the equilibrium is pos-
sible: (i) limu→uh w (u) → −1 and (ii) limu→uh w (u) →
−1/ (1 + 2k) and ρ (u) ∼ (u − uh)k , in which u is the
radial coordinate, uh is the horizon and k > 0. Fur-
thermore, Bronnikov and Zaslavskii have generalized their
results for an arbitrary static spacetime in [17] where gen-
eral static black holes in matter were considered and the
case for the nonlinear equation of state has been studied in
[18].

Power-law Maxwell nonlinear electrodynamics (PM-
NED) model was proposed in [19] and soon after became
popular among the other models of NED [20–31]. The model
is simply given by

L = αF p (1)

in which F = FμνFμν is the Maxwell invariant, p �= 1
2 , 0 is

any real number and α is a dimensionful coupling constant.
While the reason for excluding p = 0 seems obvious it is
not so clear for p = 1

2 . To see why let’s consider Maxwell’s
nonlinear equation in flat spacetime for a point electric charge
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sitting at the origin. Maxwell’s field of such configuration is
assumed to be

F = E (r) dt ∧ dr (2)

where E (r) is the radial electric field produced by the electric
charge. Maxwell’s equation is given by

d

(
∂L
∂F F̃

)
= 0 (3)

in which

F̃ = E (r) r2 sin θdθ ∧ dϕ (4)

is the dual electromagnetic field in the flat spherically sym-
metric spacetime described by the line element

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (5)

Evaluating the Maxwell invariants, one finds F = −2E2,

and consequently Eq. (3) implies

r2E2p−1 = const., (6)

that yields

E (r) = q

r
2

2p−1

, (q is an integration constant). (7)

Clearly, (6) is not satisfied for p = 1
2 which also causes E (r)

is undetermined for p = 1
2 . Hence one has to exclude p = 1

2 .
We note that the same obstacle pops up when the spacetime
is curved but spherically symmetric. Apparently, L = α

√F
needs special treatment and even a special name separately
from the “power low”. In the literature, it is called as square-
root nonlinear electrodynamics (SR-NED) model and it was
even known before the power-law Maxwell’s model. By
properly adjusting the coupling constant α, the electric and
magnetic SR models are Le ∼ √−F and Lm ∼ √F respec-
tively. The magnetic model was proposed long ago by Nielsen
and Olesen [32] in string theory and was used by ’t Hooft for
introducing the confinement and linear potential for quarks
[33]. Adding the electric square root term to the Maxwell
linear theory results in an electric confinement field in the
black hole spacetime [34–40]. The SR-NED model is also
the strong field limit of the famous Born-Infeld (BI) [41,42]
model when E.B = 0.

Recently in [43], we have introduced a 2 + 1 + p–
dimensional uniform magnetic brane in the context of gravity
minimally coupled with the magnetic SR-NED. With p = 1
the solution reduces to the Bonnor-Melvin magnetic universe
with a cosmological constant studied in [44]. In particular, we
have shown that the spacetime is regular and supported by a
uniform magnetic field in the sense that Maxwell’s invariant
is uniform.

In this research, our aim is to introduce a dirty/hairy black
hole solution in the context of Einstein’s gravity coupled to

SR-NED and a Dilaton scalar field. In particular, we add the
Dilaton field to come over the obstacle that appears in the PM-
NED with p = 1/2. We recall that the well-known Einstein–
Maxwell–Dilaton theory admits black holes in the asymptot-
ically flat [45,46] and non-asymptotically flat regimes [47].
There are several research papers based on such a class of
black holes that study the various aspects and applications of
the theory. Furthermore, Einstein-NED-Dilaton theory with
the BI-NED model has also received attention in the liter-
ature [48,49]. Considering the value of such theories, we
believe that the Einstein-SR-NED-Dilaton theory which rep-
resents the strong field regime of the later theory will find its
applications probably in AdS/CFT correspondence. As we
shall see the form of the black hole solution is rather simple
which more looks like to be a correction in the Schwarzschild
black hole. In other words, the effects of the Dilaton and SR-
NED are combined in only one additional parameter which
we shall call it its dirtiness parameter. Therefore, the final
black hole consists of two parameters in comparison with the
Schwarzschild black hole which consists of only one param-
eter.

