
Eur. Phys. J. C (2023) 83:371
https://doi.org/10.1140/epjc/s10052-023-11542-7

Regular Article - Theoretical Physics

Flexible extra dimensions

Polina Petriakova1,2,3,a, Arkady A. Popov4,b, Sergey G. Rubin3,4,c

1 Dipartimento di Fisica e Astronomia, Universitá di Bologna, via Irnerio 46, 40126 Bologna, Italy
2 I.N.F.N., Sezione di Bologna, I.S. FLAG, viale B. Pichat 6/2, 40127 Bologna, Italy
3 National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow, Russia
4 N. I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kremlevskaya street 18, 420008 Kazan, Russia

Received: 11 March 2023 / Accepted: 20 April 2023 / Published online: 6 May 2023
© The Author(s) 2023

Abstract This paper discusses the origin of the small
parameters with the aim of explaining the Hierarchy problem.
The flexible extra dimensions are an essential tool in the pro-
cess by which physical parameters are formed. The evolution
of a multidimensional metric starts at the Planck scale and is
completed with the static extra-dimensional metric and the
4-dim de Sitter space at high energies, where the exponential
production of causally disconnected universes begins. Quan-
tum fluctuations independently distort the metric within these
universes, causing inflationary processes within them. Some
of these universes tend asymptotically towards states charac-
terised by small Hubble parameters. The effective parameter
reduction applied to the Higgs sector of the Standard Model
is explained by the presence of small-amplitude distributions
of a scalar field in a fraction of these universes.

1 Introduction

The success of the inflationary paradigm in describing the
early universe clearly suggests that the physical laws are
formed at high energies, where we can only guess at the
Lagrangian structure [1,2]. Evidently, the physics is already
formed at least on the inflationary scale EI ∼ 1013 GeV
and the observable low energy physics depends on param-
eters and initial conditions formed at high energies [3,4].
The extra dimensions have now become a widely used tool
to obtain new theoretical results [5–9]. It is reasonable to
suppose that their metric gn is also formed at the high energy
scale. Here we make use the idea of flexible (inhomogeneous)
extra space that has been developed in [10–12].
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Reduction of a multidimensional action to an observed
4-dimensional one

S4+n(λ4+n, gn) → S4(λ4[gn]) (1)

is necessary element in all models with n extra dimensions.
Therefore, 4-dimensional parameters λ4 inevitably depend
on the extra metric,

λ4 = Z(gn, λ4+n), (2)

and a future theory should take this fact into account. A func-
tionalZ is specific to any extra dimensional model with initial
parametersλ4+n. By solving the system of Eq. (2) with appro-
priate precision, one could determine the primary parameters
λ4+n(M) at a chosen scale M .

The situation is much more complex when one considers
the smallness of the observable parameters below the elec-
troweak scale compared to the parameter values at the Planck
scale, λ4 ≪ λ4+n. Nevertheless, activity in this direction
has been observed. The paper [13] uses warped geometry to
solve the small cosmological constant problem. The hybrid
inflation [14] was developed to avoid the smallness of the
inflaton mass. The electron to proton mass ratio is discussed
in [15]. The seesaw mechanism is usually used to explain
the smallness of the neutrino to electron mass ratio [16]. The
implementation of this activity in its entirety is a matter for
the future.

The aim of this paper is to discuss an application of flex-
ible extra metrics - a set of metrics of the cardinality of the
continuum - to the Hierarchy problem. The essence of the lat-
ter is expressed in the question: Why are the observable low
energy physical parameters so small as compared to those at
the Planck scale. It is implied that the parameters formed at
the Planck scale are of the order of this scale which seems
natural. It has been shown earlier [11,17] that this approach
gives encouraging results for explaining of the Cosmologi-
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cal Constant smallness. The effect of the quantum corrections
in this content was discussed in [18]. Here we continue this
research by including the Higgs sector of the Standard Model.
Special attention is paid to the mechanism of the appearance
of small parameters and the role of the background fields.

The idea that a Lagrangian parameters can be consid-
ered as some functions of a field has been widely used since
Schwinger’s paper [19]. Such fields can be involved in the
classical equations of motion together with the “main” fields
or treated as background fields. The latter were applied for the
fermion localization on branes [20–22], gauge fields local-
ization [23], extensions of the gravity in the form f (φ)R [24]
and so on.

As a mathematical tool, we use the effective field theory
technique - well-known method for theoretical investigation
of the energy dependence of physical parameters [25]. In
this approach, the parameters λi (M) of the Wilson action
are fixed at a high energy scale M . The renormalization flow
used to descend to low energies (the top-down approach) is
discussed in [26–29]. As is usually stated, the parameters
λ4+n(M) of the Wilson action already contain quantum cor-
rections caused by field fluctuations with energies between
the chosen scale M and a maximal energy scale. Therefore the
natural values of these parameters are typically many orders
of magnitude larger than the electroweak scale v � 100 GeV.

