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Abstract The recent developments related to the black hole
information paradox have brought us a confusing object: the
replica wormhole. We are trying to better understand the
object from the viewpoint of the thermo-mixed double and
spontaneous symmetry breaking. In this paper, we show that
the replica wormhole can be regarded as a transition between
different degenerate vacua, and the corresponding gravita-
tional partition function should be controlled by the manifold
of the degenerate vacua. We also check the wormhole par-
tition function in two-dimensional Jackiw–Teitelboim grav-
ity and show that the wormhole saddle is indeed controlled
by the dimension of the degenerate vacua. Moreover, it is
suggested that the replica wormhole geometries connecting
different vacua can be related to the measurement process of
soft hair that compares different vacuum configurations.

1 Introduction

The black hole information paradox (BHIP) is a longstand-
ing problem regarding the evolution of black hole systems,
and we have seen exciting progress [1–7] in recent years.
The Page cure [8,9] was derived from the quantum extremal
surface prescription [10–16], and extra “island” contribution
to the radiation entropy was the key ingredient for deriving
the Page cure. When using the replica trick and Euclidean
path integral to derive the island rule, the authors of [5,6]
have found replica wormhole saddles which play a vital role
in getting the Page curve.

Then, the most crucial question to ask is: how should we
understand the replica wormhole? The replica ansatz [17,18]
provided a way of understanding the replica wormhole by
relating the n-fold wormhole and the thermo-mixed double
state. In this paper, we will use a similar idea and show that the
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replica wormhole can be understood as a transition between
different degenerate vacua.

Such ideas are well-motivated because it is natural to relate
the wormhole saddle that decreases the radiation entropy and
measurement process in soft BHIP story [19–21]. In QFT, the
spontaneous symmetry breaking (SSB) of the global sym-
metry forms superselection sectors of Hilbert space, and no
renormalizable operator can move the system between differ-
ent sectors. However, as told by Hawking-Perry-Strominger
(HPS) [22,23], there are infinite degenerate vacua at null
boundaries because of the SSB of large gauge symmetry,
and no superselection sector is formed (related properties at
black hole horizon were analyzed in [24,25]). The degener-
ate vacua are labeled by local functions, such as f (zA) on the
celestial sphere. It was suggested in the soft BHIP [19–21]
that measurement processes that compare different functions
f (zA) can decrease the entropy of a black hole system. The
Hawking radiation process can increase the entropy by pro-
ducing new radiations, while the soft hair measurement pro-
cess can decrease the entropy by comparing different f s. The
competition between the Hawking radiation and measure-
ment process gives rise to the Page curve consistent with uni-
tary evolution [20]. The argument shown in [19–21] is sim-
ilar to the competition between connected and disconnected
geometries shown in [5,6]. The disconnected “Hawking sad-
dles” increase the entropy of the radiation and the black hole,
while the connected “wormhole saddles” decrease the cor-
responding entropy. The aim of the study is to find a clear
connection between the recent developments on Euclidean
gravitational path integral and the soft BHIP story.

We explicitly show the relation between the replica worm-
hole and degenerate vacua in this paper. By a careful study
of the thermo-mixed double and wormhole saddle, we show
there can be different vacua on different boundaries of the
wormhole saddle as opposed to the black hole partition func-
tion. Moreover, the wormhole partition function should be
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proportional to the number of possible vacua and the replica
wormhole geometry in calculating the radiation entropy
should be regarded as a process that decreases the entropy.
We then check the partition function of the wormhole saddle
in two-dimensional Jackiw–Teitelboim (JT) gravity, which
serves as evidence for the proposal.

In this paper, we explore how should we understand replica
wormholes. The paper is organized as follows. In Sect. 2,
we offer a basic overview of how the replica wormhole
arises. Then, Sect. 3 provides the argument on how to treat
the replica wormholes as a transition from different degen-
erate vacua. Section 4 checks the above proposal in two-
dimensional JT gravity. We summarize the paper and dis-
cuss further issues in Sect. 5. The Appendix A reviews the
basic concepts of the Euclidean path integral and black hole
thermodynamics.

