
Eur. Phys. J. C (2023) 83:409
https://doi.org/10.1140/epjc/s10052-023-11520-z

Regular Article - Theoretical Physics

Is it possible to distinguish between different black hole solutions
using the Shapiro time delay?

Ednaldo L. B. Junior1,a, Manuel E. Rodrigues2,3,b, Henrique A. Vieira2,c

1 Faculdade de Engenharia da Computação, Universidade Federal do Pará, Campus Universitário de Tucuruí, Tucuruí, Pará CEP: 68464-000,
Brazil

2 Faculdade de Física, Programa de Pós-Graduação em Física, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
3 Faculdade de Ciências Exatas e Tecnologia, Universidade Federal do Pará Campus Universitário de Abaetetuba, Abaetetuba,

Pará 68440-000, Brazil

Received: 21 February 2023 / Accepted: 16 April 2023 / Published online: 16 May 2023
© The Author(s) 2023

Abstract In this paper we propose to use the Shapiro time
delay as a tool to distinguish between different black hole
solutions. We calculate the analytic Shapiro time using first
order expansions for four solutions. These are Schwarzschild,
Reissner–Nordström, Bardeen, and Ayón-Beato and García.
We created a numerical experiment based on measurements
in the solar system consisting of the outward and return paths
of light traversing a black hole at the center. We obtained
different delay times on the order of 10−4 s and 10−6 s for a
stellar black hole; and variations on the order of hours for a
supermassive hole. Considering that the accuracies currently
achieved in solar system measurements are on the order of
10−12 s, we believe that this mechanism could be used in the
determination of black hole models in the near future.

1 Introduction

In 1916, Schwarzschild [1] solved Einstein’s new equations
of general relativity [2] and introduced to the world what we
know today as black holes. These physical entities are defined
as a region of spacetime covered by an event horizon from
which not even light can escape [3]. This first exact solu-
tion of Einstein’s equations, the Schwarzschild black hole,
is obtained by considering only mass, there is no angular
momentum and no electric charge, and can therefore be used
as an approximation to describe celestial bodies with low
rotation, for example the Sun or even the Earth. Of course,
it is also possible to obtain more general exact solutions that
take into account rotation, electric or magnetic charge, and
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even both together [4]. Since the 1960s, this area has received
increasing attention due to the discovery of compact objects
and, more recently, the first image of the shadow of a presum-
ably supermassive black hole [5–10]. However, there is an
open problem that still causes discussion among physicists:
the singularity. For example, all the above solutions have a
singularity in the origin.

A curvature singularity is a sudden endpoint of the
geodesics, the equations describing the motion of free par-
ticles in general relativity, at which quantities such as the
density of matter become infinite. There is no definitive con-
sensus on this issue, but most scientists believe that sin-
gularities in general relativity are a mistake because it is
a classical theory. In this sense, an alternative to the prob-
lem is to look for solutions to the Einstein equations that
are free of singularities. The solution proposed by Bardeen
[11] is the first to achieve this goal, but it lacked a plausible
source of matter. Ayón-Beato and García [12] proposed the
first exact regular solution in 1998, which had as its source
a self-gravitating magnetic charge described by nonlinear
electrodynamics [13]. Later, the same authors showed that
Bardeen’s solution can be described in the same way [14],
and it was also realized that one can use nonlinear electro-
dynamics to construct a regular black hole [15]. Now there
are a variety of regular Bardeen-type solutions. Some solu-
tions have electric charge as a source [16,17], and others also
have angular momentum [18,19]. In addition, the solution
has been extended to alternative theories of gravity, such as
the f (r)-theory [20,21], the f (G)-theory [22,23], and rain-
bow gravity [24]. There are also papers in the literature show-
ing how the regularity of the model is lost when a singular
solution is attached to it [25,26].
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A natural question that arises in this context of black holes
is: since these bodies do not emit light, would it be possi-
ble to distinguish between different solutions? Bozza [27],
who studied gravitational lensing in the strong-field limit,
suggested that Very Long Baseline Interferometry (VLBI)
should be able to reconstruct the coefficients of the strong-
field limit and select an accurate black hole model. Compar-
ing the Bardeen and Reissner–Nordström solutions using the
absorption [28] and scattering [29] of planar massless scalar
waves, the authors conclude that the behavior of both is sim-
ilar, especially when high-frequency waves are considered.
In parallel with this result, two papers comparing Reissner–
Nordström and Ayón-Beato and García, considering the anal-
ysis of geodesics and the absorption [30] and then the scat-
tering [31] of a massive scalar field, have suggested that it is
impossible to distinguish regular black hole solutions from
standard solutions. In [32] the conclusion is the same when
comparing Kerr’s solution with regular solutions. In contrast
to this interpretation, Stuchlík and Schee [33] claim that we
can distinguish between shadows produced by a Bardeen and
a Reissner–Nordström black hole due to nonlinear electrody-
namics. This result can be supported by [34], which shows
that black holes described by different solutions do not in
general produce identical shadows.

Besides the already mentioned interactions between black
holes and light – absorption, scattering and shadowing – there
is another interesting effect to analyze: the delay of a light
signal. This phenomenon is known as the Shapiro time delay
[35] and served as the fourth test of general relativity. The
experiment by Shapiro’s group involved measuring the time
for a light signal to be sent from Earth to Venus and reflected
back to Earth while these planets were at superior conjunc-
tion, that is, aligned on a straight line through the Sun. The
prediction of general relativity is that the curvature caused
by the mass, in this case the Sun, causes a time delay com-
pared to the flat case. For the Earth–Venus situation, this
delay should be of the order of [36]

�t � 4GM�
c3

[
ln

(
4DEDV

R2�

)
+ 1

]
, (1)

where G = 6.67408×10−11 N m2/kg2 is the Newton’s con-
stant of universal gravitation, M� = 1.98892×1030 kg is the
solar mass, c = 2.99 × 108 m/s is the speed of light in vac-
uum, DE = 1.495978707 × 1011 m is radius of Earth’s orbit
and DV = 1.08×1011 m is radius of Venus orbit both during
superior conjunction, and R� = 6.957 × 108 m is the solar
radius. These values lead to �t = 252.282 µs and the exper-
imentally measured by Shapiro’s group was approximately
200 µs. At the time, the agreement between the theoretical
prediction and the experimental value was better than 5%.
Latter, the Viking mission to Mars, in 1976, achieved a bet-
ter result than 1% [37]. In 2003, the Cassini spacecraft, in

mission to Saturn, used Shapiro time to measure the PPN
γ parameter, the prediction of general relativity is that it is
unitary, and found γ = 1 + (2.1 ± 2.3) × 10−5 [38].