The research is also based on the multidimensional f (R)

gravity. The interest in f (R) theories is motivated by infla-
tionary scenarios starting with the work of Starobinsky
[30]. The simplest extension of the gravitational theory is
that which includes a function of the Ricci scalar f (R).
In the framework of such an extension, many interesting
results have been obtained. Some viable f (R) models in 4-
dimensional space that satisfy the observational constraints
are proposed in Refs. [31–35]. The stabilization of extra
space as a pure gravitational effect has been studied in
[36,37].

In the framework of the scalar-tensor theory, Weinberg
[38] has proved that the strong fine-tuning of initial param-
eters of a Lagrangian is unavoidable if the metric and scalar
fields are constant in space-time. The latter implies that the
solution of the problem should be sought in the class of non-
uniform configurations of metrics and fields. Flexible metrics
discussed in this paper belong to this class.

Our preliminary study of the inhomogeneous extra metrics
concerns parameters such as the cosmological constant [11],
parameters of the Starobinsky inflationary model and the
baryon asymmetry of the Universe. It has been shown there
that the inhomogeneous metrics can be tuned to explain the
smallness of these effective parameters. Below we develop
of our approach to the Hierarchy problem and involve the
Higgs Lagrangian in our consideration.

The metric ansatz used in this paper has been widely stud-
ied in the linear gravity [39–42], applying in particular to the
solution of the Hierarchy problem [43,44].

2 General relationships

Consider the f (R) theory of gravity with a minimally cou-
pled scalar field ζ in D = 4 + n dimensions

S = mD−2
D

2

∫
MD

dDX
√|gD|

(
f (R) + ∂Mζ ∂Mζ − 2V

(
ζ
))

,

(3)

where MD is D-dimensional manifold, gD ≡ detgMN,
M, N = 1, D, the n-dimensional manifold Mn is assumed
to be closed one, f (R) is a function of the D-dimensional
Ricci scalar R, and mD is the D-dimensional Planck mass.
In the following we set mD = 1.

The scalar field ζ affects the extra space metric through
the Einstein equations, but here we are interested in small
amplitude solutions of this field, i.e.

ζ(X) � 1.

Therefore, its role in the metric formation is negligible and
it is considered as a auxiliary or trial field acting in the
background metric. This approximation makes the analysis
slightly easier, but is not very significant. The importance of
this field becomes crucial when we consider its interaction
with other fields, such as the proto-Higgs field HP(x) in our
case. We assume that the auxiliary field ζ plays the role of the
background field introduced by Schwinger (see references in
the Introduction). This means that the inequality

HP � ζ

should be kept in mind.
Variation of action (3) with respect to the metric gMN

D and
scalar field leads to the known equations

− 1

2
f (R)δM

N +
(
RM

N + ∇M∇N − δM
N �D

)
fR = −TM

N ,

(4)

�D ζ + V ′
ζ = 0, (5)

with fR = d f (R)

dR
, �D = ∇M∇M and V ′

ζ = dV
(
ζ
)

dζ
.

The arbitrary potential satisfies conditions V
(
ζ
)∣∣

ζ=0 = 0,

V ′
ζ

(
ζ
)∣∣∣

ζ=0
= 0. Equation (5) is known to be the conse-

quence of Eq. (4). The corresponding stress-energy tensor of
the scalar field ζ is

TM
N = ∂Lmatter

∂
(
∂Mζ

) ∂Nζ − δM
N

2
Lmatter
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= ∂Mζ ∂Nζ − δM
N

2
∂Kζ ∂Kζ + δM

N V
(
ζ
)
. (6)

We use the following conventions for the curvature tensor
RL

MNK = ∂K�L
MN − ∂N�L

MK + �L
CK�C

NM − �L
CN�C

MK and the
Ricci tensor RMN = RK

MKN.
The quantum fluctuations at the de Sitter stage can break

the maximally symmetrical extra space metric [45], which is
the reason for an inhomogeneous metric formation [11]. Here
we consider an inhomogeneous n-dimensional extra metric

ds2 = gMNXMXN = e2γ (u)
(
dt2 − e2Htδi j dx

i dx j
)

− du2 − r2(u) d	2
n−1 , i, j = 1, 3 (7)

with the coordinates X4 ≡ u and Xμ ≡ xμ,μ = 0, 1, 2, 3.

The Hubble parameter H and the static metric function r(u)

are solutions of the system below. The Ricci scalar

R(u) = 12H2e−2γ (u) − 8γ ′′ − 20γ ′2 − (
n − 1

)(2r ′′

r

+ 8γ ′r ′

r
+ (

n − 2
) (

r ′

r

)2

− (n − 2)

r2

)
(8)

does not depend on time. The notation used are ′ ≡ d/du and
′′ ≡ d2/du2 respectively. Then system (4) for (t t) = · · · =
(x3x3), (uu) and (x5x5) = · · · = (xD−1xD−1)–components
and (5) become

R′2 fRRR +
(
R′′ + 3γ ′R′ + (

n − 1
)r ′

r
R′

)
fRR

−
(

γ ′′ + 4γ ′2 + (
n − 1

)γ ′r ′

r
− 3H2e−2γ (u)