Let us note that in the string theory, in the low energy limit,
the problem is described by the action

I =
∫

d4x

(
R − 1

2
(∇ψ)2 − 1

4
e−2ψ FμνF

μν

)
(8)

in which the Dilaton field is represented by ψ [50] (also
[51]). In other words, the charged black holes in string the-
ory are hairy and the hair/Dilaton is coupled nonminimally
to the electromagnetic fields [52]. In the same context i.e.,
Einstein–Maxwell-Scalar/Phantom theory there have been
black hole solutions that are either asymptotically flat or non-
asymptotically flat [53–61].

The organization of the paper is as follows. In Sect. 2 we
introduce the theory by giving the action and the field equa-
tions. Also, we solve the field equations exactly and present
the results analytically in the same section. In Sect. 3 we study
the general properties of the black hole. The physical proper-
ties consist of the energy conditions, the null geodesics, the
mass of the black hole, the thermal stability analysis, and the
first law of thermodynamics of the black hole and the causal
structure. In Sect. 4 we study the tidal force of the dirty black
hole and we conclude our paper in Sect. 5.

2 The action, the field equations and the solutions

We start with the Einstein-nonlinear electrodynamic-Dilaton
action described by

I =
∫

d4x

(
R − 1

2
∂μψ∂μψ + e−2bψL (F)

)
(9)
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in which b �= 0 is a free Dilaton parameter, F = FμνFμν is
the electromagnetic invariant with F = Fμνdxμ ∧ dxν the
abelian electromagnetic field satisfying the Bianchi identity

dF = 0 (10)

and ψ = ψ (r) is the Dilaton field. The nonlinear electro-
magnetic Lagrangian model is given by [32,33]

L (F) = α
√−F (11)

where α is a dimensionful constant parameter. Variation of
the action with respect to the metric tensor gives Einstein’s
field equations expressed by

Rν
μ = 2∂μψ∂νψ + αe−2bψ

√−F FμλF
νλ. (12)

Furthermore, variation of the action with respect to the Dila-
ton scalar field yields the Dilaton field equation given by

∇μ∇μψ (r) = αbe−2bψ

2

√−F (13)

and finally, variation of the action with respect to the gauge
potential yields the NED-Dilaton equation

d

(
e−2bψ

√−F F̃
)

= 0 (14)

in which F̃ is the dual field two-form of F. Our spacetime is
static and spherically symmetric with the line element

ds2 = − f (r) dt2 + dr2

f (r)
+ R (r)2 d�2, (15)

where d�2 = dθ2 + sin2 θdϕ2 is the line element on the
2-sphere. The electromagnetic field is chosen to be a pure
electric field produced by a point charge sitting at the origin
expressed by

F = E (r) dt ∧ dr (16)

with its dual field obtained to be

F̃ = E (r) R (r)2 sin θdθ ∧ dϕ. (17)

The electrodynamic invariant is obtained to be

F = −2E (r)2 (18)

upon which the NED-Dilaton equation (14) implies

R (r)2 = R2
0e

2bψ. (19)

where R0 is an integration constant related to the electric
charge of the electric monopole. We add that Eq. (19) has

been found through the NED-Dilaton equation (14) explic-
itly. In a similar situation with linear or nonlinear electrody-
namics in the literature, such a relation is usually considered
in the form of an ansatz. For instance, we refer to [62,63].
Another important observation regarding the NED-Dilaton
equation (14) is that it doesn’t identify the form of the elec-
tric field E(r) and on the contrary E(r) canceled out. This,
however, doesn’t mean that E(r) is an arbitrary function. As
we shall see it will be identified from the other field equations,
uniquely.