2 Replica wormholes

In this section, following [5], we will see how the replica
wormhole makes its appearance in the argument of the BHIP.
The basics of the Euclidean path integral are reviewed in
Appendix A. We are going to use |Ψ 〉 to denote the pure
system composing a black hole and radiation. Then we can
trace out the black hole system to calculate the fine-grained
entropy of the radiation. The state |Ψ 〉 can be expressed as

|Ψ 〉 = 1√
kZ1

k∑

i=1

|ψi 〉B |i〉R , (1)

where |ψi 〉B denotes the black hole states, |i〉R denotes radi-
ation, and i labels the entanglement between the radiation
and black hole. The normalization factor is chosen such that
under

〈
ψi |ψ j

〉
B = δi j Z1, 〈i | j〉R = δi j . (2)

the amplitude

∑

Ψ

〈Ψ |Ψ 〉 = 1. (3)

The density matrix of radiation can be obtained by tracing
out the black hole system

ρR =
∑

m

〈ψm |Ψ 〉 〈Ψ |ψm〉 = 1

k

∑

i, j

|i〉R 〈 j | 〈ψ j |ψi
〉
B (4)

which can be illustrated as

ρR = . (5)

The density matrix is represented in the same way as we
described in the previous section.

Instead of directly using the density matrix to calculate
the entropy, one can look at purity tr[ρ2

R], where we have

tr[ρ2
R]
= 1

k2Z2
1

∑

l

∑

i, j

∑

m,n

〈l|i〉 〈 j | 〈ψ j |ψi
〉 |m〉 〈n| 〈ψn |ψm〉 |l〉

= 1

k2Z2
1

∑

i, j

[〈
ψi |ψ j

〉 〈
ψ j |ψi

〉] + 1

k2Z2
1

∑

i, j

[〈
ψi , ψ j |ψi , ψ j

〉]

= kZ2
1 + k2Z2

k2Z2
1

, (6)

where Z1 is the geometry described in equation (5), and Z2

represents the two-fold replica wormhole shown in Fig. 1.
Now, the purity can be expressed as

tr[ρ2
R] = kZ2

1 + k2Z2

k2Z2
1

= 1

k
+ Z2

Z2
1

. (7)

The calculation shown in (6) is explicitly illustrated in Figs. 1
and 2.

The two-fold wormhole shown in Fig. 1 can be ironed to
a flat version

, (8)

where we only show the gravitational region (grey region) of
Fig. 1. The wormhole geometry can be recovered by glu-
ing the dashed lines with the same color together in (8).
The above geometry can be easily extended to n-fold replica
wormholes, which can be used to calculate the n-th Renyi
entropy tr[ρn

R]. The von Neumann entropy is essentially
determined by tr[ρn

R] when analytically continued to n = 1.
There are more different saddles for the n-th Renyi entropy:
fully connected, fully disconnected, and other partially con-
nected saddles. The saddles with more disconnected compo-
nents dominate at the early stage when k is relatively small.
And the connected geometries play a more important role
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Fig. 1 Replica wormhole saddle in calculating the purity of
radiation (6). The picture is a diagrammatic representation of∑

i, j

〈
ψi , ψ j |ψi , ψ j

〉
. There is a wormhole geometry, and the final result

is
∑

i, j

〈
ψi , ψ j |ψi , ψ j

〉 = k2Z2. Note that the * symbol representing
the CPT transformation is not explicitly shown in the figure

Fig. 2 Hawking saddle in calculating the purity of radiation (6). The
corresponding result is

∑
i, j

〈
ψi |ψ j

〉 〈
ψ j |ψi

〉 = kZ2
1

at the late stage of evaporation. We can add all the different
saddles together, and the transitions between different sad-
dles lead to an entropy of radiation that is consistent with the
unitarity [5,6].