)
fR

− f (R)

2
= −ζ ′2

2
− V

(
ζ
)
, (9)

(
4γ ′R′ + (

n − 1
)r ′

r
R′

)
fRR −

(
4γ ′′ + 4γ ′2

+ (
n − 1

)r ′′

r

)
fR − f (R)

2
= ζ ′2

2
− V

(
ζ
)
, (10)

R′2 fRRR +
(
R′′ + 4γ ′R′ + (

n − 2
)r ′

r
R′

)
fRR

−
(
r ′′

r
+ 4γ ′r ′

r
+ (

n − 2
)r ′2

r2

− (n − 2)

r2

)
fR − f (R)

2
= −ζ ′2

2
− V

(
ζ
)
, (11)

ζ ′′ +
(

4γ ′ + (
n − 1

)r ′

r

)
ζ ′ − V ′

ζ = 0. (12)

It can be shown that one of these equations is a consequence
of the others. Also, we will use the definition of the Ricci
scalar (8) as the additional equation for R(u) which will be

treated as a new unknown function to avoid 3rd and 4th order
derivatives in the equations.

The combination 2·(10)− fR ·(8) is constraint equation

(
8γ ′R′ + 2

(
n − 1

)r ′

r
R′

)
fRR +

(
12γ ′2

+ (
n − 1

)(8γ ′r ′

r
+ (

n − 2
)(
r ′2 − 1

)
r2

)
+ R

)
fR

− 12H2e−2γ (u) fR − f (R) = ζ ′2 − 2V
(
ζ
)

(13)

containing only first-order derivatives. It plays the role of
a restriction on the solutions of the coupled second-order
differential equations.

3 Static extra dimensional metrics

The form of stationary extra space metric is the result of
a metric evolution governed by the classical equations of
motion, and hence depends on initial configurations. One
can imagine an analogy with the Schwarzschild metric which
explicitly depends on an initial matter distribution. The sys-
tem (8)–(12) is the set of second order derivative equations
and hence must be endowed by additional conditions if one
wish to obtain a particular solution. To this end, the metric
functions γ (u), r(u), R(u) and the matter field ζ(u) could be
fixed at a certain point uc together with their first derivatives.
These conditions are linked by constraint (13). For example,
the set

r(uc) = r0, R(uc) = R0, γ (uc) = 0, ζ(uc) = ζ0,

r ′(uc) = R′(uc) = γ ′(uc) = ζ ′(uc) = 0, (14)

at uc = 0 leads to symmetrical distributions. One of the solu-
tion is shown in Fig. 1 where the auxiliary field is extremely
small due to the choice ζ(uc) � 1, ζ ′(uc) � 1. The small-
ness of the scalar field value (Fig. 1, right panel) may cause
concern. We discuss the stability of such solutions and their
possible breaking under the quantum fluctuations in the next
subsection.

Additional conditions could vary continuously leading to a
continuum set of inhomogeneous metric functionsγ (u), r(u)

and the scalar field ζ(u). Some of the distributions are repre-
sented in Fig. 2. We have named these metrics as “flexible”
because they smoothly depend on the additional conditions
(14).

Remark that scalar fields tend to their potential minima in
the absence of gravitational interaction. It means that the set
of stationary states is quite weak, provided that the potential
has finite number of minima (but see [46] where a random
potential was introduced). It is interaction with the gravity
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Fig. 1 Solution for mD = 1, n = 3, f (R) = R2 + R + 0.2, H = 0,
V (ζ ) = m2

ζ ζ 2/2, mζ = 0.1, r(0) = 5, r ′(0) = 0, γ (0) = 0, γ ′(0) =
0, R(0) � 0.62 (from Eq. (13)), R′(0) = 0, ζ(0) � 3.04 · 10−5,
ζ ′(0) = 6 · 10−6, umax = −umin � 3.25, r(umin) = r(umax) = 0,
mPl � 65.9mD

Fig. 2 Asymmetric solution formD = 1, n = 3, f (R) = R2+R+0.2,
H = 0, V (ζ ) = m2

ζ ζ 2/2, mζ = 0.1, r(0) = 50, r ′(0) = 2, γ (0) = 0,
γ ′(0) = 0.05, R(0) � 0.11 (taken from Eq. (13)), R′(0) = −0.01,
ζ(0) = 0.1, ζ ′(0) = 0.01, umin � −4.40, umax � 9.89, r(umin) =
r(umax) = 0

that leads to a continuum set of static solutions and hence, to
a continuum set of universes with different properties.

