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Abstract In addition to the evaluation of high-order loop
contributions, the precision and predictive power of pertur-
bative QCD (pQCD) predictions depends on two important
issues: (1) how to achieve a reliable, convergent fixed-order
series, and (2) how to reliably estimate the contributions of
unknown higher-order terms. The recursive use of renor-
malization group equation, together with the Principle of
Maximum Conformality (PMC), eliminates the renormal-
ization scheme-and-scale ambiguities of the conventional
pQCD series. The result is a conformal, scale-invariant series
of finite order which also satisfies all of the principles of
the renormalization group. In this paper we propose a novel
Bayesian-based approach to estimate the size of the unknown
higher order contributions based on an optimized analysis of
probability distributions. We show that by using the PMC
conformal series, in combination with the Bayesian analysis,
one can consistently achieve high degree of reliability esti-
mates for the unknown high order terms. Thus the predictive
power of pQCD can be greatly improved. We illustrate this
procedure for two pQCD observables: Re+e− and Rτ , which
are each known up to four loops in pQCD. Numerical anal-
yses confirm that by using the scale-independent and more
convergent PMC conformal series, one can achieve reliable
Bayesian probability estimates for the unknown higher-order
contributions.

a e-mail: wuxg@cqu.edu.cn (corresponding author)
b e-mail: sjbth@slac.stanford.edu

1 Introduction

Quantum chromodynamics (QCD) is the fundamental non-
Abelian gauge theory of the strong interactions. Because
of its property of asymptotic freedom, the QCD couplings
between quarks and gluons become weak at short distances,
allowing systematic perturbative calculations of physical
observables involving large momentum transfer [1,2]. A
physical observable must satisfy “renormalization group
invariance” (RGI) [3–7]; i.e., the infinite-order perturbative
QCD (pQCD) approximant of a physical observable must be
independent of artificially introduced parameters, such as the
choice of the renormalization scheme or the renormalization
scale μr . A fixed-order pQCD prediction can violate RGI
due to the mismatching of the scale of the perturbative coef-
ficients with the corresponding scale of the strong coupling
at each order. For example, invalid scheme-dependent pre-
dictions can be caused by an incorrect criteria for setting the
renormalization scale; e.g., by simply choosing the scale to
eliminate large logarithmic contributions. The error caused
by the incorrect choice of the renormalization scale can be
reduced to a certain degree by including enough higher-order
terms and by the mutual cancellation of contributions from
different orders. However, the complexity of high-order loop
calculations in pQCD makes the available perturbative series
terminate at a finite order, and thus the sought-after can-
cellations among different orders can fail. Clearly, as the
precision of the experimental measurements is increased, it
becomes critically important to eliminate theoretical uncer-
tainties from the renormalization scale and scheme ambigui-
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ties and to also obtain reliable estimates of the contributions
from unknown higher-order (UHO) terms.

Recall that in the case of high precision calculations in
quantum electrodynamics (QED), the renormalization scale
is chosen to sum all vacuum polarization contributions, e.g.

α(q2) = α(q2
0 )

1 − �(q2, q2
0 )

, (1)

where �(q2, q2
0 ) = (�(q2, 0) − �(q2

0 , 0))/(1 − �(q2
0 , 0))

sums all vacuum polarization contributions, both proper and
improper, into the dressed photon propagator. This is the
standard Gell Mann-Low renormalization scale-setting for
perturbative QED series [4].

Similarly, in non-Abelian QCD, thePrinciple ofMaximum
Conformality (PMC) [8–12] provides a rigorous method for
obtaining a correct fixed-order pQCD series consistent with
the principles of renormalization group [13–15]. The evolu-
tion of the running QCD coupling is governed by the renor-
malization group equation (RGE),

β(αs) = μ2
r
dαs(μr )

dμ2
r

= −α2
s (μr )

∞∑

i=0

βiα
i
s(μr ). (2)

where the {βi }-functions are now known up to five-loop level
in the MS-scheme [16–24]. As in QCD, all β terms are
summed into the running coupling by the PMC. After PMC
scale setting, the resulting pQCD series is then identical to
the corresponding conformal theory with β = 0. The PMC
thus fixes the renormalization scale consistent with the RGE.
It extends the Brodsky-Lepage-Mackenzie method [25] for
scale-setting in pQCD to all orders, and it reduces analyti-
cally to the standard scale-setting procedure of Gell-Mann
and Low in the QED Abelian limit (small number of colors,
NC → 0 [26]). The resulting relations between the predic-
tions for different physical observables, called commensurate
scale relations [27,28], ensure that the PMC predictions are
independent of the theorist’s choice of the renormalization
scheme. The PMC thus eliminates both renormalization scale
and scheme ambiguities. As an important byproduct, because
the RG-involved factorially divergent renormalon-like terms
such as n!βn

0 αn
s [29–31] are eliminated, the convergence of

the PMC perturbative series is automatically improved. In
contrast, if one guesses the renormalization scale such as
choosing it to match the factorization scale, one will obtain
incorrect, scheme-dependent, factorially divergent results for
the pQCD approximant, as well as violating the analytic
NC → 0 Abelian limit. Such an ad hoc procedure will also
contradict the unification of the electroweak and strong inter-
actions in a grand unified theory.

In practice, it has been conventional to take μr as the typ-
ical momentum flow (Q) of the process in order to obtain the

central value of the pQCD series and to then vary μr within
a certain range, such as [Q/2, 2Q], as a measure of a com-
bined effect of scale uncertainties and the contributions from
uncalculated higher-order (UHO) terms. The shortcomings
of this ad hoc treatment are apparent: each term in the pertur-
bative series is scale-dependent, and thus the prediction will
not satisfy the requirement of RGI. Furthermore, an estimate
of the UHO contributions cannot be characterized in a sta-
tistically meaningful way; one can only obtain information
for the β-dependent terms in the uncalculated higher-order
terms which control the running of αs , and there are no con-
straints on the contribution from the higher-order conformal
β-independent terms.

Since the exact pQCD result is unknown, it would be help-
ful to quantify the UHO’s contribution in terms of a probabil-
ity distribution. The Bayesian analysis is a powerful method
to construct probability distributions in which Bayes’ theo-
rem is used to iteratively update the probability as new infor-
mation becomes available. In this article, we will show how
one can apply the Bayesian analysis to predict the uncertainty
of the UHO contributions as a weighted probability distribu-
tion. This idea was pioneered by Cacciari and Houdeau [32],
and has been developed more recently in Refs. [33–35]. As
illustrations of the power of this method, we will apply the
Bayesian analysis to estimate the UHO contributions to sev-
eral hadronic QCD observables.