The Eq. (1) is obtained by considering the Schwarzschild
metric (we will show later in more detail how to obtain
the Shapiro time for any metric), starting from a first-order
expansion with respect to mass, and as we have already men-
tioned, this result agrees well with experimental measure-
ments. However, since we know that almost everything in
the universe is rotating, Dymnikova [39] obtained the time
delay by considering the Kerr metric. Another way to refine
the theoretical prediction is to consider higher order terms in
the expansion in terms of mass [40] or to assume a velocity
for the black hole [41]. Feng and Huang [42] have shown that
this effect can be achieved with a purely optical approach. In
2001, Kopeikin [43] proposed an interesting use for Shapiro
time. He claimed that a measurement of the time delay of
light from a quasar as it passes the planet Jupiter could be
used to measure the gravitational velocity cg . His reason-
ing was that the velocity v of a body such as Jupiter would
cause corrections in Shapiro time on the order of v/cg , which
could make the velocity of gravity different from that of light
cg �= c [44,45]. In 2002, S. M. Kopeikin and E. B. Foma-
lont made precise measurements of the Shapiro delay with
1012 s time accuracy. They claimed that the correction term
is about 20% [46]. Despite the high accuracy in time mea-
surement, Will [47] lastly pointed out that this effect does
not depend on the propagation speed of gravity, but only on
the speed of light. Today, there are other uses for the Shapiro
time delay: it is useful in observing pulsars [48–51]; in mea-
suring the mass of stars [52]; and it can serve as a technique
for studying ultralight dark matter [53,54].

With this context in mind, we will calculate the Shapiro
time delay for four solutions; Schwarzschild, Reissner–
Nordström, Bardeen and Ayón-Beato and García. Then, we
will propose a idealized experiment that consists in measure a
round-trip travel of a light signal sent from a planet to another
when they are in superior conjunction, with the central body
being a black hole described by one of this solutions. We
will study this situation to respond the question: is it pos-
sible to distinguish between different black hole solutions
using the Shapiro time delay? This paper will be organized
as follows: in Sect. 2 we will briefly review the main aspects
of the four solutions that will be discussed; in Sect. 3 we
will calculate the Shapiro time for any metric; in Sect. 4 we
will define and calculate the impact parameter, also for any
metric; in Sect. 5 we will make the comparison for two black
holes with equal event horizons and similar masses; in Sect. 6
we will make the comparison by equalizing both the event
horizon and the masses; and in Sect. 7 we will draw our con-
clusions. We will consider throughout this work the metric
signature (−,+,+,+). Also, we will use, unless otherwise
stated, geometrized units where G = c = 1.
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2 Black hole solutions

In this section we will show how to obtain the solutions that
are used here as examples. Also, we will show some details
about it’s behavior, such as the event horizon and the regu-
larity of spacetime generated by then.

2.1 Schwarzschild

Schwarzschild’s black hole is an exact solution of Einstein’s
field equations for the vacuum. It is a static and spherically
symmetric solution described by a single parameter, the mass
m. In the units we consider, geometrized,it is written as fol-
lows [36]

ds2 = −
(

1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2

+r2dθ2 + r2 sin2 θdφ2. (2)

This solution is singular at the origin, i.e., one or more compo-
nents of the Riemann tensor diverge. A simple way to check
this is to analyze the Kretschmann scalar [55]

K = Rμναβ R
μναβ = 48m2

r6 . (3)

From the above result we see that this scalar diverges when
r → 0. For r = 2m, the component gtt is zero, and the
grr diverges. This coordinate, formerly considered a singu-
larity, is now called the event horizon. The Schwarzschild
solution has only one horizon, while the other solutions we
will consider have two horizons.

2.2 Reissner–Nordström

The Reissner–Nordström metric is a charged, static and
spherically symmetric solution of the Einstein–Maxwell field
equations given by

ds2 = −
(

1 − 2m

r
+ q2

RN

r2

)
dt2 +

(
1 − 2m

r
+ q2

RN

r2

)−1

dr2

+r2dθ2 + r2 sin2 θdφ2. (4)

The parameters that describe it are the electric charge qRN
and the ADM mass m. As we said in the introduction, this
is a singular solution. We can verify this by analyzing the
Kretschmann scalar

K =
4

(
2m
r − q2

RN
r2

)2

+ r4
(

6q2
RN
r4 − 4m

r3

)2

+ 4r2
(

2m
r2 − 2q2

RN
r3

)2

r4 ,

(5)

which diverges when r → 0. This metric has up to two event
horizons, which can be found by −gtt = 0, leading to the
following results

r± = m ±
√
m2 − q2. (6)

Note that the event horizons degenerate to a single one for
a charge called critical or extreme, qextRN = m. Make the
following substitutions x = r/qRN and s = qRN/2m, and
write the auxiliary function leads to

− gtt = A(x, s) ≡ 1 − 1

sx
+ 1

x2 . (7)

If we derive the above expression and equate it to zero, we
find a minimum value xm = 2s. If we then set A(xm, s) = 0,
we find the critical value sc = 1/2. This auxiliary function
has the same behavior as the metric function, i.e., for values
of s < sc we have two event horizons, for s = sc the horizons
degenerate into just one, and when s > sc there is no event
horizon. We plot of the function A(x, s) in Fig. 1.