Let us find relation between the D-dimensional Planck
mass and 4-dimensional one which is needed to convert units
mD = 1 into the physical units. To this end, define

R4 ≡ 12H2, Rn ≡ R(u) − e−2γ (u)R4, (15)

see (8), and require the condition

Rn 	 e−2γ (u) R4 (16)

which is usually valid for compact extra dimensions treated
at low energies [47]. Substitution of the Tailor series

f (R) � f (Rn) + fR(Rn)e
−2γ (u)R4

+ 1

2
fRR(Rn)e

−4γ (u)R2
4 + · · · , (17)

into gravitational part of action (3) turns to the effective the-
ory after integration over extra coordinates:

Sef f = m2
Pl

2

∫

M4

d4x
√|g4|

(
aef f R

2
4 + R4 + ce f f

)
. (18)

Here g4 is the determinant of the first quadratic form

ds2 = dt2 − e2Htδi j dx
i dx j , (19)

and

m2
Pl = mD−2

D Vn−1

umax∫

umin

fR
(
Rn(u)

)
e2γ (u) rn−1(u) du, (20)

where Vn−1 = ∫
dn−1x

√|gn−1| = 2π
n
2

�
( n

2

) . Formula (20)

relates the 4-dimensional Planck mass mPl and D - dimen-
sional Planck mass mD. For the solution shown in the Fig. 1,
mPl � 65.9mD ∼ 102mD. This allows us to estimate the size
of the extra space based on the results shown in Fig. 1. The
radius of the extra space r ∼ 5m−1

D ∼ 5 · 102m−1
Pl ∼ 10−31

cm, which is not yet detectable.

3.1 Status of static distributions of matter and metric
functions

There are two different aspects concerning the subject of
this subsection. The first one relates to the same validity of
the classical equations and conditions of the smallness of
the quantum effects. Another aspect is the stability of the
classical distribution.

Quantum perturbations of the extra metric

Let us estimate the Hubble parameter values for which clas-
sical descriptions of our system are valid. It is known that
the quantum effects are significant if an action S < 1 in
the Planck units. The estimation depends on a chosen space
region and time interval. Consider our system acting in a
causally connected region of the de-Sitter space of the vol-
ume H−3 in the time interval H−1 when a fluctuation is not
stretched enough to leave the chosen region. If the quan-
tum fluctuations are negligibly small, the action satisfies the
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inequality

S ∼ mn+2
D

∫ √|gn| dny
√|g4| d4x R4

∼ mn+2
D lnH−4 12H2 	 1, (21)

where l is a scale of compact extra space and H is the Hub-
ble parameter. Hence, classical equations are valid within a
causally connected region under condition

H � m1+n/2
D ln/2, (22)

which immediately follows from (21). On the other side,

l ∼ H−1

according to (33). Insertion this approximate equality into
(22) gives

H � mD.

The quantum fluctuations are negligible if this inequality is
true. As is shown in the caption of Fig. 1,

mD ∼ 10−2mPl

for chosen parameter values. Hence, classical equations are
valid if

H � 1017GeV. (23)

What about smallness of scalar fields perturbations?

Quantum perturbations of the auxiliary field

The average quantum fluctuations value of the scalar field

√
< ζ 2 > =

√
3

8π2

H2

mζ

was obtained earlier, see e.g. [45,48]. The quantum fluctua-
tions are negligible if an average value of the classical field
ζ̄ satisfies the inequality ζ̄ 	 √

< ζ 2 >. This means that the
acceptable values of the Hubble parameter H is as follows

H � mζ ζ̄ ∼ 0.4 · 10−5 · 10−2mPl ∼ 1011GeV. (24)

Here numbers are taken from Fig. 1. The evolution starts
at Planckian energies, where quantum fluctuations signifi-
cantly perturb both the metric and scalar field distribution.
The effect of the fluctuations fades away with decreasing
energy. Interestingly, the extra-space metric stabilises much
earlier, see (23), than the scalar field distribution, see (24).

3.2 Stability of auxiliary field

The numerical stability of extra dimensions was discussed
in our paper [49]. In the current paper we have added the
study using another method—conversion initial equation to
the Schrodinger-like type one.

Let us now study the stability at low energies, i.e., H � 0
of the solution ζ(u) more accurately. Recall that this field
can be considered as the trial one, provided that its average
value is small as compared to the unity, see Fig. 1. Consider
equation

�Dζ(t, u) = −m2
ζ ζ(t, u) (25)

to test stability of its solutions. The background metric (7) is
assumed to be static and H = 0. By redefining the coordinate
du → eγ (u)du in (7), Eq. (25) for solutions of the form
ζ(t, u) = ζc(u) + δζ(t, u) reads

e−2γ (u)

(
δζ̈ +3Hδζ̇ −δζ ′′−

(
3γ ′+(

n − 1
)r ′
r

)
δζ ′

)
=−m2

ζ δζ.

(26)

It is assumed that the metric and equations of motion have the
form represented in the Appendix (56) provided that β(u) =
γ (u).