Previous applications of Bayesian-based approach have
been based on highly scale-dependent pQCD series. As dis-
cussed above, it clearly is important to instead use a renor-
malization scale-invariant series as the basis in order to show
the predictive power of the Bayesian-based approach. In
the paper, we shall adopt the PMC scale-invariant confor-
mal series as the starting point for estimating the magnitude
of unknown higher order contributions using the Bayesian-
based approach.

The remaining parts of the paper are organized as follows:
In Sect. 2, we show how the Bayesian analysis can be applied
to estimate the contributions of the UHO terms. In Sect. 3,
we will give a mini-review of how high precision predic-
tions can be achieved by using the PMC single scale-setting
approach (PMCs). In Sect. 4, we will apply the PMCs and
the Bayesian-based approach to give predictions with con-
strained high order uncertainties for two observables, Re+e−
and Rτ , Sect. 5 is reserved for a summary. For convenience
and as a useful reference, we provide a general introduction
to probability and the Bayesian analysis [36], together with
a useful glossary of the terminology in the Appendix.

2 The Bayesian-based approach

In this section we will show how one can apply a Bayesian-
based approach in order to give a realistic estimate of the size
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of the unknown higher order pQCD contributions to predic-
tions for physical observables. We shall show that by using
the PMC conformal series, in combination with the Bayesian
analysis of probability distributions, one can consistently
achieve a high degree of reliability estimate for the UHO-
terms. Thus the predictive power of pQCD can be greatly
improved.

We will explain the Bayesian-based approach by apply-
ing it to the series of a perturbatively calculable physical
observable (ρ). If the perturbative approximant of the physi-
cal observable starts at order O(αl

s) and stops at the kth order
O(αk

s ), one has

ρk =
k∑

i=l

ciα
i
s, (3)

which represents the partial sum consisting of the first several
terms in the perturbative expansion. ci are the coefficients of
the perturbative expansion.

For conventional pQCD series, the limit, k → ∞, does
not exist, as perturbative expansions are divergent [37,38].
The typical divergent contributions are renormalons (see e.g.
Ref. [29]). The divergent nature of the pQCD series is related
to the fact that ρ is a non-analytic function of the coupling
αs in αs = 0. The conventional pQCD series are believed to
be asymptotic expansions of the physical observable.

The asymptotic nature of the divergent perturbative expan-
sion implies that up to some order N adding terms to
the expansion improves the accuracy of the prediction, but
beyond N the divergent contributions to the series dominate
and the sum explodes. The truncated expansion at order N
gives the optimally accurate approximation available for the
observable (ρ), and represents the optimal truncation of the
asymptotic series.

With these statements, following we will give a brief intro-
duction on how to apply the Bayesian-based approach to a
fixed-order pQCD series, and estimate the size of its unknown
higher orders in terms of the properties of a probability distri-
bution. Other applications and developments of the Bayesian-
based method can be found in Refs. [32–35].

2.1 Basic definitions and assumptions

Consider a generic measure of “credibility”, applicable to
any possible perturbative series such as Eq. (3), varied over
the space of a set of priori unknown perturbative coeffi-
cients cl , cl+1, . . .. These coefficients are regarded as random
variables in Bayesian statistics. One can define a probability
density function (p.d.f.), f (cl , cl+1, . . .), which satisfies the
following normalization condition
∫

f (cl , cl+1, . . .) dcl dcl+1 · · · = 1, (4)

and the parameters can be marginalized according to

f (cl , . . . , ck) =
∫

f (cl , . . . , ck, ck+1, . . .) dck+1 . . . . (5)

If not specified, here and following, the ranges of integration
for the variables are all from −∞ to +∞. The conditional
p.d.f. of a generic (uncalculated) coefficient cn with given
coefficients cl , . . . , ck , is then by definition,

fc(cn|cl , . . . , ck) = f (cl , . . . , ck, cn)

f (cl , . . . , ck)
, (n > k). (6)

A key point of the Bayesian-based approach is to make
the reasonable assumption that all the coefficients ci (i =
l, l + 1, . . .) are finite and bounded by the absolute value of
a common number c̄ (c̄ > 0) [32], namely

|ci | ≤ c̄, ∀ i. (7)

If none of the coefficients have been calculated, one can only
say that c̄ is a positive real number where its order of magni-
tude is priori unknown. If the first several coefficients such as
cl , . . . , ck have been calculated, one may use them to give an
estimate of c̄, which in turn restricts the possible values for
the unknown coefficient cn (n > k). The value of c̄ is thus a
(hidden) parameter which will disappear (through marginal-
ization) in the final results. The set of uncertain variables that
defines the space is thus the set constituted by the parameter
c̄ and all of the coefficients cl , cl+1, . . .. Three reasonable
hypotheses then follow from the above assumption (7); i.e.

• The order of magnitude of c̄ is equally probable for all
values. This can be encoded by defining a p.d.f. for ln c̄,
denoted by g(ln c̄), as the limit of a flat distribution within
the region of −| ln ε| ≤ ln c̄ ≤ | ln ε|, where ε is a small
parameter tends to 0,

g(ln c̄) = 1

2|ln ε| θ(| ln ε| − | ln c̄|). (8)

Equivalently, a p.d.f. for c̄, which is denoted by g0(c̄),
satisfies

g0(c̄) = 1

2|ln ε|
1

c̄
θ

(
1

ε
− c̄

)
θ(c̄ − ε), (9)

where θ(x) is the Heaviside step function. In practice we
will perform all calculations (both analytical and numer-
ical) with ε �= 0, and take the limit ε → 0 for the final
result.

• The conditional p.d.f. of an unknown coefficient ci given
c̄, which is denoted by h0(ci |c̄), is assumed in the form
of a uniform distribution, i.e.,

h0(ci |c̄) = 1

2c̄
θ(c̄ − |ci |), (10)
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which implies that the condition (7) must be strictly satis-
fied. The p.d.f. h0(ci |c̄) will act as the likelihood function
for c̄ in later calculations.

• All the coefficients ci (i = l, l + 1, . . .) are mutually
independent, with the exception for the common bound,
i.e. |ci | ≤ c̄, which implies the joint conditional p.d.f.,
denoted by h(ci , c j |c̄),

h(ci , c j |c̄) = h0(ci |c̄)h0(c j |c̄), ∀ i �= j. (11)

The hypotheses (9), (10) and (11) completely define the cred-
ibility measure over the whole space of a priori uncertain
variables {c̄, cl , cl+1, . . .}. They then define every possible
inherited measure on a subspace associated with the pQCD
approximate of a physical observable whose first several
coefficients are known.