2.3 Bardeen

The Bardeen regular solution is an exact, static and spheri-
cally symmetric solution of the Einstein equations minimally
coupled with nonlinear electrodynamics. It is given by

ds2 = −
(

1 − 2M(r)

r

)
dt2 +

(
1 − 2M(r)

r

)−1

dr2

+r2dθ2 + r2 sin2 θdφ2, (8)

with

M(r) = 2mr3(
q2
BD + r2

)3/2 , (9)

where s = |qBD|/2m, qBD is the magnetic charge, and m
is the ADM mass. To check the spacetime singularities, we
calculate the Kretschmann scalar [55]

K = 12m2
(
8q8

BD − 4q6
BDr

2 + 47q4
BDr

4 − 12q2
BDr

6 + 4r8
)

(
q2
BD + r2

)7 ,

(10)

which is everywhere. As described in the literature, the func-
tion gtt can be rewritten by the substitutions x = r/|qBD|
and s = |qBD|/2m

− gtt = A(x, s) ≡ 1 − x2

s
(
x2 + 1

)3/2 . (11)

If we derive the above expression and equate it to zero, we
find a minimum value xm = √

2 independently of the value
of s. Then, imposing A(xm, s) = 0 we find the critical value
sc = 2/3

√
3. What happens is that for values of s < sc we

have two event horizons, for s = sc the horizons degenerate
into just one, and when s > sc there is no event horizon.
The function A(x, s) is shown in the Fig. 2. In terms of the
magnetic charge and mass the extremization condition is
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Fig. 1 Graphic representation
of the auxiliary function A(x, s)
for Reissner–Nordström metric

qextBD = 2msc = 4

3
√

3
m. (12)

In summary, the Bardeen solution, the first regular solu-
tion, can be obtained if a self-gravitating magnetic charge is
considered as the source. The action used describes nonlinear
electrodynamics minimally coupled to general relativity. For
more information on this black hole, see [14,28,29,56,57]
and references therein.

2.4 Ayón-Beato and García

The Ayón-Beato and García regular solution is a static, and
spherically symmetric solution of the Einstein equations min-

imally coupled to nonlinear electrodynamics, and it is the firs
exact regular one. It is given by

ds2 = − f (r)dt2 + ( f (r))−1 dr2 + r2dθ2 + r2 sin2 θdφ2,

(13)

with

f (r) = 1 − 2mr2(
q2
ABG + r2

)3/2 + q2
ABGr

2(
q2
ABG + r2

)2 , (14)

where qABG is the electric charge and m is the ADM mass.

Fig. 2 Graphic representation
of the auxiliary function A(x, s)
for Bardeen metric
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The Kretschmann scalar for this metric is

K = 4

(
2m(

q2
ABG + r2

)3/2 − q2
ABG(

q2
ABG + r2

)2
)2

+
16

(
m
(−2q4

ABG − q2
ABGr

2 + r4
)+ q2

ABG(qABG − r)(qABG + r)
√
q2
ABG + r2

)2

(
q2
ABG + r2

)7
+
(

2q2
ABG

(
q4
ABG − 8q2

ABGr
2 + 3r4

)
(
q2
ABG + r2

)4 − 2m
(
2q4

ABG − 11q2
ABGr

2 + 2r4
)

(
q2 + r2

)7/2

)2

, (15)

which is regular in all spacetime. The function gtt can also
be rewritten using the substitutions x = r/|qABG | and s =
|qABG |/2m

− gtt = f (r) = A(x, s) ≡ 1 − x2

s
(
x2 + 1

)3/2

+ x2(
x2 + 1

)2 , (16)

which has only one real value xc and sc, as shown in Fig. 3,
these values can be found by using

A(xc, sc) = 0,
∂A(xc, sc)

∂x
= 0, (17)

and the result is xc ≈ 1.58 and sc ≈ 0.317. The interpretation
of these critical values is: for s > sc there is no event horizon,
for s = sc there is only one degenerated even horizon, and
for s < sc there are two event horizons given by

r± = |qABG |
⎛
⎜⎝
(

1

4s
+

√
u(s)

12s
±

√
6

12s

(
9

2
− 12s2

−u(s)

6
− 9(12s2 − 1)√

u(s)

)1/2
)2

− 1

⎞
⎠

1/2

, (18)

where

u(s) = 6

(
3

2
− 4s2 + sv(s)1/3 − 4s

(
11s2 − 3

)
v(s)1/3

)
, (19)

and

v(s) = 4
(

9s + 74s3 +
√

27(400s6 − 112s4 + 47s2 − 4)
)

.

(20)

In terms of electric charge and mass we have qextABG ≈
0.634m.

In short, the black hole of Ayón-Beato and García is the
first exact regular solution of the Einstein equations, as can
be seen in (15). It is obtained using the non linear electrody-
namics minimally coupled to general relativity, and has an

electric field as its source. Further explanation of this solution
can be found in [12,30,31] and the references therein.

3 Shapiro time for a general metric

The equations of motion for free particles in general relativity
are the so-called geodesic equations. They are the general-
ization of the straight line to curved spacetime. To obtain
the Shapiro time delay, we must first set up this equation for
photons. The null radial geodesic equation is [36]

gμν ẋ
μ ẋν = 0, (21)

for a general static and spherically symmetric spacetime we
have

gtt ṫ
2 + grr ṙ

2 + gθθ θ̇
2 + gφφφ̇2 = 0, (22)

where the dot signifies a differentiation with respect to the
affine parameter. Assuming that the geodesic is in the equa-
torial plane θ = π/2 and the specific static and spherically
symmetric configuration is given by

ds2 = −B(r)dt2 + A(r)dr2 + C(r)
(
dθ2 + sin2 θdφ2

)
,

(23)

the path of a light ray is described by [58,59]

− B(r)ṫ2 + A(r)ṙ2 + C(r)φ̇2 = 0. (24)

This movement has two conserved quantities: the total
energy, and the angular momentum. They are [60]

E = B(r)ṫ, (25)

L = C(r)φ̇. (26)

With Eqs. (24)–(26) we can write

dφ

dr
= 1

C(r)

[
1

A(r)B(r)

(
1

b2 − B(r)

C(r)

)]−1/2

, (27)

where b ≡ L/E is the impact parameter. We will explain
this quantity in more detail in the next section. When the
light reaches the closest approach to the black hole r = d,
we have dr/dφ = 0, i.e

b =
√
C(d)

B(d)
. (28)
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Fig. 3 Graphic representation
of the auxiliary function A(x, s)
for Ayón-Beato and García
metric

Collecting (25), (26), (27) and (28) into the geodesic equation
(24) we get

dt

dr
= 1

b

√
A(r)

B(r)

[
1

b2 − B(r)

C(r)

]−1/2

. (29)