We will look for solutions in the form δζ(t, u) = Z(u) ·
eiλt . In this case, the variable changing Z(u) = �(u) ·
e−3γ (u)/2 · r−(n−1)/2(u) leads to the Schrodinger-like equa-
tion of the form

� ′′(u) −
(
W (u) − E

)
�(u) = 0, E ≡ λ2 (27)

where

W (u) = e2γ (u)m2
ζ + 3

2
γ ′′ + 9

4
γ ′2

+
(
n − 1

)
2

(
3γ ′r ′

r
+ r ′′

r
+

(
n − 3

)
2

r ′2

r2

)
. (28)

The functions γ (u) and r(u) in V (u) from (28) are solu-
tions to system (58)–(61) with constraint Eq. (62) in the case
β(u) = γ (u).

As one can see from Fig. 3, the potential minimum is pos-
itive. Hence, excitation energy states E are positive as well.
It means that the solutions are stable because λ = √

E are
real.

Stability of the extra space metric was discussed in [50].

4 Source of countable set of different extra metrics

In this paper, we assume that our universe was formed at very
high energies, somewhere between the inflationary and the
Planck scales. Therefore, there must have been a period of
descent to the low energies in which we live. The evolution
from the Planckian to the inflationary scale is beyond our
observation. The natural assumption is that it slowly rolls
down in the manner of the inflationary stage [51], producing
an enormous amount of causally separated regions (pocket
universes according to A. Guth, [52]).
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Fig. 3 Typical form of potential (28) for various masses of the scalar
field mζ

There is another way of producing multiple universes that
we will discuss here. Let us start with action (3) and a maxi-
mally symmetric extra metric with radius depending on time.

ds2 = dt2 − e2α(t)δi j dx
i dx j − e2β(t)d	2

n (29)

Asymptotic solutions

α(t) = Hast, β(t) = βas (30)

can be found from system (9)-(12). In this case, the system
is strongly simplified:

3H2 fR − f (R)

2
= −Vmin, (31)

−(
n − 1

)
m2

De−2βas fR + f (R)

2
= Vmin. (32)

Here the Ricci scalar is R = 12 H2 + n
(
n − 1

)
m2

De−2βas .
This algebraic system can be resolved in terms of the Hubble
parameter H = Has and the extra-dimensional radius eβas .
Both values depend on the Lagrangian parameters a, c and
a minimum value of the potential Vmin involved from the
beginning, see (3). In the following, the potential are chosen
in the simplest form V (ζ ) = m2

ζ ζ
2/2 so that Vmin = 0.

The result can be interpreted as follows. Our manifold starts
its evolution at the Planck scale and varies to a stationary
asymptotic state described by a constant Hubble parameter
and a constant extra-dimensional radius.

Equations (31) and (32) lead to the relationship

l ≡ m−1
D eβas =

√
n − 1

3
H−1

as , (33)

valid for any form of f (R) and V (ζ ). This means that an
extra-dimensional sphere with radius l is uniquely related to
the Hubble parameter. The instabilities of such metrics in the
context of the Einstein gravity are discussed in [53].

The (4 + n)-dimensional metric is settled at the de Sit-
ter stage, leading to two known effects—the 3-dimensional

space expands exponentially and it splits into causally sepa-
rated regions of space–pocket universes. The two processes
are permanent. The Hubble parameter Has should be larger
than the inflationary one, HI ∼ 1013 GeV, to avoid a possible
contradiction with observational data.

Our intermediate goal is achieved: we have the source of
the countable set of pocket universes, but another problems
remain. Indeed, the properties of all pocket universes are the
same, and in addition, it is not clear how they can be shifted
down to low energies where the observable physics operates.

To solve these problems, we need to attract quantum fluc-
tuations that are meaningful at high energies. As shown in
[45], fluctuations within some of pocket universes are the
reason of inhomogeneous extra metric formation. Each fluc-
tuation in any pocket universe tends to a specific static inho-
mogeneous distribution governed by system (9)–(12), some
of them are shown in Figs. 1 and 2. It breaks the relation (33)
valid for maximally symmetric metrics and a part of such
regions starts its evolution to low energy states [54]. As a
result, we have a large number of low energy states endowed
by a variety of inhomogeneous extra metric and non-trivial
distributions of the scalar field ζ(u).

5 Hierarchy

The essence of the Hierarchy problem can be stated as fol-
lows. Our experience, based on the inflationary paradigm,
indicates that our Universe was formed at high energies
(≥ 1014 GeV). It seems reasonable to assume that the val-
ues of the physical parameters are on the Planck scale. On
the other hand, the observed values of the physical param-
eters at low energies vary approximately in the interval
0 ÷ 100 GeV. Therefore, there must be an unknown mech-
anism that reduces the parameter values by more than 12
orders of magnitude.

In fact, we already have the necessary tools to create suf-
ficiently small parameters. They are inhomogeneous extra
dimensions and some massive matter fields with masses of
the order of mD. Hence, they are invisible to 4D observers
but play a key role when their interaction with other fields is
taken into account.

Note that the scalar fields appear naturally already in the
standard 4-dimensional gravity [55,56] as scalar functions
describing scalar perturbations of the metric around the back-
ground metric. Evidently, the D-dimensional gravity pro-
vides more opportunities. For example, small perturbations
δγ (X) � 1, δr(X) � r(X) of the scalar functions γ (X)

and r(X) in (7) can be considered as trial scalar fields acting
in the background spacetime. This means that these scalars
are perspective candidates to the role of small parameters
necessary to solve the Hierarchy problem. Here we use the
field ζ for this purpose.