One may question the reasonability of the original
assumption (7) due to the fact that the full pQCD series is
divergent. However, in practice, of all the unknown higher
orders, we shall concentrate on the terms before the optimal
truncation. For all the terms before the optimal truncation N ,
it is reasonable to give a finite common boundary, c̄, for their
coefficients. For definiteness, we modify the assumption (7)
as,

|ci | ≤ c̄, ∀ i ≤ N . (12)

This modification will not change the above three hypotheses
(9, 10, 11).

2.2 Bayesian analysis

In this subsection, we calculate the conditional p.d.f. of a
generic (uncalculated) coefficient cn (n > k) with given
coefficients cl , . . . , ck , denoted as fc(cn|cl , . . . , ck), based
on the Bayes’ theorem.

Schematically, we first reformulate the conditional p.d.f.
fc(cn|cl , . . . , ck) as,

fc(cn|cl , . . . , ck) =
∫

h0(cn|c̄) fc̄(c̄|cl , . . . , ck)dc̄, (13)

where fc̄(c̄|cl , . . . , ck) is the conditional p.d.f. of c̄ given
cl , . . . , ck . Applying Bayes’ theorem, we have

fc̄(c̄|cl , . . . , ck) = h(cl , . . . , ck |c̄)g0(c̄)∫
h(cl , . . . , ck |c̄)g0(c̄)dc̄

, (14)

where h(cl , . . . , ck |c̄) = ∏k
i=l h0(ci |c̄) according to (11) is

the likelihood function for c̄. Inserting the Bayes’ formula
(14) and the factorization property (11) into (13), and taking
the limit ε → 0 for the final result, one obtains

fc(cn|cl , . . . , ck) = lim
ε→0

∫
h0(cn|c̄)∏k

i=l h0(ci |c̄)g0(c̄)dc̄∫ ∏k
i=l h0(ci |c̄)g0(c̄)dc̄

= 1

2

nc
nc + 1

c̄nc(k)

(max{|cn|, c̄(k)})nc+1

=
⎧
⎨

⎩

nc
2(nc+1)c̄(k)

, |cn| ≤ c̄(k)

ncc̄
nc
(k)

2(nc+1)|cn |nc+1 , |cn| > c̄(k)

.

(15)

where c̄(k) = max{|cl |, . . . , |ck |}, and nc = k − l + 1
represents the number of known perturbative coefficients,
cl , . . . , ck . It is easy to confirm the normalization condition,∫ ∞
−∞ fc(cn|cl , . . . , ck)dcn = 1. Equation (15) indicates the

conditional p.d.f. fc(cn|cl , . . . , ck) depends on the entire set
of the calculated coefficients via c̄(k) = max{|cl |, . . . , |ck |}.
The existence of such a probability density distribution
within the uncertainty interval represents the main difference
with other approaches, such as the conventional scale varia-
tion approach, which only gives an interval without a proba-
bilistic interpretation. Equation (15) also shows a symmetric
probability distribution for negative and positive cn , predicts
a uniform probability density in the interval [−c̄(k), c̄(k)] and
decreases monotonically from c̄(k) to infinity. The knowl-
edge of probability density fc(cn|cl , . . . , ck) allows one to
calculate the degree-of-belief (DoB, also called “Bayesian
probability” or “subjective probability” or “credibility”) that
the value of cn is constrained within some interval. The small-
est credible interval (CI) of fixed p% DoB for cn (n > k)
turns out to be centered at zero, and thus we denote it by
[−c(p)

n , c(p)
n ]. It is defined implicitly by

p% =
∫ c(p)

n

−c(p)
n

fc(cn|cl , . . . , ck) dcn, (16)

and further by using the analytical expression in Eq. (15), we
obtain

c(p)
n =

{
c̄(k)

nc+1
nc

p%, p% ≤ nc
nc+1

c̄(k) [(nc + 1)(1 − p%)]−
1
nc , p% > nc

nc+1

.

(17)

With the help of Eq. (15), one can then derive the con-
ditional p.d.f. for the uncalculated higher order term δn =
cnαn

s , (n > k), and the smallest p%-CI for δn , namely,

[−c(p)
n αn

s , c
(p)
n αn

s ]. For the next UHO, i.e. n = k+1, the con-
ditional p.d.f. of δk+1 given coefficients cl , . . . , ck , denoted
by fδ(δk+1|cl , . . . , ck), reads,

fδ(δk+1|cl , . . . , ck)
=

(
nc

nc + 1

)
1

2αk+1
s c̄(k)⎧

⎨

⎩
1, |δk+1| ≤ αk+1

s c̄(k)(
αk+1
s c̄(k)
|δk+1|

)nc+1
, |δk+1| > αk+1

s c̄(k)
, (18)
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Equation (18) indicates an important characteristic of the pos-
terior distribution: a central plateau with power suppressed
tails. The distributions for ρk+1 and δk+1 are the same, up to
a trivial shift given by the perturbative result (3). Thus the
conditional p.d.f. of ρk+1 for given coefficients cl , . . . , ck ,
denoted by fρ(ρk+1|cl , . . . , ck), can be obtain directly,

fρ(ρk+1|cl , . . . , ck)
=

(
nc

nc + 1

)
1

2αk+1
s c̄(k)⎧

⎨

⎩
1, |ρk+1 − ρk | ≤ αk+1

s c̄(k)(
αk+1
s c̄(k)

|ρk+1−ρk |
)nc+1

, |ρk+1 − ρk | > αk+1
s c̄(k)

. (19)

We can also estimate more UHOs of the perturbative series
(3), e.g. the sum from the next UHO to the optimal trun-
cation, 
k = ∑N

i=k+1 ciα
i
s . The detail p.d.f. formulas of


k are given in the appendix. In this work we shall concen-
trate on estimating the next UHO, ck+1, for given coefficients
cl , . . . , ck .

In the case of the conventional pQCD series, where
the coefficients {cl , cl+1, . . . , ck} are renormalization scale
dependent, the smallest CI, e.g. [−c(p)

n , c(p)
n ], for the DoB

of the coefficient cn under the fixed probability p% is also
scale dependent. In order to achieve the goal of the Bayesian
Optimization suggested by Refs. [39,40], i.e., to achieve the
optimal smallest CI for the UHO by using the least possible
number of given terms, it is clearly better to use a perturbative
series with scale-invariant coefficients; i.e.,

∂

∂μ2
r
ci = 0, ∀ i. (20)

For a general pQCD approximant ρk , such as Eq. (3), it is
easy to confirm that

μ2
r

∂ρk

∂μ2
r

∣∣∣∣
ci

= −β(αs)
∂

∂αs
ρk, (21)

where the subscript ci means the partial derivative is done
with respect to the perturbative coefficients only. It shows
that if a perturbative series satisfiesβ(αs) = 0, its coefficients
will be scale-invariant. The PMC series satisfies this require-
ment by definition, and thus is well matched to achieve the
goal of Bayesian Optimization. Our numerical results given
in the following Sect. 4 shall confirm this point.