Then, the total time between the closest approach d and a
point r1 is

t (r1, d) = 1

b

∫ r1

d

√
A(r)

B(r)

[
1

b2 − B(r)

C(r)

]−1/2

dr, (30)

from now on we have to choose specific functions for
A(r), B(r) andC(r). Let us consider the Schwarzschild solu-
tion, which is a good approximation for the solar system. The
Eq. (23) for this solution is

ds2 = −
(

1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2

+r2
(
dθ2 + sin2 θdφ2

)
, (31)

then (30) is

t (r1, d) =
∫ r1

d

r2√(d − 2m) rdr

(r − 2m)
√

2d3m − d3r + r3(d − 2m)
,

(32)

although the above integral can be solved analytically [61],
we will use a Taylor series expansion, so that the total time

t (r1, d) =
√
r2

1 − d2 + m

(
r1 − d

r1 + d

)1/2

+2m ln

⎛
⎝r1 +

√
r2

1 − d2

d

⎞
⎠+ O(m2). (33)

Note that the first term of (33) is the result for flat spacetime.
The time required for a light signal to travel from one point

r1 to another point r2 and back for r1 is

TSC = 2 (t (r1, d) + t (r2, d)) (34)

i.e.

TSC = 2

(√
r2

1 − d2 +
√
r2

2 − d2

)

+ 2m

[(
r1 − d

r1 + d

)1/2

+
(
r2 − d

r1 + d

)1/2]

+ 4m ln

⎡
⎣
⎛
⎝r1 +

√
r2

1 − d2

d

⎞
⎠
⎛
⎝r2 +

√
r2

2 − d2

d

⎞
⎠
⎤
⎦.

(35)

Assuming that r1 > r2 	 d, the time delay (just subtract the
part related to the flat case from the total) is

�TSC � 4m
[
ln

(
4r1r2

d2

)
+ 1
]
, (36)

which exactly corresponds to (1) in the international system
of units. We see that the Shapiro time increases with mass
and distances r1 and r2.

4 Impact parameter

In the previous section we used in our calculations the quan-
tity b ≡ L/E , which is the effect parameter. In this section
we will show how to obtain it for the general metric. First,
however, it is important to clarify why you need to obtain
this parameter. The same approach, i.e. d = R� as for the
Sun, is impossible for the black hole case. One could be naive
and take d = r+ for this case. However, as we will show in
a moment, the light (or particle) is absorbed when it is sent
from a distance smaller than the critical impact parameter bc,
which is always larger than the event horizon. Since Shapiro’s
experiment is that the light is only slightly deflected by the
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massive body, we need to know bc for each black hole in
order to choose d accordingly.

To start, we choose the equatorial plane where θ = π/2,
we have from (22)

gtt ṫ
2 + grr ṙ

2 + gφφφ̇2 = 0, (37)

we also have the conserved quantities, energy and momen-
tum, respectively given by

gtt ṫ = E, (38)

gφφφ̇ = L . (39)

Substituting these quantities into (37) we have

ṙ2 = E2 − Vef f (r), (40)

where Vef f (r) = (−gtt/r2)L2. Now, we will look for unsta-
ble photon orbits given by the conditions

dVef f (rc)

dr
= 0, (41)

and

d2Vef f (rc)

dr2 < 0. (42)

In the above equations rc is called the capture radius, this
nomenclature will be justified in a moment. The first equation
leads to

rcg
′
t t − 2gtt = 0, (43)

where the prime denotes a derivative with respect to the radial
coordinate. And the second one is

rcg
′′
t t − g′

t t < 0. (44)

For Schwarzschild solution (2), for example, we have

Vef f (r) = L2
(
1 − 2m

r

)
r2 (45)

and by applying (41) we get rc = 3m which leads to

d2Vef f (rc)

dr2 = − 2L2

81m4 , (46)

since L andm are positive quantities, (42) is satisfied. Having
found the capture radius, we choose E = Vef f (rc) and obtain

φ̇(rc) = E

( −1

gtt gφφ

)1/2

, (47)

since the definition of the impact parameter b ≡ L/E , we
have that its value considering r = rc is

bc = L(rc)

E(rc)
= gφφ

( −1

gtt gφφ

)1/2

|r=rc . (48)

For the Schwarzschild solution bc = 3
√

3m. We know that
the radius of the event horizon for this solution is r = 2m,
then the capture radius rc and the critical impact parameter

bc are larger. In the Fig. 4 we illustrate the situation of light
rays emitted from a point P1 with different impact param-
eters. The black line corresponds to the event horizon of a
Schwarzschild black hole. Note that forb = bc, the red dotted
line, the photons are trapped and begin to orbit the black hole
with radius r = rc (the capture radius), in which case it is an
unstable orbit. When light is sent with b < bc, it is absorbed
by the black hole, green line. However, if we consider b > bc,
blue line, the trajectory is only slightly deflected and the rays
can escape the gravity of the black hole and reach the point
P2.

5 Comparison between two black holes with the same
event horizon and similar masses

In this section, we begin by comparing the Shapiro time
for different black hole solutions. It should be recalled that
our goal is to see if it is possible to distinguish two black
holes using this feature. To begin, we will compare the
Schwarzschild and Reissner–Nordström solutions.

It would be interesting if we could make the event horizons
and masses the same. However, if we presuppose that the
horizons are equal and write the equation like this

2m1 = m2 +
√
m2

2 − q2
RN , (49)

where m1 and m2 are the masses of the Schwarzschild and
Reissner–Nordström black holes, respectively. Solving (49),
we find that the charge qRN is equal to

qRN = 2
√
m1m2 − m2

1, (50)

this result implies that m1 < m2 < 2m1.Therefore, the com-
parison is considered a proximate mass.