Einstein’s field equations are given by

Rt
t = −αR2

0E (r)√
2R (r)2

, (20)

Rr
r = 2 f

(
ψ ′)2 + Rt

t , (21)

and

Rθ
θ = Rϕ

ϕ = 0, (22)

where

Rt
t = − 1

2R

(
R f ′′ + 2 f ′R′) , (23)

Rr
r = − 1

2R

(
R f ′′ + 4 f R′′ + 2 f ′R′) (24)

and

Rθ
θ = Rϕ

ϕ = − 1

R2

(
RR′ f ′ + f RR′′ − 1 + (

R′)2
f
)

(25)

are Ricci tensor’s components. Furthermore, the Dilaton field
equation (13) explicitly becomes

(
R2 f ψ ′)′ = αbR2

0

√
2E (r)

2
. (26)

Note that wherever needed we used (19) to simplify the equa-
tions. Next, we solve (22) for f (r) which is given by

f (r) = r − r0

RR′ (27)

in which r0 is an integration constant. We are, then, left
with three equations, namely, (20), (21) and (26), and three
unknown functions i.e., R (r) , E (r) and ψ (r) . Eq. (21)
simply becomes

R′′ + Rψ ′2 = 0 (28)

which implies

ψ ′ = ±
√

− R′′
R

, (29)

in which without loss of generality we continue with the
positive ψ ′. Furthermore, from Eq. (20) one obtains

E (r) = −
√

2R2

αR2
0

Rt
t (30)

which together with (29) simplify Eq. (26) into
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(
2b

√−R′′R − 2R′) (
RR′R′′′ (r − r0)

−2R′′
(
RR′′ (r−r0)−1

2
R′ ((r−r0) R

′+2R
)))

=0.

(31)

The latter yields the following two possibilities:

2b
√−R′′R − 2R′ = 0 (32)

or

RR′R′′′ (r − r0)

−2R′′
(
RR′′ (r − r0) − 1

2
R′ ((r − r0) R

′ + 2R
)) = 0.

(33)

Considering the first equation i.e., (32) one finds

R (r) = (C1r + C2)
b2

b2+1 (34)

in which C1 and C2 are two integration constants. To keep
the solution physical one has to assume C1 > 0,C2 ≥ 0
such that −R′′R remains positive. The latter equation further
implies

E (r) =
√

2

αb2R2
0

(35)

which is uniform and

ψ = ψ0 + b

b2 + 1
ln (C1r + C2) (36)

where ψ0 is an integration constant. Finally, the metric func-
tion f (r) is obtained from (27) to be

f (r) =
(
b2 + 1

)
(r − r0)

b2C1
(C1r + C2)

1−b2

1+b2 . (37)

Here we note that not only the radial electric field is con-
stant/uniform but Maxwell’s invariant of the theory i.e., F is
also uniform and given by

F = −2

( √
2

αb2R2
0

)2

. (38)

The constant R0 can be identified through the solution (36)
and its consistency with (19), which implies

R0 = e−bψ0 . (39)

As we can see, R0 doesn’t appear in the rest of the field equa-
tions and the solutions directly and its existence is through
ψ0. Concerning (36) shifting ψ by −ψ0 doesn’t change the
kinematic term in the action (9). Moreover, in the term regard-
ing the coupling of the NED and the Dilaton field i.e.,

e−2bψL (F) = 2

b2 (C1r + C2)
−b2

b2+1 , (40)

the effects of −ψ0 and R2
0 have also been canceled out, mutu-

ally. These all suggest that we set ψ0 = 0 which results in
R0 = 1.

Finally, the other possibility given by Eq. (33) admits an
exact solution in the form

R (r) = C3

√(
1 + C2

1

) (
r2

0 + C2
2

)
4

+
(
C2

1 − 1
)
r0C2

2
+ r2 + r (C2 − r0) exp

(
− 1

C1
arctan

(
2r + C2 − r0

C1 (C2 + r0)

))
, (41)

where C1, C2 and C3 are some integration constant. Using
(41) one obtains R′′ > 0 and consequently from (29)
ψ ′ (r)2 < 0 which implies that the scalar field is actually
a phantom field. Hence we exclude this solution at least in
this current study.