123



Eur. Phys. J. C (2023) 83 :371 Page 7 of 11 371

5.1 Source of small parameters

The smallness of a Lagrangian parameters can be attributed
to an inhomogeneous extra metric, as shown in [18]. This
procedure is effective when the number of such parameters
is not very large. A large number of observable parameters,
as in the Standard Model, complicates the procedure. This
is a reason to involve another degrees of freedom like scalar
fields at high energies, the scalar perturbations of extra met-
ric, radion, dilaton, the Ricci scalars for example. Here we
consider a scalar field ζ with action (3) and treat it as the
background field, see Introduction

Now let us extend general relation (2), accounting depen-
dence of effective 4-dimensional physical parameters λ4 on
the field ζ

λ4 = Z(gn(y), ζ(y), λ4+n) (34)

after integration out extra coordinates in a D-dim action. Here
λ4 � 1 that is true for known physical parameters while
λ4+n ∼ 1 according to our agreement. Function ζ(u) is clas-
sical solution to the equations of motion (25).

As discussed above and in [54], the pure de Sitter space
formed at the scale larger than the scale∼ 1014 GeV produces
countable set of pocket universes. Each of them contains
the background field ζ(u), which is the result of asymptotic
evolution of the field ζ(t, u) caused by an initial quantum
fluctuation in a particular pocket universe. Its average values
ζ̄ acquire random values in the interval 0 ≤ |ζ̄ | � 1 in a
variety of the pocket universes. In particular, some of pocket
universes contain small values ζ̄small ≪ 1 as in Fig. 1, right
panel. It will be shown below that they could stand by a
small parameter and significantly facilitate solution to the
Hierarchy enigma.

To proceed, we must come into agreement on what is
meant by the “natural values” of the Lagrangian param-
eters gl . It is definitely matter of taste, but a restriction
10−2 < gl < 102 looks as appropriate choice. So, we will
suppose that “natural” range for a parameter value deviates
from unity not more than two orders of magnitude. More def-
initely, any physical parameter gl of a dimensionality l = 0
can be represented in the form gl = (Cl mD)l wheremD is the
energy scale, D-dimensional Planck mass in our case. It is the
dimensionless parameterCl which is assumed to be “natural”
if Cl ∼ 10±2. Therefore, natural values of physical parame-
ter gl vary within the interval (10−2l ÷ 10+2l). For example,
let the dimensionality of a parameter λ is [mD]2. It means
that we are free to choose initial value of λ in a wide interval
(10−4 ÷ 104)m2

D and still consider the choice as natural.

5.2 The shift of the Higgs field down to low energies

In this section we discuss the Hierarchy problem using the
Higgs field as an example. Within the framework of our

approach outlined in the Introduction, we assume that the
physics of the Higgs field together with the background field
are formed at the Planck scale.

Suppose that a form of the Higgs action at the Planck scale
is the same as at the electroweak scale but the Lagrangian
parameters depend on the background field ζ (see discussion
between formulas (3) and (4) and the Introduction),

SHP = 1

2

∫
dDX

√|gD|
(
∂MHP

†∂MHP

+ν(ζ )HP
†HP − λ(ζ )

(
HP

†HP
)2

)
, (35)

where ν
(
ζ(u)

)
, λ

(
ζ(u)

)
> 0 are arbitrary functions, ζ(u) is

a solution to Eq. (37) and HP is a proto Higgs field.
All numerical values in the Lagrangian (35) are of the

order of the unity, in mD units. Our aim is to show that
the parameters can be reduced in many orders of magnitude
by appropriate choice of the inhomogeneous metric and the
background field ζ .

Variation of (35) with respect to HP gives

�DHP = ν(ζ )HP − 2λ(ζ )
(
HP

†HP
)
HP. (36)

Equations of motion for the background field is as follows

�nζ(u) � −mζ
2ζ(u). (37)

We assume that the background field dominates over terms
containing the field HP. The proto Higgs field is seeking as

HP = h(x) U (u), (38)

where h(x) is 2-components column acting in the fundamen-
tal representation of SU (2). Our immediate aim is to find the
distribution of the field HP over the extra coordinates ruled
by the scalar function U (u) by solving system (36) and (37).

The inhomogeneities of the field h(x) are important at the
low energies, but they are exponentially stretched during the
first, de Sitter-like stage, see Sect. 4, so that h(x) = v = const
with great accuracy. It means that

h(x) = 1√
2

(
0

v + ρ(x)

)
� 1√

2

(
0
v

)
. (39)

Therefore, approximation (39) transforms Eq. (36) in the fol-
lowing way

�nU (u) = ν(ζ )U (u) − λ(ζ ) v2U 3(u), (40)

with yet unknown parameter v. There is infinite set of solu-
tions to this equation because the internal space metric and
the background field ζ are inhomogeneously distributed over
the coordinate u. We have chosen one among a continuum
set of solutions valid at small energy scale (see Fig. 4).