The situation under consideration is: what is the time delay
of a light signal moving back and forth from a planet P1 of
radius r1 to another planet P2 of radius r2. We assume that
the planets are in superior conjunction, and r1 > r2 	 d,
where d is the distance of closest approach to the black hole
located between the planets. We will always assume that d
is larger than the critical impact parameter bc of the consid-
ered solutions, so that we are dealing with a situation sim-
ilar to that in the Fig. 4. We emphasize that this model is
far idealized compared to the models used to measure the
Shapiro effect in the solar system, but it is a good approxi-
mation to answer our motivating question. We have already
calculated the total travel time (35) and the delay (36) for
the Schwarzschild black hole. Before attempting to compute
the integral (30) for the metric (4), we need to make a small
adjustment since the Taylor series expansion gives an incon-
sistent result with respect to the mass. We expect the time
found for the Reissner–Nordström solution to be the same
as (35) at the limit qRN → 0, but we do not find that using
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Fig. 4 Graphical representation
of the light path, considering the
Schwarzschild black hole, for
different values of the impact
parameter

the mass expansion to solve the integral (30). So we use the
metric as

B(r) = 1 − 2Gm1

r
+ Gq2

RN

r2 ,

A(r) = B(r)−1,

C(r) = r2. (51)

The justification for this insight is that, in the S.I., we have

− gtt = 1 − 2Gm1

c2r
(52)

for the Schwarzschild, and in this case the expansion men-
tioned in Sect. 3 is the same whether we consider m1 or G.
If we substitute (51) into (30), we get

t (r1, d) =
∫ r1

d

r4

G
(
q2
RN − 2m2r

)+ r2

×
(
d2r4 − (d4

(
G
(
q2
RN − 2m2r

)+ r2
))− 2dGm2r4 + Gq2

RN r
4

d2 − 2dGm2 + Gq2
RN

)−1/2

dr,

(53)

and after a Taylor series expansion we can integrate the above
equation and get

t (r1, d) =
√
r2

1 − d2 −
3Gq2

RN cot−1

(
d√

r2
1 −d2

)

2d

+Gm2

(
r1 − d

r1 + d

)1/2

+ 4Gm2 tanh−1

×
(√

r1 − d

r1 + d

)
+ O(G2). (54)

Note that if we put qRN = 0 and G = 1 in (54) the result
will be exactly (33) [62]. Note that

tanh−1(u) = 1

2
ln

(
1 + u

1 − u

)
. (55)

The total travel time is

TRN = 2 (t (r1, d) + t (r2, d)) = 2

(√
r2

1 − d2 +
√
r2

2 − d2

)

−
3Gq2

RN

[
cot−1

(
d√

r2
1 −d2

)
+ cot−1

(
d√

r2
2 −d2

)]

d

+2Gm2

[(
r1 − d

r1 + d

)1/2

+
(
r2 − d

r2 + d

)1/2]

+8Gm2

[
tanh−1

(√
r1 − d

r1 + d

)
+ tanh−1

(√
r2 − d

r2 + d

)]
,

(56)

and the Shapiro time delay, with r1 	 d and r2 	 d is,

�TRN = 4Gm2

[
ln

(
4r1r2

d2

)
+ 1

]

+3Gq2
RN

(
1

r1
+ 1

r2
− π

d

)
. (57)

The part of the charge in the above equation has a negative
sign, so it reduces the difference between the total relativis-
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tic time and the time for the plane case. If we consider the
expressions (54), (57), and the expressions referring to the
Schwarzschild solution (35) and (36), we might try to con-
clude that it is indeed possible to distinguish them by experi-
ments with round-trip light signals. But this would be a hasty
conclusion, because such measurements have a certain accu-
racy limit, which does not always meet the requirements of
the theoretical model.

The last step before the numerical comparison is to calcu-
late the critical impact parameter for the Reissner–Nordström
solution. Following the procedure described in Sect. 4, one
finds

bRNc = 1

2

(√
9m2

2 − 8q2
RN + 3m2

)2

√√√√√ 1

2m2

(√
9m2

2 − 8q2
RN + 3m2

)
− 4q2

RN

. (58)

Let us now compare the Shapiro time delay for these two
solutions. Since we are going to make a numerical compari-
son, we choose the values of some constants. We have chosen
the masses as

m1 = 6.0 × M ′�,

m2 = 6.1 × M ′�, (59)

where M ′� is the solar mass in the geometrized units

M ′� = M�
c2G−1

= 1.98892 × 1030kg(
2.99 × 108m/s

)2 (6.67408 × 10−11Nm2/kg2
)−1

= 1484.06m. (60)

We affirm that geometrized units are powers of length (m).
The masses in (59) are characteristic of so-called stellar black
holes, they lead, when put into (50), to the charge qRN =
2299.1. That is, these choices lead to the following event
horizons

2m1 = 17808.8,

m2 +
√
m2

2 − q2
RN = 17808.8. (61)

Furthermore, the critical impact parameters for both solutions
are

bSCc = 46268.6,

bRNc = 46527.5. (62)

Given these values, we choose d = 46600. This value is
nothing special compared to all others larger than 46527.5,
the value of the largest critical impact parameter considered.
The distances between the planets and d will be

r1 = 2.0 × 104d,

r2 = 1.0 × 104d. (63)

In this case we stick to the relations r1 > r2 	 d. These
distances are on the order of 108 m, so the travel time between
them is on the order of seconds. Note that, again, there is
nothing special about these specific selections. Moreover,
there is no realistic scenario associated with these choices,
we just have to choose values that are associated with (36)
and (57). Then we have

�TSC = 765782, (64)

and

�TRN = 778010. (65)

We can already see that there is a difference in the result of
the solutions, but the interpretation based on the geometrized
units is not our subject. To convert time to the international
system of units (S.I.), simply divide the value in geometric
units by c (speed of light in vacuum). So in S.I. we have

�T ′
SC = �TSC

c
= 2.55261 × 10−3 s, (66)

and

�T ′
RN = �TRN

c
= 2.59337 × 10−3 s. (67)

Note that the difference in the Shapiro time delay for these
solutions is on the order of 10−5 s. Our optical clocks on the
ground have sufficient precision to measure this time [63–
65]. So in this idealized situation, the solutions are distin-
guishable by the Shapiro delay time. But in a realistic situ-
ation, of course, this experiment would require a more pre-
cise model, and this time scale might be difficult to achieve.
Instead of choosing arbitrary distances and masses, you can
use the values from the Earth–Sun–Venus case. Note, how-
ever, that this would not lead to a better or even more realistic
result than the one presented above. There would also be a
difference found between the delay times, only they would
be smaller than those we found here. There is a way to make
the difference between the times larger than those found in
the previous example. If we look at the expressions (36) and
(57), we find that the delay is proportional to the mass. So let
us check how the Shapiro time is for a supermassive black
hole. For this purpose, we will now choose

m1 = 3.4 × 109 × M ′�,

m2 = 3.6 × 109 × M ′�, (68)

then we have qRN = 2.44758 × 1012, and

bSCc = 2.62189 × 1013,

bRNc = 2.67467 × 1013. (69)