3 Physical properties of the solution

The exact solutions of the field equations can be summarized
as follows. The electric field is radial with uniform magnitude
given by Eq. (35) and the spacetime is found to be described
by the line element

ds2 = −
(
b2 + 1

)
(r − r0)

b2C1
(C1r + C2)

1−b2

1+b2 dt2

+ dr2

(b2+1)(r−r0)

b2C1
(C1r + C2)

1−b2

1+b2

+(C1r + C2)
2b2

b2+1 d�2. (42)

To see the structure of this spacetime, we apply the follow-

ing transformation (C1r + C2)
b2

b2+4 → R upon which (42)
becomes

ds2 = −
(
b2 + 1

)
R

1−b2

b2

b2C1

[
1

C1

(
R

b2+1
b2 − C2

)
− r0

]
dt2

+
(
b2+1
b2C1

)
R

b2+1
b2 dR2

[
1
C1

(
R

b2+1
b2 − C2

)
− r0

] + R2d�2. (43)

This is easily seen that within redefinition of r0 → −C2
C1

+
R

b2+1
b2

+
C1

and t → C1t one can eliminate C2 such that (43)
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becomes

ds2 = −η2

(
1 −

(
R+
R

)η2)
R

2
b2 dt2 + η2dR2

1 −
(
R+
R

)η2

+R2d�2 (44)

in which R+ is the new constant in place of r0, and η2 =
b2+1
b2 . The spacetime described by Eq. (44) is a black hole

whose event horizon is located at R = R+. On the other hand

with the transformation (C1r+C2)
b2

b2+1 → R the scalar field
simplifies as

ψ = 1

b
ln R. (45)

We want to emphasize that b = 0 has already been excluded
which removes our worries in (45). As a matter of fact, with
b = 0 the nonlinear Maxwell equation (14) implies R = R0

which doesn’t satisfy Einstein’s equations.

3.1 Energy conditions

One of the physical constraints on any matter field supporting
a black hole is the satisfying of the energy conditions. These
energy conditions imply whether the matter fields are normal
or exotic. Let us write Einstein’s equation in the following
form (8πG = 1)

Gν
μ = T ν

μ (46)

in which the effective energy-momentum tensor is written as

T ν
μ = diag [−ρ, Pr , Pt , Pt ] (47)

where ρ, Pr , and Pt are the effective energy density, radial,
and transverse pressure densities, respectively. Applying Ein-
stein equation (46) and getting help from Eq. (12) with the
line element given by Eq. (44), one obtains

ρ = η2 − 1

η2R2

(
1 −

(
R+
R

)η2)
, (48)

Pr = η2 − 1

η2R2

(
1 −

(
R+
R

)η2)
, (49)

and

Pt =
(
η2 − 1

)2

η2R2

(
1 − 1

η2 − 1

(
R+
R

)η2)
. (50)

Thechnically, having the RHS of the Eqs. (48) and (49) the
same is due to the solution of the field equations which is
reflected in the line element (44). Recalling η2 > 1, out-
side the black hole where the energy-momentum tensor is
described by (47), all components i.e., ρ, Pr , and Pt are pos-
itive definite. Therefore, the null-energy condition (NEC)
implying ρ + Pi ≥ 0, the weak-energy condition (WEC)

implying ρ ≥ 0 and ρ + Pi ≥ 0, and the strong-energy con-
dition (SEC) implying ρ + ∑

Pi ≥ 0 are all satisfied. Fur-
thermore, the effective energy-momentum tensor vanishes at
the horizon indicating the regularity of the horizon [16].

In terms of the results obtained in [16], we would like to
add that w = ρ

Pr
= 1 which indicates the matter field is

normal, however, both ρ and pr become zero at the horizon.