2.3 Consistent estimate for the contribution of unknown
high order pQCD contributions

One can calculate the expectation value and the standard
deviation for cn , δk+1, and ρk+1 according to the p.d.f.s (15),
(18) and (19), respectively. The expectation value and the
standard deviation are the essential parameters. In the fol-

lowing, we shall adopt the determination of ρk+1 as an illus-
tration.

It is conventional to estimate the central value of ρk+1

as its expectation value E(ρk+1) and estimate the theoreti-
cal uncertainty of ρk+1 as its standard deviation, σk+1. The
expectation value E(ρk+1) can be related to the expectation
value of δk+1, i.e. E(ρk+1) = E(δk+1) + ρk . For the present
prior distribution, E(δk+1) = 0, due to the fact that the sym-
metric probability distribution (18) is centered at zero. To
predict the next UHO, δk+1, of ρk consistently, it is useful to
define a critical DoB, pc%, which equals to the least value
of p% that satisfies the following equations,

ρi−1 + c(p)
i αi

s ≥ ρi + c(p)
i+1α

i+1
s , (i = l + 1, . . . , k),

(22)

ρi−1 − c(p)
i αi

s ≤ ρi − c(p)
i+1α

i+1
s , (i = l + 1, . . . , k).

(23)

Thus, for any p ≥ pc, the error bars determined by the p%-
CIs provide consistent estimates for the next UHO, i.e. the
smallest p%-CIs (p ≥ pc) of ρi+1 predicted from ρi are
well within the smallest p%-CIs of the one-order lower ρi
predicted from ρi−1, (i = l + 1, l + 2, . . . , k). The value of
pc is nondecreasing when k increases. In practice, in order to
obtain a consistent and high DoB estimation, we will adopt
the smallest ps%-CI; i.e.

[E(ρk+1) − c(ps )
k+1α

k+1
s , E(ρk+1) + c(ps )

k+1α
k+1
s ], (24)

as the final estimate for ρk+1, where ps = max{pc, pσ }. Here
pσ % represents the DoB for the 1σ -interval, and ρk+1 ∈
[E(ρk+1) − σk+1, E(ρk+1) + σk+1].

3 The principle of maximum conformality

The PMC was originally introduced as a multi-scale-setting
approach (PMCm) [9–12], in which distinct PMC scales at
each order are systematically determined in order to absorb
specific categories of {βi }-terms into the corresponding run-
ning coupling αs at different orders. Since the same type of
{βi }-terms emerge at different orders, the PMC scales at each
order can be expressed in perturbative form. The PMCm has
two kinds of residual scale dependence due to the unknown
perturbative terms [41]; i.e., the last terms of the PMC scales
are unknown (first kind of residual scale dependence), and
the last terms in the pQCD approximant are not fixed since
its PMC scale cannot be determined (second kind of resid-
ual scale dependence). Detailed discussions of the residual
scale dependence can be found in the reviews [42,43]. The
PMC single-scale-setting approach (PMCs) [44] has been
recently suggested in order to suppress the residual scale
dependence and to make the scale-setting procedures much
simpler. The PMCs procedure determines a single overall
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effective αs with the help of RGE; the resulting PMC renor-
malization scale represents the overall effective momentum
flow of the process. The PMCs is equivalent to PMCm in the
sense of perturbative theory, and the PMCs prediction is also
free of renormalization scale-and-scheme ambiguities up to
any fixed order [45]. The PMCs is also equivalent to the very
recently suggested single-scale-setting method [46], which
follows the idea of “Intrinsic Conformality” [47]. By using
the PMCs, the first kind of residual scale dependence will be
greatly suppressed due to its αs-power suppression and the
exponential suppression; the overall PMC scale has the same
precision for all orders, and thus the second kind of resid-
ual scale dependence is exactly removed. Moreover, due to
the independence on the renormalization scheme and scale,
the resulting conformal series with an overall single value of
αs(Q∗) provides not only precise pQCD predictions for the
known fixed order, but also a reliable basis for estimating the
contributions from the unknown higher-order terms.

Within the framework of the pQCD, the perturbative
approximant for physical observable  can be written in the
following form:

n =
n∑

i=1

ri (μ
2
r /Q

2)α
p+i−1
s (μr ), (25)

where Q represents the kinematic scale and the index p(p ≥
1) indicates the αs-order of the leading-order (LO) contribu-
tion. For the perturbative series (25), its perturbative coeffi-
cients ri can be divided into the conformal parts (ri,0) and
non-conformal parts (proportional to βi ), i.e. ri = ri,0 +
O({βi }). The {βi }-pattern at different orders exist a special
degeneracy [9,10,48], i.e.

r1 = r1,0,

r2 = r2,0 + pβ0r2,1,

r3 = r3,0 + pβ1r2,1 + (p + 1)β0r3,1 + p(p + 1)

2
β2

0r3,2,

r4 = r4,0 + pβ2r2,1 + (p + 1)β1r3,1 + p(3 + 2p)

2
β1β0r3,2

+(p + 2)β0r4,1 + (p + 1)(p + 2)

2
β2

0r4,2

+ p(p + 1)(p + 2)

3! β3
0r4,3,

. . .

The coefficients ri, j are general functions of the renormal-
ization scale μr , which can be redefined as

ri, j =
j∑

k=0

Ck
j r̂i−k, j−k lnk(μ2

r /Q
2), (26)

where the reduced coefficients r̂i, j = ri, j |μr=Q , and the com-
bination coefficients Ck

j = j !/(k!( j − k)!).
Following the standard PMCs procedures [44], the overall

effective scale can be determined by requiring all the non-

conformal {βi }-terms to vanish; the pQCD approximant (25)
then changes to the following conformal series,

n|PMCs =
n∑

i=1

r̂i,0α
p+i−1
s (Q∗), (27)

where the PMC scale Q∗ can be fixed up to N2LL-accuracy
for n = 4, i.e. ln Q2∗/Q2 can be expanded as a power series
over αs(Q),

ln
Q2∗
Q2 = T0 + T1αs(Q) + T2α

2
s (Q) + O(α3

s ), (28)

where the coefficients Ti (i = 0, 1, 2) are all functions of the
reduced coefficients r̂i, j , whose expressions can be found
in Ref. [44]. Equation (28) shows that the PMC scale Q∗
is also represented as power series in αs , which resums all
the known {βi }-terms, and is explicitly independent of μr at
any fixed order. It represents the physical momentum flow of
the process and determines an overall effective value of αs .
Together with the μr -independent conformal coefficients, the
resulting pQCD series is exactly scheme-and-scale indepen-
dent [45], thus providing a reliable basis for estimating the
contributions of the unknown terms.