Considering these values, we choose d = 2.7 × 1013 (again,
we have free choice for this distance as long as the no-return
condition is observed d > bc), r1 = 2.0 × 102d, and r2 =
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1.0 × 102d. In this example, the closest approach is on the
order of 1013 m, i.e., two orders of magnitude greater than
the distances in the Earth–Sun–Venus experiment. For this
reason, we have chosen r1 and r2 such that the distances can
be traveled with light on a time scale of years (1015 m leads
to a time travel of about 1.05 years). Of course, since these
parameters are the same for both types of black holes, our
object of study does not depend on this choice. However, we
know that in a real observational situation we are limited to
the human time scale. Moreover, we know that observations
made from very distant regions (outside the solar system)
have more complications and experimental errors than those
made at shorter distances. Thus we have that the time delays
are

�T ′
SC = 826827 s ≈ 9.6 days, (70)

and

�T ′
RN = 872012 s ≈ 10.1 days. (71)

An important detail is that in the two cases considered, the
delay of the Reissner–Nordström black hole was larger. This
was to be expected since we consider m2 > qRN for both
examples and this implies that the mass term dominates the
Eq. (57). As we can see, the difference in time delay is now
on the order of hours. In Figs. 5 and 6 we show the time delay
for a set of values of r1, r2 with fixed masses, charge, and d.
It is interesting to realize that in this case the mass term in the
expression (57) prevails, therefore the Reissner–Nordström
solution present a larger delay than the Schwarzschild. In
Figs. 7 and 8 we vary the mass and the distance r1. As
we expected when considering the analytic expressions, the
Shapiro time increases when we increase the mass or the dis-
tances r1 and r2. These four figures also show that we are
free to choose the parameters. The values are slightly differ-
ent, but the behavior of the Shapiro time is practically the
same for both solutions. This is also true for the regular solu-
tions, which we will discuss in the next section. Therefore,
we will not make these diagrams for them, as this would be
a repetition.

6 Comparison between three black holes with the same
event horizon and masses

In this section we will compare the Shapiro time for the
solutions of Reissner–Nordström, Bardeen and Ayón-Beato
and García (ABG). For the first one, we already have the
necessary expressions. For the Bardeen metric, the Eq. (30)
becomes

t (r1, d) =
∫ r1

d

⎛
⎜⎜⎝

1
d2 − 2m3(

d2+q2
BD

)3/2

2m3

(
1(

q2
BD+r2

)3/2 − 1(
d2+q2

BD

)3/2

)
+ 1

d2 − 1
r2

⎞
⎟⎟⎠

1/2

(
1 − 2m3r2(

q2
BD + r2

)3/2

)−1

dr, (72)

wherem3 is the mass and qBD is the magnetic charge. Again,
we use a Taylor series expansion to solve the integral, which
leads to the following result

t (r1, d) =
√
r2

1 − d2 −
m3q2

BD

(
3d2 + 2q2

BD

)√
r2

1 − d2

(
d2 + q2

BD

)2√
r2

1 + q2
BD

+2m3 ln

(√
r2

1 − d2 +
√
r2

1 + q2
BD

)
− 2m3 ln

(
d2 + q2

BD

)

+
d4m3

√
r2

1 + q2
BD√

r2
1 − d2

(
d2 + q2

BD

)2
− d4m3√

r2
1 − d2

(
d2 + q2

BD

)3/2
+ O(m2). (73)

This is the time required for light to travel from the point
of closest approach d to the general point r1. Consider the
same situation as in the previous section, i.e., the light is sent
from one planet at r1 to another at r2, these bodies being at
superior conjunction, and reflected back to r1; the total time
is 2 (t (r1, d) + t (r2, d)). Then we have

TBD = 2

(√
r2

1 − d2 +
√
r2

2 − d2

)

−2m3q2
BD

(
3d2 + 2q2

BD

)
(
d2 + q2

BD

)2
⎛
⎝
√
r2

1 − d2√
r2

1 + q2
BD

+
√
r2

2 − d2√
r2

2 + q2
BD

⎞
⎠

−4m3 ln
(
d2 + q2

BD

)
+4m3 ln

[(√
r2

1 − d2 +
√
r2

1 + q2
BD

)(√
r2

2 − d2 +
√
r2

2 + q2
BD

)]

+ 2d4m3(
d2 + q2

BD

)2
⎛
⎝
√
r2

1 + q2
BD√

r2
1 − d2

+
√
r2

2 + q2
BD√

r2
2 − d2

⎞
⎠

− 2d4m3(
d2 + q2

BD

)3/2

⎛
⎝ 1√

r2
1 − d2

+ 1√
r2

2 − d2

⎞
⎠ . (74)

The effect we are concerned with here is only the relativistic
travel time delay in comparison to the flat case, which is

�TBD = 2

⎡
⎢⎢⎣− 2m3 ln

(
d2 + q2

BD

)

−2m3

⎛
⎜⎜⎝ 1√

q2
BD
r2

1
+ 1

+ 1√
q2
BD
r2

2
+ 1

⎞
⎟⎟⎠
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Fig. 5 Graphical representation
of the delay time (in hours) of
the Schwarzschild solution, with
m1 = 3.4 × 109 × M ′� and
d = 2.7 × 1013. We adjust
100d < r1 < 2 × 103d and
100d < r2 < 1 × 103d

Fig. 6 Graphical representation
of the delay time (in hours) of
the Reissner–Nordström
solution, with
m2 = 3.6 × 109 × M ′�,
qRN = 2.44758 × 1012 and
d = 2.7 × 1013. We adjust
100d < r1 < 2 × 103d and
100d < r2 < 1 × 103d
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Fig. 7 Graphical representation
of the delay time (in hours) of
the Schwarzschild solution, with
d = 2.7 × 1013, and r2 = 102d.
The mass m1 is varying in an
interval from m1 = 106 × M�
to m1 = 109 × M�

Fig. 8 Graphical representation
of the delay time (in hours) of
the Reissner–Nordström
solution, with d = 2.7 × 1013,
qRN = 1.9 × 1011, and
r2 = 102d. The mass m2 is
varying in an interval from
m2 = 106 × M� to
m2 = 109 × M�
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+2m3 ln

((
r1

√
q2
BD

r2
1

+ 1 + r1

)

×
(
r2

√
q2
BD

r2
2

+ 1 + r2

))⎤⎥⎥⎦ , (75)

where we use the approximation r1 	 d and r2 	 d. It is
worth noting that, as expected, both (73) and (75) give the
same results as in the Schwarzschild case when the magnetic
charge is zero.