3.2 Null geodesic

In this section, we would like to study the photons’ motion in
the vicinity of the obtained black hole (44). The Lagrangian
of a null-particle moving in the vicinity of the black hole (44)
is given by

L = −1

2
η2

(
1 −

(
R+
R

)η2)
R

2
b2 ṫ2 + 1

2

η2R2

1 −
(
R+
R

)η2

+1

2
R2

(
θ̇2 + sin2 θϕ̇2

)
(51)

in which a dot stands for the derivative with respect to an
affine parameter. Considering the conserved energy

E = −∂L

∂ ṫ
= η2

(
1 −

(
R+
R

)η2)
R

2
b2 ṫ (52)

and the angular momentum

� = ∂L

∂ϕ̇
= R2 sin2 θϕ̇ (53)

together with the null condition i.e.,

gμν ẋμ ẋν = 0 (54)

one obtains the main geodesic equation given by

R2
(
η2−1

)
R2 + �2

η2

(
1 −

(
R+
R

)η2)
R2

(
η2−2

)
= E2

η4 , (55)

where we have assumed θ = π
2 . Introducing r = Rη2

the
geodesic equation (55) simplifies significantly as expressed
by

ṙ2 + η2�2
(

1 − r+
r

)
r

2(η2−2)
η2 = E2. (56)

This is in analogy with the equation of motion of a unit-mass
one-dimensional particle with mechanical energy 1

2 E
2 and

effective one-dimensional potential

Vef f (r) = 1

2
η2�2

(
1 − r+

r

)
r

2(η2−2)
η2 . (57)

In Fig. 1 we plot
Vef f (r)
1
2 η2�2 in terms of r for r+ = 1 and various

values of η2. This figure displays that for η2 ≥ 2 irrespective
of the value of E2 and �2 the photon falls into the singularity.
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Fig. 1 The plots of the effective potential (57) versus r for r+ = 1
and η2 = 1.1, ..., 2.6 with equal steps from bottom to top. The curve
corresponding to η2 = 2.0 is indicated

On the other hand for η2 < 2 the effective potential admits
a maximum at r = rc where

rc = 4 − η2

2
(
2 − η2

)r+ (58)

and

Vef f (rc) = η4�2

2
(
4 − η2

)
(

4 − η2

2
(
2 − η2

)r+
) 2(η2−2)

η2

. (59)

As it is depicted in Fig. 2, with E2

2�2 < Vef f (rc) and r0 < rc

the photon falls into the singularity. Furthermore, with E2

2�2 <

Vef f (rc) and r0 > rc the photon definitely bounces back to

infinity. Finally, for E2

2�2 > Vef f (rc) the null particle either
falls to the singularity or escapes to infinity depending on its
initial condition.

3.3 The mass of the black hole

The line element (44) represents a singular non-
asymptotically flat black hole. Being non-asymptotically flat
implies that the standard ADM mass is not defined for such
a black hole. Hence we follow the Brown and York (BY)
[47,49,64] formalism to introduce the so-called “quasilo-
cal (QL) mass”. According to BY formalism, for a non-
asymptotically flat line element

ds2 = −F (R)2 dt2 + dR2

G (R)2 + R2d�2 (60)

the QL mass is given by

MQL = lim
RB→∞ RBF (RB)

[
Gref (RB) − G (RB)

]
(61)

Fig. 2 A typical plot of the effective potential (57) versus r when
η2 < 2. The potential admits an absulot maximum at r = rc where

Vef f (rc) = η4�2

2(4−η2)

(
4−η2

2(2−η2)
r+

) 2(η2−2)
η2

. The fate of a null particle

moving in the vicinity of this potential depends strongly on its initial
conditions and the conserved quantities. All cases are stated with arrows
in different regions that are highlighted with different colors

in which Gref (RB) is an arbitrary non-negative refer-
ence function, which yields the zero of the energy for
the background spacetime, and RB is the radius of the
space-like hypersurface. For the line element (44) one finds

F (R)2 = η2
(

1 −
(
R+
R

)η2)
R

2
b2 , G (R)2 = 1−

(
R+
R

)η2

η2 and

Gref (RB)2 = 1
η2 which result in

MQL = 1

2
Rη2

+ . (62)

The line element therefore becomes

ds2 = −η2
(

1 − 2MQL

Rη2

)
R

2
b2 dt2 + η2dR2

1 − 2MQL

Rη2

+ R2d�2.