4 Numerical results

In this section, we apply the PMCs approach to scale set-
ting in combination with the Bayesian method for estimat-
ing uncertainties from the uncalculated higher order terms,
for two physical observables Re+e− and Rτ , all of which
are now known up to four loops in pQCD. We will show
how the magnitude of the “unknown” terms predicted by
the Bayesian-based approach varies as more-and-more loop
terms are determined.

The ratio Re+e− for e+e− annihilation is defined as

Re+e−(Q) = σ
(
e+e− → hadrons

)

σ
(
e+e− → μ+μ−)

= 3
∑

q

e2
q [1 + R(Q)] , (29)

where Q = √
s is the e+e− center-pf-mass collision

energy at which the ratio is measured. The pQCD approx-
imant of R(Q), denoted by Rn(Q), reads, Rn(Q) =∑n

i=1 ri (μr/Q)αi
s(μr ). The pQCD coefficients at μr = Q

have been calculated in the MS-scheme in Refs. [49–52]. The
coefficients at any other scales can then be obtained via RGE
evolution. For illustration, we shall take Q ≡ 31.6 GeV [53]
throughout this paper to illustrate the numerical predictions.

The ratio Rτ for hadronic τ decays is defined as

Rτ (Mτ ) = σ(τ → ντ + hadrons)

σ (τ → ντ + ν̄e + e−)
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Table 1 The known coefficients for Rn(Q). The coefficients of conven-
tional scale setting, ri (μr ), are for μr = Q. The conformal coefficients,
ri,0, are scale-independent

i=1 i=2 i=3 i=4

ri (μr = Q) 0.3183 0.1428 –0.4130 0.8257

ri,0 0.3183 0.1865 –0.0324 −0.1128

Table 2 The known coefficients for R̃n(Mτ ). The coefficients of con-
ventional scale setting, ri (μr ), are for μr = Mτ . The conformal coef-
ficients, ri,0, are scale-independent

i = 1 i = 2 i = 3 i = 4

ri (μr = Mτ ) 0.3183 0.5271 0.8503 1.3046

ri,0 0.3183 0.2174 0.1108 0.0698

= 3
∑ ∣∣V f f ′

∣∣2
(

1 + R̃(Mτ )
)

, (30)

where V f f ′ are Cabbibo-Kobayashi-Maskawa matrix ele-

ments,
∑∣∣V f f ′

∣∣2 = |Vud |2 +|Vus |2 ≈ 1 and Mτ = 1.77686
GeV [36]. The pQCD approximant of R̃(Mτ ), denoted by
R̃n(Mτ ), reads, R̃n(Mτ ) = ∑n

i=1 ri (μr/Mτ )α
i
s(μr ); the

coefficients can be obtained using the known relation of
Rτ (Mτ ) to Re+e−(Q) [54].

In order to do the numerical evaluation, the RunDec pro-
gram [55,56] is adopted to calculate the value of αs . For
self-consistency, the four-loop αs-running behavior will be
used. The world average αs(Mz) = 0.1179 ± 0.0009 [36] is
adopted as a reference.

4.1 Single-scale PMCs predictions

After applying the PMCs approach, the overall renormaliza-
tion scale for each process can be determined. If the pQCD
approximants are known up to two-loop, three-loop, and four-
loop level, respectively, the corresponding overall scales are

Q∗|e+e− = {35.36, 39.67, 40.28} GeV, (31)

Q∗|τ = {0.90, 1.01, 1.05} GeV. (32)

The PMC scales Q∗ are independent of the initial choice of
the renormalization scale μr . In the case of the leading-order
ratios with n = 1, one has no information to set the effective
scale, and thus for definiteness, we will set it to be Q, or Mτ ,
respectively, which gives R1 = 0.04428, and R̃1 = 0.0891.

We present the first four conformal coefficients ri,0 (i =
1, 2, 3, 4) in Tables 1, and 2, in which the conventional coeffi-
cients ri (i = 1, 2, 3, 4) at a specified scale are also presented
in comparison. Because the coefficients ri (i ≥ 2) of the con-
ventional pQCD series are scale-dependent at every orders,
the Bayesian-based approach can only be applied after one
specifies the choices for the renormalization scale, thus intro-
ducing extra uncertainties for the Bayesian-based approach.

Table 3 The predicted smallest 95.5% credible intervals (CI) for the
scale-dependent conventional coefficients ri (μr ) (i = 3, 4, 5) at the
scale μr = Q and the scale-invariant coefficients ri,0(i = 3, 4, 5) of
Rn(Q = 31.6 GeV) via the Bayesian-based approach. The exact values
(“EC”) are presented as comparisons

r3(μr = Q) r4(μr = Q) r5(μr = Q)

CI [−0.8663, 0.8663] [−0.7314, 0.7314] [−1.1989, 1.1989]
EC −0.4130 0.8257 –

r3,0 r4,0 r5,0

CI [−0.8663, 0.8663] [−0.5638, 0.5638] [−0.4622, 0.4622]
EC −0.0324 −0.1128 –

Table 4 The predicted smallest 95.5% credible intervals (CI) for the
scale-dependent conventional coefficients ri (μr ) (i = 3, 4, 5) at the
scale μr = Mτ and the scale-invariant coefficients ri,0(i = 3, 4, 5) of
R̃n(Mτ ) via the Bayesian-based approach. The exact values (“EC”) are
presented for comparison

r3(μr = Mτ ) r4(μr = Mτ ) r5(μr = Mτ )

CI [−1.4346, 1.4346] [−1.5060, 1.5060] [−1.8942, 1.8942]
EC 0.8503 1.3046 –

r3,0 r4,0 r5,0

CI [−0.8663, 0.8663] [−0.5638, 0.5638] [−0.4622, 0.4622]
EC 0.1108 0.0698 –

On the other hand, the PMCs series is a scale-independent
conformal series in powers of the effective coupling αs(Q∗);
the PMCs thus provides a reliable basis for obtaining con-
straints on the predictions for the unknown higher-order con-
tributions.

4.2 Estimation of UHOs using the Bayesian-based
approach

In this subsection, we give estimates for the UHOs of the
pQCD series Rn(Q = 31.6 GeV) and R̃n(Mτ ). More explic-
itly, we will predict the magnitude of the unknown coefficient
ci+1 from the known ones {c1, . . . , ci } by using the Bayesian-
based approach.