For the ABG solution (14) we have the same integrand
as (53), this is of course the same consideration as using
the Taylor series expansion for the gravitational constant G
instead of the black hole mass. So the result is

t (r1, d) =
√
r2

1 − d2 −
3Gq2

ABG cot−1

(
d√

r2
1 −d2

)

2d

+Gm4

(
r1 − d

r1 + d

)1/2

+ 4Gm4 tanh−1

(√
r1 − d

r1 + d

)
+ O(G2),

(76)

where m4 is the mass and qABG is the electric charge. Con-
sidering the same situation as above, the total time is

TABG = 2

(√
r2

1 − d2 +
√
r2

2 − d2

)

−
3Gq2

ABG

[
cot−1

(
d√

r2
1 −d2

)
+ cot−1

(
d√

r2
2 −d2

)]

d

+2Gm4

[(
r1 − d

r1 + d

)1/2

+
(
r2 − d

r2 + d

)1/2]

+8Gm4

[
tanh−1

(√
r1 − d

r1 + d

)
+ tanh−1

(√
r2 − d

r2 + d

)]
,

(77)

and the Shapiro time delay, with r1 	 d and r2 	 d, is

�TABG = 4Gm4

[
ln

(
4r1r2

d2

)
+ 1

]

+3Gq2
ABG

(
1

r1
+ 1

r2
− π

d

)
. (78)

Note that the Shapiro time for Reissner–Nordström and
ABG would be the same only if we consider a situation where
m2 = m4 and qRN = qABG . Since we choose to align the
masses and event horizons, we will have different charges,
and thus the times will be different.

To begin with, we will choose the masses as

m2 = m3 = m4 = 6.1 × M ′�, (79)

and the event horizon for all three solutions

r+ = 17808.8. (80)

These choices immediately lead to

qRN = 2299.1. (81)

We can calculate numerically the other charges qBD and
qABG

qBD = 1874.62, qABG = 1454.32. (82)

The critical impact parameters are

bRNc = 46527.5,

bBD
c = 42464.2,

bABGc = 42538.7. (83)

From the same intuition as in the previous section, we choose
d = 46600 since it is larger than these three values. The radii
of the planets will be

r1 = 2.0 × 104d,

r2 = 1.0 × 104d. (84)

We have compiled the results obtained by these decisions
in the Table 1. Recall that in the examples we chose the same
event horizon for the 4 solutions and the same distances r1, r2,
and d. Also note that when the unit is not specified, we con-
sider geometrized units. Namely, mass, charge, and time have
the unit of length (m). As we can see, for stellar black hole
magnitudes, there is no difference in the results down to the
order of milliseconds. The shortest delay was for the Bardeen
solution and the longest for the Reissner–Nordström. This
is interesting because it shows that even when the critical
charge condition is met, qBD < 4/3

√
3m3,and has a slightly

larger mass; in the Bardeen solution, the delay is smaller
than in Schwarzschild. This is due to the negative compo-
nents in the expression (75), which are always associated
with the magnetic charge. The results we obtained for the
Reissner–Nordström and ABG solutions were most similar,
which was to be expected since their analytical expressions
(54) and (76) are identical. To justify once again our freedom
in the choice of parameters, we show in Table 2 (the masses
and charges are the same as in this example) the Shapiro time
of these 3 solutions for a range of d, r1 and r2. In this table
r1 = 120d, 240d, 350d and r2 = 100d, 200d, 300d for each
d value. We can also see that the Shapiro time is proportional
to these parameters.

If we now consider supermassive black holes, with the
masses

m2 = m3 = m4 = 3.6 × 109 × M ′�, (85)

and event horizon

r+ = 1.00916 × 1013. (86)
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Furthermore, we use the same values for the distances as in
the last section, i.e.

d = 2.7 × 1013,

r1 = 2.0 × 102d,

r2 = 1.0 × 102d. (87)

We have the following results shown in the Table 3. The event
horizon for the 4 solutions and the distances r1, r2 and d are
identical. The Bardeen solution had the shortest delay, and the
ABG solution had the longest. The difference between these
results is about 58.7 h. All of the delays were on the order
of days. This is because the expressions are proportional to
mass and we are working with masses billions of times larger
than the mass of the Sun. The density plots Figs. 5, 6, 7 and 8
show the dependence of the Shapiro time on the distances
r1 and r2, and on the masses. As we can see, there is noth-
ing special about the choice of these parameters, they are
simply values that satisfy the conditions imposed. Any other
choice, whether it comes from a real situation or not, leads
to the same results that we find in our particular example.
The same is true for stellar black holes, as we can see in
Table 2. To return to our motivating question: Is it possible to
distinguish between different black hole solutions using the
Shapiro time delay? We conclude that the solutions are ana-
lytically distinguishable, except for Reissner–Nordström and
Ayón-Beato and García, which are identical. Moreover, they
are distinguishable even considering an idealized numerical
model.

7 Conclusion

In this work, the Shapiro time delay is calculated for
four solutions to investigate whether it is possible to dis-
tinguish between them. The motivation came from the
idea, which appears in some papers, that regular solutions
are indistinguishable from standard solutions [30,31]. Of
course, there are also mentions to the contrary [33,34];
the results here point in that direction. The solutions used
were Schwarzschild (mass only), Reissner–Nordström (RN)
(mass and electric charge), Bardeen (mass and magnetic
charge), and Ayón-Beato and García (ABG) (mass and elec-
tric charge). The Schwarzschild and RN black holes are sin-
gular, while the Bardeen and ABG black holes are regular.
We point out here some of the main features of these solu-
tions. We also show how to obtain the Shapiro time for any
metric. This topic is widely used in the literature and is even
covered in some textbooks, since it is one of the tests of gen-
eral relativity. However, as far as we know, this is the first
time that the Shapiro time has been calculated for Bardeen
and ABG solutions.