(63)

The latter line element gives the correct spacetime limit as
b → ∞ such that η2 → 1, E (r) → 0 and the solution
becomes the standard Schwarzschild black hole and MQL

turns to be identified as the ADM mass of the black hole.
Moreover, by scaling the time t and the radial coordinate R
the latter line element becomes

ds2 = −
(

1 − 2M

ρη2

)
ρ2

(
η2−1

)
dτ 2 +

(
1 − 2M

ρη2

)−1

dρ2

+�2ρ2d�2 (64)
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in which ρ = ηR, M = MQLηη2
, τ = η

1− 2
b2 t and �2 = 1

η2 .

Having known that η2 = b2+1
b2 > 1, (64) clearly implies that

the Dilaton field causes a sort of conical structure with the
deficit angle represented by �2 < 1.

3.4 Thermal stability and the first law

To investigate the thermal stability of the black hole (63), we
calculate the Hawking temperature defined by

TH =
(

− g′
t t

4π
√−gtt grr

)
R=R+

= η2

4π
Rη2−2

+ (65)

and upon applying the so-called area law [65], the entropy
of the black hole is also given by

S = πR2+. (66)

Finally, we calculate the specific heat capacity defined by

C = TH
∂S

∂TH
= 2π

η2 − 2
R2+. (67)

The black hole is considered to be thermally stable if both TH
and C are positive. Therefore with η2 − 2 > 0 (b2 < 1) the
black hole is thermally stable. In accordances with (65), with
η2 = 2 the Hawking temperature becomes constant which
justifies the infinite heat capacity.

Finally, knowing that in the definition of quasilocal mass
i.e., (61) η2 is related to the background, the first law of
thermodynamics of the black hole simply becomes

dMQL = THdS (68)

where the variations of MQL and S are with respect to R+
[49].

3.5 The spacetime structure

The spacetime described by the line element (64) is rather
new in the literature and deserves to be more investigated
from the spacetime structure aspect. The solution obviously
is a black hole with an event horizon located at ρ = ρ+ =
(2 M)

1
η2 such that it may be written as

ds2 = −
(
ρη2 − ρ

η2

+
)

ρη2−2dτ 2

+ ρη2

ρη2 − ρ
η2

+
dρ2 + �2ρ2d�2. (69)

After transforming r = �ρ and redefinition of time one finds

ds2 = −
(
rη2 − rη2

+
)
rη2−2dt2

+ rη2

�2
(
rη2 − rη2

+
)dr2 + r2d�2 (70)

in which 0 < r < ∞ and −∞ < t < ∞. The Kretschmann
scalar of the latter spacetime is given by

K = ω0

r4

ω1

r4+η2 + ω2

r4+2η2 (71)

where ωi are some constants. We recall that 1 < η2 = b2+1
b2

which implies the origin r = 0 is a singular point. To find
the nature of this curvature singularity we apply the so-called
conformal compactification. Hence, we obtain the confor-
mal/tortoise radial coordinate defined by

r∗ =
∫ √

−grr
gtt

dr = 1

χ

∫
r

rη2 − rη2

+
dr. (72)

We observe that the conformal/tortoise radial coordinate r∗
depends on η2. For technical reasons, we set η2 = 3

2 as
well as 2 and continue our investigation accordingly. In this
configurations one finds

r∗ =
{

1
χ

{
2
√
r + 2

3
√
r+ ln

∣∣√r − √
r+

∣∣ − 1
3
√
r+ ln

∣∣r + r+ + √
r+r

∣∣ − 2
√

3r+
3 arctan

(
2
√
r+√

r+√
3r+

)}
, η2= 3

2
1

2χ
ln

∣∣r2 − r2+
∣∣ , η2=2

(73)

where −∞ < r∗ < ∞. Next, we define the retarded and
advanced coordinates i.e., u = t −r∗ and v = t +r∗ (−∞ <

u < v < ∞) such that (70) becomes

ds2 =
⎧⎨
⎩

−r
(

1 − ( r+
r

)3/2
)
dudv + r2d�2, η2= 3

2

−r2
(

1 − ( r+
r

)2
)
dudv + r2d�2, η2=2

. (74)