Knowledge of solutions to Eqs. (40) and (37) permits us to
integrate out the internal coordinates and reduce action (35)
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Fig. 4 The solution of the Eq. (40) for ν(ζ ) = μ2ζ 2, μ = 2, λ = 200,
v = 1, U (0) = 3.55 · 10−17, U ′(0) = −1 · 10−21 on the background
shown in Fig. 1

to the 4-dimensional form

SH = Vn−1

2

∫
d4x

√|g̃4|
umax∫

umin

(
e−2γ (u)U 2(u)g̃i j∂i h

†∂ j h

+
(
−(∂uU )2 + ν(ζ )U 2(u)

)
h†h

− λ(ζ )U 4(u)
(
h†h

)2
)

e4γ (u)rn−1(u) du (41)

after substitution (38) into (35). To study this action at low
energies, we choose the Minkowski metric

ds̃2 = ηi j dx
i dx j . (42)

with the Hubble parameter H = 0. Definition of parameters

Kh = Vn−1

umax∫

umin

U 2(u) e2γ (u)rn−1(u) du, (43)

m2
h = Vn−1

umax∫

umin

(
−(∂uU )2+ν(ζ )U 2(u)

)
e4γ (u)rn−1(u) du,

(44)

λh = Vn−1

umax∫

umin

λ(ζ )U 4(u) e4γ (u)rn−1(u) du, (45)

depending on the internal coordinate u. The variable chang-
ing

H0 = h
√
Kh (46)

leads to the 4-dimensional effective Higgs Lagrangian

SH = 1

2

∫
d4x

√|g̃4|
(

∂i H
†
0 ∂ i H0

+ m2
H H†

0 H0 − λH
(
H†

0 H0
)2

)
, (47)

m2
H ≡ m2

h

Kh
, λH ≡ λh

K 2
h

. (48)

Here H0 is the observable Higgs field. Experimentally mea-
sured parameters are the Higgs boson mass and its vacuum
average

mHiggs = 125 GeV, vHiggs = 246 GeV. (49)

according to [57]. They are related to the parameters mH and
λH of the effective Higgs action (47) as follows

mH = mHiggs/
√

2 = 88.6 GeV � 10−17mPl, (50)

and

λH = (mHiggs/vHiggs)
2/2 � 0.13, (51)

Remark that all formulas contain the function U (u), the
solution to Eq. (40) whith yet unknown constant v. Inter-
estingly, the Lagrangian structure (35) allows to avoid the
determination of this constant. Indeed, a solution to Eq. (40)
can be found for the function

Ũ (u) = vU (u)

because Eq. (40) for the function Ũ (u) does not contain
unknown parameter v in this case. Moreover, the substitu-
tion of U = Ũ (u)/v into expressions (43), (44) and (45)
gives

Kh[U ] = Kh[Ũ ]
v2 , m2

h[U ] = m2
h[Ũ ]
v2 ,

λh[U ] = λh[Ũ ]
v4 . (52)

and hence, the parameters mH , λH in (48) do not depend v.
This value appears also in relation

v = vHiggs/
√
Kh[U ] (53)

followed from (46) and the substitution H0 → vHiggs, h →
v. Luckily, this relation does not depend on v as well. After
taking into account first equality in (52), we obtain additional
restriction to the function Ũ

1 = vHiggs/

√
Kh[Ũ ]. (54)

All formulas written above are valid for an arbitrary func-
tions ν(ζ ), λ(ζ ). To proceed, we choose their specific form
as

ν(ζ ) = μ2ζ 2, λ = λ0 = const.

Calculations show that the relations (50), (51) and (54) are
met under the following conditions: μ = 2, λ = 200. There
is one Lagrangian parameter the value of which could be sus-
pected as unnaturally large - λ. More detailed analysis shows
that this value is still “natural” in the agreement discussed in
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the beginning of Sect. 5. Indeed, the dimensionality of λ is
[mD]2 for n = 3. Hence, natural interval for λ is 10±4 and
our choice λ = const = 200 looks acceptable. The origin of
small parameters has been discussed earlier, see the begin-
ning of Sect. 5. The quantum fluctuations produce a variety
of the field amplitudes in the countable set of the pocket uni-
verses. A part of them contains small amplitudes of ζ and U .
The fields values of the order of ζ ∼ 10−4 (see Fig. 1) and
U ∼ 10−16 (see Fig. 4) suit for relations (50), (51) and (54).

In this paper, we do not discuss the cosmological constant
value because too many effects have to be taken into account.
As the example, estimate the energy density stored in the
auxiliary field ζ

ε ∼ mD−2
D

2
Vn−1

umax∫

umin

mζ
2ζ 2(u)e4γ (u)rn−1(u) du

� 6.4 · 10−9m4
D ∼ 3.4 · 10−16m4

Pl . (55)

Other effects should compensate this value that is the essence
of the fine tuning problem [58].