We started in Sect. 2 to show the metric and some prop-
erties of the black hole solutions we will use. In Sect. 3 we
assume an idealized situation similar to the one used in exper-
iments to test general relativity [37]. Therefore, we are trying
to calculate the time it takes for a light signal to travel from
one planet to another when they are in a configuration called
a Superior Conjunction, i.e., when they form a straight line
passing through a more massive body in between (the Sun, a
star, or a black hole). The calculated time is longer than if the
massive body were not present, i.e., there is a delay in rela-
tivistic time relative to time for flat space. In other words: We
show how to calculate the Shapiro time delay for a general
static and spherically symmetric metric. The result depends
on the parameters of the solution; in the Schwarzschild case,
we have only the mass, the distance of closest approach to
the central body d, and the distances from d to the planets,
denoted r1 and r2.

To compare the observational result with his theoretical
prediction, Shapiro used d = R� [36], in the case of black
holes d = r+ would then be most intuitive. However, as we
showed in Sect. 4, photons are captured by these bodies at
distances less than or equal to the critical impact parame-
ter, which is usually larger than the event horizon. We cal-
culate the critical impact parameters for general static and
spherically symmetric metrics, and in our further numerical
examples we choose d to be larger than bc of the solutions
in question.

In Sect. 5 we compare the Shapiro time of Schwarzschild
and RN solutions. The analytical results for the time delay
were obtained by considering first order expansions of the
mass, Schwarzschild, and the gravitational constant G, RN.
The expression for the RN solution returns the Schwarzschild
expression when the charge is zero, and we found that the
result is symmetric at charge q → −q and that it acts to
decrease the delay. There could be a configuration of charge
and mass where the relativistic time is smaller than the flat
time, but we ruled out this possibility of a lead by always con-
sidering charges smaller than the critical one. We performed
two types of numerical examples, one for masses on the order
of the solar mass, stellar black holes, and another for masses
billions of times larger than the solar mass, supermassive
black holes. We chose the values for the masses considering
the condition (50) and then found the value of the charge of
the RN solution, which assumes that both bodies have the
same event horizon. With the value chosen for the masses,
we calculate the critical impact parameter for both solutions
and choose d, r1 and r2. We find a difference in the delay
time of the order of 10−5s for the first example. Since the
expressions (36) and (57) are proportional to mass, we find a
difference in delay time on the order of hours for the second
example.

In Sect. 6 we compare RN, Bardeen and ABG solutions.
Analytical results for the Shapiro time delay were obtained
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Table 1 Stellar black holes
Solution Mass

(
M ′�
)

Charge (m) Total time (s) Delay time (ms)

Schwarzschild 6.0 0 9.32 2.55261

Reissner–Nordström 6.1 2299.1 9.32 2.59337

Bardeen 6.1 1874.62 9.32 2.23284

ABG 6.1 1454.32 9.32 2.59159

Table 2 Dependence of the
Shapiro time delay (in seconds)
on distances

d r1 r2 �T ′
RN �T ′

BD �T ′
ABG

46600 5592000 4660000 0.00141822 0.00105946 0.00142035

46600 11184000 9320000 0.00158554 0.00122679 0.00158768

46600 16310000 13980000 0.00168002 0.00132127 0.00168216

60000 7200000 6000000 0.00141901 0.00105954 0.00142067

60000 14400000 12000000 0.00158634 0.00122687 0.00158799

60000 21000000 18000000 0.00168082 0.00132135 0.00168247

74000 8880000 7400000 0.00141954 0.00105958 0.00142087

74000 17760000 14800000 0.00158686 0.00122691 0.0015882

74000 25900000 22200000 0.00168134 0.00132139 0.00168268

90000 10800000 9000000 0.00141993 0.0010596 0.00142103

90000 21600000 18000000 0.00158726 0.00122693 0.00158836

90000 31500000 27000000 0.00168174 0.00132142 0.00168284

Table 3 Supermassive black
holes

Solution Mass
(
109 × M ′�

)
Charge (m) Total time (s) Delay time (s)

Schwarzschild 3.4 0 5.4825 × 107 826827

Reissner–Nordström 3.6 2.44758 × 1012 5.48666 × 107 868527

Bardeen 3.6 1.98887 × 1012 5.48713 × 107 661373

ABG 3.6 1.54885 × 1012 5.48708 × 107 872686

by considering first order expansions for the mass, Bardeen,
and gravitational constant G, RN and ABG. The expressions
for all charged solutions yield the Schwarzschild expression
when the charge is zero. Moreover, they have a symmetry
at charge q → −q, and this acts to reduce the retardation.
This is an effect opposite to that of mass. For the numerical
analysis we proceed similarly to the previous section, except
that now the masses of the black holes are equal. With this,
we have calculated the charges and chosen the same value
for the event horizon that we found earlier. The solutions of
RN and ABG, which have the same expressions for the travel
time, had different electric charges. Nevertheless, the times
found for these solutions were closest. For example, the time
delay considering the stellar black hole can only be shifted
on the order of microseconds (10−6 s). Bardeen’s solution
produced the smallest time delay in the two cases considered.
This shows that the magnetic charge has an opposite effect to
the mass, i.e., it decreases the travel time. In fact, this is also
true for the electric charges in (57) and (78), but the numer-
ical values we chose and the critical charge limit caused the
mass term to dominate these expressions. We compiled all

the information in Tables 1 and 3. Although we used an ide-
alized numerical model, we believe that the Shapiro time can
be used to distinguish between different types of black holes.

In a future work, we hope to improve our results by using
larger orders of approximation and adding the correction for
velocity terms v/c [41]. This could, for example, lead to an
analytical difference in the results of Reissner–Nordström
and Ayón-Beato and García. Another perspective is to con-
sider what effect rotation has on the Shapiro time delay. There
are already some regular solutions involving rotation [66–
68]; and a recent work [32] has shown by shadow analysis
that Bardeen-type, Hayward-type [69], and Culetu-type [70]
solutions with rotation are indistinguishable from the Kerr
solution.
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