Next, we define the Kruskal–Szekeres coordinate

U =
{

4
√
r+

3χ
exp

(
− 3χ

4
√
r+ u

)
, η2= 3

2
1
χ

exp (−χu) , η2=2
(75)

and

V =
{

4
√
r+

3χ
exp

(
3χ

4
√
r+ v

)
, η2= 3

2
1
χ

exp (χv) , η2=2
(76)

such that (r ≥ r+)
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UV =
⎧⎨
⎩

16r+
9χ2

1−√
r+/r√

1+r+/r+√
r+/r

exp
(

3
√

r
r+ − √

3 arctan
(

2
√
r/r++1√

3

))
, η2= 3

2∣∣r2−r2+
∣∣

χ2 , η2=2
, (77)

and 0 < U < V < ∞. The line element, hence, becomes

ds2 =
⎧⎨
⎩ r

(
1 + r+/r + √

r+/r
)3/2

e
−3

√
r
r+ e

√
3 arctan

(
2
√

r/r++1√
3

)
dUdV + r2d�2, η2= 3

2
dUdV + r2d�2, η2=2

(78)

which is regular at r = r+ and singular at r = 0. Introducing

U = X − T (79)

and

V = X + T (80)

transforms the line element into

ds2 =
⎧⎨
⎩ r

(
1 + r+/r + √

r+/r
)3/2

e
−3

√
r
r+ e

√
3 arctan

(
2
√

r/r++1√
3

) (−dT 2 + dX2
) + r2d�2, η2= 3

2−dT 2 + dX2 + r2d�2, η2=2
(81)

such that

X2 − T 2 = UV (82)

given in Eq. (77). We see that the singularity at r = 0 corre-
sponds to hyperbola

T 2 − X2 =
⎧⎨
⎩

(
4

3χ

)2
e

(
−

√
3π
6

)
r+, η2= 3

2
r2+
χ2 , η2=2

(83)

on the T X -plane and is valid for even r > 0 which implies

T 2 − X2 ≤
⎧⎨
⎩

(
4

3χ

)2
e

(
−

√
3π
6

)
r+, η2= 3

2
r2+
χ2 , η2=2

. (84)

In Figs. 3 and 4 we plot the Kruskal–Szekeres diagram and the
maximally-extended Carter–Penrose diagram of the black
hole spacetime (70) with η2 = 3

2 and η2 = 2 that is also
applicable for an arbitrary η2. The nature of the singularity
at the center of the black hole is spacelike that is the same as
the Schwarzschild black hole.

4 Tidal forces

In this section, we study the so-called tidal force which
is an indication of the interaction between a black hole
with its surroundings. When an extensive object falls under
the gravitational attraction of a black hole, the tidal forces

exerted on the object on its geodesic cause either stretch-
ing or compressing in different directions. For instance,
when such an object falls radially toward the Schwarzschild
black hole, it is stretched in the radial direction while com-
pressed in the angular/transverse directions [66–69]. Unlike
the Schwarzschild black hole which is surrounded by a vac-
uum, in the well-known Reissner-Nordström dirty black hole

for the same radially falling extensive object, the tidal forces
vanish at some certain radius and its nature changes from
stretching to compressing and vice-versa [70]. Similar prop-
erties have also been reported in some other black hole space-
times where the sign-turning point for the tidal force is either
outside the event horizon or inside [70–73].