First, we present the predicted smallest 95.5% CIs and the
exact values 1 (“EC”) of the scale-invariant conformal coef-
ficients ci = ri,0 (i = 3, 4, 5) of the PMCs series of Rn(Q =
31.6 GeV) and R̃n(Mτ ) in Tables 3 and 4, respectively. For
comparison, the similarly predicted scale-dependent conven-
tional coefficients ci = ri (μr ) (i = 3, 4, 5) of the conven-
tional series of Rn(Q = 31.6 GeV) and R̃n(Mτ ) at the spe-
cific scales μr = Q and Mτ are also presented. It is noted

1 The “exact” value means that it is obtained by directly using the known
perturbative series.
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Table 5 The predicted smallest 95.5% credible intervals (CI) for the
scale-dependent coefficients r3(μr ) and r4(μr ) of Rn(Q = 31.6 GeV)

by using the Bayesian-based approach at three scales μr = Q, Q/2 and
2Q, respectively. The exact values (“EC”) are present for comparison

r3(μr ) r4(μr )

μr = Q CI [−0.8663, 0.8663] [−0.7314, 0.7314]
EC −0.4130 −0.8257

μr = 2Q CI [−1.1213, 1.1213] [−0.7297, 0.7297]
EC 0.1643 −1.0089

μr = Q/2 CI [−0.8663, 0.8663] [−0.9473, 0.9473]
EC −0.5348 0.4272

that the exact values of r3,0 and r4,0 lie within the predicted
95.5% CIs. In contrast, for the conventional coefficients, most
of the exact values of r3 and r4 are lying within the predicted
95.5% CIs; However, there are one exception for r4, i.e. for
Rn(Q = 31.6 GeV), the exact values of r4 are outside the
region of the 95.5% CIs. These exceptions may be removed
by taking a different choice of renormalization scale; e.g.,
for the case of Rn(Q = 31.6 GeV), as shown by Table
5, the exact value of r4 will lie within the predicted 95.5%
CI if setting μr = Q/2. Table 5 also confirms that the CIs
predicted from the conventional series are also scale depen-
dent. Thus, in comparison with the renormalon-divergent and
scale-dependent conventional series, it is essential to use the
renormalon-free and scale-invariant PMCs series in order to
estimate the unknown higher-order coefficients. More explic-
itly, we present more predicted CIs with three typical DoBs
in Figs. 1 and 2, respectively.

Second, we present the probability density distributions
for the two observables R(Q = 31.6 GeV) and R̃(Mτ ) with
different states of knowledge predicted by PMCs and the

Bayesian-based approach in Fig. 3. The four lines in each
figure correspond to different degrees of knowledge: given
LO (dotted), given NLO (dotdashed), given N2LO (solid)
and given N3LO (dashed). These figures illustrate the char-
acteristics of the posterior distribution: a symmetric plateau
with two suppressed tails. The posterior distribution given by
the Bayesian-based approach depends on the prior distribu-
tion, and as more and more loop terms become known, the
probability is updated with less and less dependence on the
prior; i.e., the probability density becomes increasingly con-
centrated (the plateau becomes narrower and narrower and
the tail becomes shorter and shorter) as more and more loop
terms for the distribution are determined.

Third, we present the ps% CIs of Rn(Q = 31.6 GeV)

with n = (2, 3, 4, 5) predicted from the one-order lower
Rn−1(Q = 31.6 GeV) based on the Bayesian-based
approach in Fig. 4, where ps% = 95.4% for the scale-
independent PMCs series, and ps% = 98.4% for the scale-
dependent conventional series. The calculated values (“CV”)
of the pQCD approximants Rn(Q = 31.6 GeV) with
n = (1, 2, 3, 4) are also presented as a comparison. The tri-
angles and the quadrates are for the PMCs series and the con-
ventional (conv.) scale-dependent series, respectively. Anal-
ogous results for R̃n(Mτ ) are also given in Fig. 4. Both the
center values and the error bars (or CIs) are scale-independent
for the PMCs series. The results for conventional series of Rn

and R̃n are for μr = Q and Mτ , respectively. Figure 4 shows
that the error bars (or CIs) predicted by using the Bayesian-
based approach quickly approach their steady points for both
the PMCs and conventional series. As expected, the error bars
provide consistent and high DoB estimates for the UHOs for
both the PMCs and conventional series; e.g., the error bars of
Rn+1(Q) (n = 2, 3, 4) predicted from Rn(Q) are well within
the error bars of the one-order lower Rn(Q) predicted from

Fig. 1 The predicted credible intervals (CI) with three typical DoBs
for the scale-dependent coefficients ri (μr ) at the scale μr = Q and
the scale-invariant ri,0 of Rn(Q = 31.6GeV) under the Bayesian-
based approach, respectively. The red diamonds, the blue rectangles,

the golden yellow stars and the black inverted triangles together with
their error bars, are for 99.7% CI, 95.5% CI, 68.3% CI, and the exact
values of the coefficients at different orders, respectively
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Fig. 2 The predicted credible intervals (CI) with three typical DoBs
for the scale-dependent coefficients ri (μr ) at the scale μr = Mτ and
the scale-invariant ri,0 of R̃n(Mτ ) under the Bayesian-based approach,
respectively. The red diamonds, the blue rectangles, the golden yellow

stars and the black inverted triangles together with their error bars, are
for 99.7% CI, 95.5% CI, 68.3% CI, and the exact values of the coeffi-
cients at different orders, respectively

Fig. 3 The probability density distributions of R(Q = 31.6 GeV)

and R̃(Mτ ) with different states of knowledge predicted by PMCs and
the Bayesian-based approach, respectively. The black dotted, the blue

dash-dotted, the green solid and the red dashed lines are results for the
given LO, NLO, N2LO and N3LO series, respectively

Rn−1(Q); The conclusions for R̃n(Mτ ) are similar. Detailed
numerical results are presented in Table 6, where the 2nd, 4th,
and 6th columns show the calculated central values (“CV”)
of the fixed-order pQCD approximants Rn(Q = 31.6GeV)

and R̃n(Mτ ) for n = 2, 3, 4 respectively, and the 3rd, 5th,
and 7th columns show the predicted ps% credible intervals
(“CI”) of those approximants for n = 3, 4, 5 respectively.
The predicted CIs for R2(Q) and R̃2(Mτ ) are sufficiently
conservative and thus are not presented in the table. The DoB
(ps%) is given in the last column. For the present prior distri-
butions, pσ % = 65.3% for l = 1 and k = 4. Thus the DoB
ps%, given in Table 6, is also the critical DoB, i.e. ps = pc.