6 Conclusion

Solving the Hierarchy puzzle can be successful if we have a
set of small parameters. In our paper we suggest how such
small parameters arise and apply them to the Higgs field, the
important part of the Standard Model.

It is assumed that our Universe was nucleated at high ener-
gies. The process of reduction from high to low energies
is as follows. A D-dimensional manifold evolves from the
Planck scale to a stage characterised by the de-Sitter met-
ric of 4D space and a static metric of n-dimensional extra
space. The 4-dimensional space exponentially expands in
its 3 dimensions and disconnected space regions—pocket
universes—are continuously created. Quantum fluctuations
independently disturb the extra dimensional metric within
these universes, causing inflationary processes within them.
Some of these universes tend asymptotically to the low
energy states in which we operate. The effective parameter
reduction applied to the Higgs sector of the Standard Model
is explained by the presence of small-amplitude static distri-
butions of a background scalar field ζ in a fraction of these
universes.

Background scalar field is necessary element for the suc-
cessful realization of the idea. There is continuum set of
such field distributions acting in the inhomogeneous metric
of extra dimensions within the pocket universes. The distri-
butions caused by the quantum fluctuations vary from zero
to the Planck values. The amplitudes of some of them are

extremely small which is the reason for the smallness of the
observable physical parameters.

The Higgs parameters are fitted with good accuracy, which
is not mandatory because other factors affect the result. The
aim here is to show that an effective reduction of the physical
parameters from high to low energy can be achieved.

A flexible inhomogeneous extra space is the basis of our
approach to solve the Hierarchy problem. The flexible space
metric was also applied to the problem of the observed baryon
asymmetry [49,59], which deserves a several words. On the
one hand, the appearance of the asymmetry implies that the
baryon charge was not conserved from the beginning. On
the other hand, the baryon charge is conserved with great
accuracy at the present time. The flexible extra dimensions
allow us to resolve this contradiction. In our previous works
we have shown the ability of the flexible metrics, but the
introduction of background fields opens up new possibilities.
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Appendix

Here we provide the necessary expressions for working with
an inhomogeneous n-dimensional extra metric of a more gen-
eral kind

ds2 = e2γ (u)
(
dt2 − e2Htδi j dx

i dx j
)

− e2β(u)du2 − r2(u) d	2
n−1 , i, j = 1, 3 (56)
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The Ricci scalar

R(u) = 12H2e−2γ (u) −
(

8γ ′′ + 20γ ′2 − 8γ ′β ′

+ (
n − 1

)(2r ′′

r
+ 8γ ′r ′

r
− 2β ′r ′

r

+
(
n − 2

)
r2

(
r ′2 − e2β(u)

)))
e−2β(u) (57)

does not depend on time. The notation used are ′ ≡ d/du
and ′′ ≡ d2/du2 respectively. Equation (4) for (t t) = · · · =
(x3x3), (uu) and (x5x5) = · · · = (xD−1xD−1)–components
and (5) become as follows

(
R′2 fRRR +

(
R′′ + 3γ ′R′ − β ′R′

+ (
n − 1

)r ′

r
R′) fRR −

(
γ ′′ + 4γ ′2 − β ′γ ′

+ (
n − 1

)γ ′r ′

r

)
fR

)
e−2β(u) + 3H2

e2γ (u)
fR

− f (R)

2
= −ζ ′2

2
e−2β(u) − V

(
ζ
)
, (58)

((
4γ ′R′ + (

n − 1
)r ′

r
R′) fRR −

(
4γ ′′ + 4γ ′2

− 4γ ′β ′ + (
n − 1

)r ′′

r
− (

n − 1
)β ′r ′

r

)
fR

)
e−2β(u)

− f (R)

2
= ζ ′2

2
e−2β(u) − V

(
ζ
)
, (59)

(
R′2 fRRR +

(
R′′ + 4γ ′R′ + (

n − 2
)r ′

r
R′

− β ′R′
)
fRR −

(
r ′′

r
+ 4γ ′r ′

r
− β ′r ′

r

+
(
n − 2

)
r2

(
r ′2 − e2β(u)

))
fR

)
e−2β(u)

− f (R)

2
= −ζ ′2

2
e−2β(u) − V

(
ζ
)
, (60)

(
ζ ′′ +

(
4γ ′ − β ′ + (

n − 1
)r ′

r

)
ζ ′

)
e−2β(u)

− V ′
ζ = 0. (61)

with the constraint equation

((
8γ ′R′ + 2

(
n − 1

)r ′

r
R′

)
fRR +

(
12γ ′2

+ (
n − 1

)(8γ ′r ′

r
+

(
n − 2

)
r2

(
r ′2 − e2β(u)

))

+R

)
fR

)
e−2β(u) − 12H2e−2γ (u) fR

− f (R) = ζ ′2e−2β(u) − 2V
(
ζ
)

(62)

containing first-order derivatives from the combination
2·(59)− fR ·(57).
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