Fig. 3 Kruskal–Szekeres diagram of the black hole spacetime (70)
with η2= 3

2 and η2=2
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Fig. 4 Carter-penrose diagram of the black hole spacetime (70 ) with
η2= 3

2 and η2=2

In [15] the tidal force tensor in the tetrad basis attached to
a radially infalling observer has been calculated for a dirty
black hole with the line element

ds2 = − f (R) dt2 + 1

1 − B(R)
R

dR2

+R2
(
dθ2 + sin2 θdϕ2

)
. (85)

In accordance with the results of [15], the tidal force tensor
is given by

K ν̂
μ̂

= diag [0, K1, K2, K3] (86)

in which

K1 = 2B

R3 − 1

2
(ρ + Pr − 2Pt ) (87)

K2 = K3 = − B

R3 + 1

2
ρ − E2

2 f
(ρ + Pr ) (88)

with E the energy per unit mass and ρ, Pr , and Pt given in
(48)–(50). Note that the unit convention in [15] is G = 1.

Herein the line element is given by (44) such that

f (R) = η2

(
1 −

(
R+
R

)η2)
R2

(
η2−1

)
(89)

and

B (R) =
(

1 − 1

η2

(
1 −

(
R+
R

)η2))
R

2
. (90)

In Figs. 5 and 6 we plot K1 and K2 in terms of R
R+ ( R

R+ > 1)
and η (1 < η) and E = 1. We observe that similar to the tidal
force in a Schwarzschild black hole, the radial tidal force is
tensile and the transverse is compressive. With increasing the
value of η first both forces decrease and then increase and
both approach zero at infinity.

Fig. 5 The radial tidal force in terms of R
R+ and η. This figure implies

the radial tidal force is always positive and in terms of R
R+ for a given

η, it is a monotonic decreasing function approaches zero. On the other
hand for a given R

R+ , the radial tidal force first decreases in terms of η

and then increases

Fig. 6 The angular tidal force in terms of R
R+ and η. This figure implies

the radial tidal force is always positive and in terms of R
R+ for a given

η, it is a monotonic decreasing function approaches zero. On the other
hand for a given R

R+ , the radial tidal force first decreases in terms of η

and then increases

5 Conclusion

In the framework of Einstein’s gravity coupled to SR-NED
as well as a Dilaton field, we managed to solve the field equa-
tions exactly and obtain a black hole solution characterized
by two parameters namely, R+ and b. While the latter is a
theory constant representing the Dilaton the former is an inte-
gration. This non-asymptotically flat black hole is singular
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at its center where the electric charge is placed. The electric
field is radial but uniform in the sense that the electromag-
netic invariant is a constant. Since the ADM mass is not
defined for non-asymptotically flat black holes, we applied
BY formalism to obtain the QL conserved mass expressed
as MQL such that in the Schwarzschild limit (η2 = 1), it
coincides with the ADM mass of the Schwarzschild black
hole. Furthermore, we studied the null geodesic on the equa-
torial plane and showed that the fate of photons depends on
the ratio E2

�2 where E and � are the conserved energy and
angular momentum. Moreover, we investigated the thermal
stability of the black hole and observed that with 0 < b2 < 1
(2 < η2) the black hole is thermally stable in the sense that
both the Hawking temperature and the heat capacity are pos-
itive. As it was stated in [16], black holes are not forming in
the empty space and rather are surrounded by matter fields
that are either falling into the black holes or are in equilib-
rium with it. The black hole presented in this paper is a typ-
ical example of such a black hole called a “dirty” black hole
supported by normal/regular matter. The mathematical struc-
ture of the spacetime is kind of modified Schwarzschild black
hole because with η2 = 1 it coincides with the Schwarzschild
black hole. Therefore, one may call this solution the natural
dirty Schwarzschild black hole. Concerning what we have
done in this study we may consider the following to be the
novelty of our paper: (i) We filled the gap of the PM-NED
model which has so far been considered with p �= 1

2 . (ii) The
black hole in the context of our study has been found to be a
new generalization of the Schwarzschild black hole in a prac-
tically simple form. We have shown that its casual structure
is similar to the Schwarzschild black hole as well. (iii) The
dirty-Schwarzschild – this is what we named our solution –
the black hole is thermally stable for 2 < η2. (iv) We calcu-
lated the tidal force which clearly is in agreement with the
Schwarzschild black hole although its minimum value takes
place in η2 �= 1, recalling that η2 = 1 is the Schwarzschild
limit.
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