Our final predictions for the five-loop predictions of
R5(Q) and R̃5(Mτ ) based on the PMCs and the Bayesian-
based approach read,

R5(Q = 31.6GeV) = 0.04609 ± 0.00042 ± 0.00002, (33)

R̃5(Mτ ) = 0.2032+0.0092
−0.0086 ± 0.0083, (34)

where the first error is for 
αs(MZ ) = ±0.0009 and the
second error represents high DoBs ps% which are consistent
with the estimates for the UHOs. Note that the very small
uncertainty ±0.00002 for R5(Q = 31.6GeV) is determined
by the 95.4% CI according to the Bayesian-based approach,
[−r (95.4)

5,0 α5
s (Q∗), r (95.4)

5,0 α5
s (Q∗)], where α5

s (Q∗) � 0.00004

and the predicted r (95.4)
5,0 = 0.4596 are all small. Our predic-

tion for hadronic τ decays, R̃5(Mτ ), can be compared with
those given in Refs. [57–60].

5 Summary

The PMC provides a rigorous first-principle method to elim-
inate conventional renormalization scheme and scale ambi-
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Fig. 4 Comparison of the calculated central values (“CV”) of the
pQCD approximants Rn(Q = 31.6 GeV) and R̃n(Mτ ) for n =
(1, 2, 3, 4) with the predicted ps% credible intervals (CI) of those
approximants for n = (2, 3, 4, 5). The blue hollow triangles and red
hollow quadrates represent the calculated central values of the fixed-
order pQCD predictions using PMCs and conventional (Conv.) scale-

setting, respectively. The blue solid triangles and red solid quadrates
with error bars represent the predicted ps% CIs using the Bayesian-
based approach based on the PMCs conformal series (ps = 95.4 for
Rn(Q = 31.6 GeV), ps = 94.2 for R̃n(Mτ )) and the conventional
(Conv.) scale-dependent series (ps = 98.4 for Rn(Q = 31.6 GeV),
ps = 98.7 for R̃n(Mτ )), respectively

Table 6 Comparison of the calculated central values (“CV”) with the
predicted ps% credible intervals (“CI”) of the pQCD approximants
Rn(Q = 31.6GeV) and R̃n(Mτ ) based on the PMC conformal series
and the conventional (conv.) scale-dependent series up tonth-order level,

respectively. The DoB of the CI (ps%) is given in the last column. The
results for the PMC conformal series are scale-independent. The results
for the conventional scale-dependent series are calculated at μr = Q
and Mτ for Rn(Q = 31.6GeV) and R̃n(Mτ ), respectively

CV, n = 2 CI, n = 3 CV, n = 3 CI, n = 4 CV, n = 4 CI, n = 5 ps%

Rn(Q = 31.6GeV)|PMCs 0.04733 [0.04510, 0.04956] 0.04626 [0.04607, 0.04645] 0.04609 [0.04607, 0.04611] 95.4%

R̃n(Mτ )|PMCs 0.2110 [0.1183, 0.3037] 0.2071 [0.1825, 0.2317] 0.2023 [0.1940, 0.2106] 94.2%

Rn(Q = 31.6GeV)|conv. 0.04751 [0.04349, 0.05153] 0.04639 [0.04599, 0.04679] 0.04607 [0.04598, 0.04616] 98.4%

R̃n(Mτ )|conv. 0.1523 [0.0692, 0.2354] 0.1820 [0.1586, 0.2054] 0.1965 [0.1879, 0.2051] 98.7%

guities for high-momentum transfer processes in pQCD up to
any fixed order. Its predictions have a solid theoretical foun-
dation, satisfying renormalization group invariance and all
other self-consistency conditions derived from the renormal-
ization group. The PMCs is a single-scale-setting approach,
which determines a single overall effective/correct αs(Q∗)
by using all of the RG-involved nonconformal {βi }-terms.
The resulting PMCs series is a renormalon-free and scale-
invariant conformal series; it thus achieves precise fixed-
order pQCD predictions and provides a reliable basis for
predicting unknown higher-order contributions.

The Bayesian analysis provides a compelling approach for
estimating the UHOs from the known fixed-order series by
adopting a probabilistic interpretation. The conditional prob-
ability of the unknown perturbative coefficient is first given
by a subjective prior distribution, which is then updated iter-
atively according to the Bayes’ theorem as more and more
information is included. The posterior distribution given
by the Bayesian-based approach depends on the subjec-
tive prior distribution (or the assumptions), and as more-
and-more information updates the probability, less-and-less

dependence on the prior distribution (or the assumptions) can
be achieved, as confirmed in Fig. 3.

We have defined an objective measure which characterizes
the uncertainty due to the uncalculated higher order (UHO)
contributions of a perturbative QCD series using the Bayesian
analysis. This uncertainty is given as a credible interval (CI)
with a degree of belief (DoB, also called Bayesian proba-
bility). The numerical value for the uncertainty, the critical
DoB, is given as a percentage pc%. When pc% = 95%, it
means that there is a 95% probability that the exact answer
is within this range. The CI with DoB ps% in Fig. 4 and
Table 6 takes into account the uncertainties in the values
of the input physics parameters, such as the value of αs ,
which will become very small at high order due to the αn

s -
power suppression. Detailed numerical results are presented
in Table 6, where the 2nd, 4th, and 6th columns show the
calculated central values of the fixed-order pQCD approx-
imants Rn(Q = 31.6GeV) and R̃n(Mτ ) for n = 2, 3, 4,
respectively, and the 3rd, 5th, 7th columns show the predicted
ps% credible interval of those approximants for n = 3, 4, 5,
respectively. The 8th column shows the DoB (ps%) of the
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credible interval presented in the 3rd, 5th, 7th columns. The
calculated ps value, ps = max{pc, pσ }, equals pc since the
DoB of the 1σ -interval pσ % equals 65.3% for the present
prior distributions.

In contrast, each term in a conventional perturbative series
is highly scale-dependent, thus the Bayesian-based approach
can only be applied after one assumes choices for the pertur-
bative scale. What’s more, the n! renormalon series leads to
divergent behavior especially at high order ;2 e.g., the exact
value of the conventional coefficient r4 is even outside the
95.5% CI predicted from {r1, r2, r3} for R(Q), which can
be found in Table 3. Thus, it is critical to use the more con-
vergent and scale-independent PMC conformal series as the
basis for estimating the unknown higher-order coefficients.

As we have shown, by using the PMCs approach in com-
bination with the Bayesian analysis, one can obtain highly
precise fixed-order pQCD predictions and achieve consistent
estimates with high DoB for the unknown higher-order con-
tributions. In the present paper, we have illustrated this pro-
cedure for two important hadronic observables, Re+e− and
Rτ , which have been calculated up to four-loops in pQCD.
The elimination of the uncertainty in setting the renormal-
ization scale for fixed-order pQCD predictions using the
PMCs, together with the reliable estimate for the uncalcu-
lated higher-order contributions obtained using the Bayesian
analysis, greatly increases the precision of collider tests of the
Standard Model and thus the sensitivity to new phenomena.
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2 Such renormalon divergence also makes the hidden parameter c̄ to be
much larger than the PMC one, thus if choosing the same degree-of-
belief, the PMC credible interval shall be much smaller.

Appendix A: Theorems and laws for probability distri-
butions

An abstract definition of probability can be given by consid-
ering a set S, called the sample space, and possible subsets
A, B, . . ., the interpretation of which is left open. The prob-
ability P is a real-valued function defined by the following
axioms due to Kolmogorov [61]:

1. For every subset A in S, P(A) ≥ 0;
2. For disjoint subsets (i.e., A ∩ B = ∅),

P(A ∪ B) = P(A) + P(B);
3. P(S) = 1.

In addition, the conditional probability P(A|B) (read as P
of A given B) is defined as

P(A|B) = P(A ∩ B)

P(B)
. (A1)

From this definition and using the fact that A∩ B and B ∩ A
are the same, one obtains Bayes’ theorem,

P(A|B) = P(B|A)P(A)

P(B)
. (A2)

From the three axioms of probability and the definition of
conditional probability, one obtains the law of total proba-
bility,

P(B) =
∑

i

P(B|Ai )P(Ai ), (A3)

for any subset B and for disjoint Ai with ∪i Ai = S. This can
be combined with Bayes’ theorem (A2) to give

P(A|B) = P(B|A)P(A)∑
i P(B|Ai )P(Ai )

, (A4)

where the subset A could, for example, be one of the Ai .

Appendix B: The Bayesian analysis

In Bayesian statistics, the subjective interpretation of proba-
bility is used to quantify one’sdegreeof belief in ahypothesis.
The hypothesis is often characterized by one or more param-
eters. This allows one to define a probability density function
(p.d.f.) for a parameter, which reflects one’s knowledge about
where its true value lies.

Consider an experiment whose outcome is characterized
by a vector of data xxx . A hypothesis H is a statement about the
probability for the data, often written P(xxx |H). This could, for
example, completely define the p.d.f. for the data (a simple
hypothesis), or it could specify only the functional form of
the p.d.f., with the values of one or more parameters not deter-
mined (a composite hypothesis). If the probability P(xxx |H)

for data xxx is regarded as a function of the hypothesis H , then it
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is called the likelihood of H , usually written L(H). Consider
the hypothesis H is characterized by one or more continuous
parameters θθθ , in which case L(θθθ) = P(xxx |θθθ) is called the
likelihood function. Note that the likelihood function itself is
not a p.d.f. for θθθ .

In the Bayesian analysis, inference is based on the poste-
rior p.d.f. p(θθθ |xxx), whose integral over any given region gives
the degree of belief for θθθ to take on values in that region,
given the data xxx . This is obtained from Bayes’ theorem (A4),
which can be written

p(θθθ |xxx) = P(xxx |θθθ)π(θθθ)∫
P(xxx |θθθ ′)π(θθθ ′)dθθθ ′ , (B1)

where P(xxx |θθθ) is the likelihood function for θθθ ; i.e., the joint
p.d.f. for the data viewed as a function of θθθ , evaluated with
data actually obtained in the experiment. The function π(θθθ)

is the prior p.d.f. for θθθ . Note that the denominator in Eq.
(B1) serves to normalize the posterior p.d.f. to unity. The
likelihood function, prior, and posterior p.d.f.s all depend on
θθθ , and are related by Bayes’ theorem, as usual.

Bayesian statistics does not supply a rule for determining
the prior π(θθθ); this reflects the analyst’s subjective degree of
belief (or state of knowledge) about θθθ before the measure-
ment was carried out.

Appendix C: The p.d.f. for more UHOs

The sum from the next UHO to the optimal truncation, 
k =∑N
i=k+1 ciα

i
s , depends on the values of the unknown coeffi-

cients ck+1, ck+2, . . . , cN . It’s conditional p.d.f. f
(
k |cl ,
. . . , ck) can be written as

f
(
k |cl , . . . , ck) =
∫ [

δ

(

k −

N∑

n=k+1

αn
s cn

)]

× frc(ck+1, ck+2, . . . , cN |cl , . . . , ck)
× dck+1dck+2 · · · dcN , (C1)

where frc(ck+1, ck+2, . . . , cN |cl , · · · , ck) is the conditional
p.d.f. of ck+1, ck+2, . . . , cN given cl , . . . , ck . This expression
is too complicated to be handled analytically. In order to
perform a numerical integration of Eq. (C1), we can rewrite
it as

f
(
k |cl , . . . , ck) =
∫ [

δ

(

k −

N∑

n=k+1

αn
s cn

)]

×
[

N∏

n=k+1

h0(cn|c̄)
]

fc̄(c̄|cl , . . . , ck)

×dc̄ dck+1dck+2 · · · dcN . (C2)

where fc̄(c̄|cl , . . . , ck) is the conditional p.d.f. of c̄ given
cl , . . . , ck , which can be obtained by using the Bayes’ for-

mula (14) and taking the limit ε → 0 for the final result,

fc̄(c̄|cl , . . . , ck) = nc
c̄nc(k)

c̄nc+1 θ(c̄ − c̄(k)). (C3)

Appendix D: A glossary

Priori probability: the probability estimate prior to receiv-
ing new information.

Posterior probability: the revised probability that takes
into account new available information.

Probability density function: a non-negative function
which describes the distribution of a continuous random vari-
able.

Random variable: a variable that takes different real val-
ues as a result of the outcomes of a random event or experi-
ment.

Credibility: also called “degree of belief”, “Bayesian
probability”, or “subjective probability”.

Credibilitymeasure: the credibility measure plays a sim-
ilar role as the probability measure but applies to Bayesian
probability.

UHO: Unknown Higher-Order
PMC: Principle of Maximum Conformality
PMCs: PMC single scale-setting approach
PMCm: PMC multi scale-setting approach
RGE: Renormalization Group Equation
RGI: Renormalization Group Invariance
p.d.f.: probability density function
CI: Credible interval
DoB: Degree-of-Belief
EC: Exact value
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