3 Transition between different vacua

Let us think about what the replica wormhole saddle, shown
in Fig. 1, means in gravity. As shown in Appendix A, the
Euclidean black hole partition function can be got by tracing
the thermofield double (TFD) state,

ZBH =
∑

φ

= . (9)

which is a gravitational generalization of the Rindler parti-
tion function getting from Eq. (50). Looking at the replica
wormhole, we find that we have lost our favorite TFD state
shown in (50). If one insists that the density matrix of the
replica wormhole should also be got from tracing over some
TFD-like state, we can express the wormhole density matrix
ρWH, with “WH” representing wormhole, as

ρWH =
∑

φ1,φ2

= . (10)

Now, assuming the wormhole density matrix is obtained from
some reduced density matrix, we have got the density matrix
of the thermo-mixed double (TMD) [17,18,26,27], which
can be illustrated as

ρTMD = . (11)

ρTMD is the flat version of the up or down part of (10), and the
connected region in the middle of (11) can be regarded as the
“island”. The TMD density can be called “Janus Pacman” to
distinguish the Pacman figure shown in (48). The TMD and
TFD are supposed to give out the same density matrix when
tracing out the left part L

ρBH = trL(ρTMD) = trL(ρTFD), (12)
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whose von Neumann entropy is the Bekenstein-Hawking
entropy SBH .1

Equipped with the TMD interpretation, let us look at what
the replica wormhole means now. As discussed in Appendix
A, the TFD state can be defined as a state evolved from the
vacuum at τ = −∞. Here, by the same logic, we can also
define the TMD as a state evolved from the vacuum. The
vacuum evolved from τ = −∞ is denoted as |0d〉 and the one
from τ = ∞ as |0u〉. The subscripts u and d mark different
possible vacua.

Those different vacua can be identified by trace operation.
In (4), the trace over the gravity part |ψi 〉B forces the vacuum
to be identical, which can be seen from the closed black circle
shown in Eq. (5). For the same reason, when the boundaries
representing |0u〉 and |0d〉 are connected with each other,
we have a unified vacuum, so putting an extra label on the
vacuum state has no influence on the final result because of
the trace operation. In the case of calculating the purity, the
situation is exactly shown in Fig. 2, where the black line forms
a closed circle in the Hawking saddle. So in the Hawking
saddle, |0u〉 and |0d〉 are identified by the trace operation,
and thus we have a unified vacuum, which is consistent with
our usual understanding of quantum field theory with a given
Hamiltonian. However, the situation is completely different
for the replica wormhole saddle shown in Fig. 1. As can be
seen from Fig. 1, the black lines representing |0u〉 and |0d〉
form two different circles, and no trace operation forces them
to be identical. In principle, there can be different degenerate
vacua, and that is the part where the different subscripts on |0〉
start to play an important role in the follow-up discussions.
We leave the physical interpretation of degenerate vacua in
the discussion section.

Now, we come to the key observation regarding the mean-
ing of the replica wormhole. For the flat case corresponding
to the Minkowski and Rindler spacetime, the TMD density
matrix can be represented as

〈ψ1| ρTMD |ψ2〉 =
∑

φ

〈φ| 〈ψ1|0d〉 〈0u |ψ2〉 |φ〉

= . (14)

1 More generally, for n-fold wormholes, we have Herman Verlinde’s
replica ansatz [17,18]

tr(ρn
TMD) = Zn

Zn
1
, (13)

with n-fold wormhole partition function Zn .

And, the purity of the TMD density matrix can be further
expressed as

tr[ρ2
TMD]
=

∑

φ,φ̄

∑

ψ1,ψ2

〈ψ1| 〈φ|0d〉 〈0u |φ〉 |ψ2〉

× [〈ψ1| 〈φ̄|0d〉〈φ̄|0u〉 |ψ2〉
]∗

= 〈0u |∗ 〈0u |0d〉 |0d〉∗ . (15)

Note that the above purity tr[ρ2
TMD] can only see the vacua

because the system is evolved from the past infinity to future
infinity. The excitation modes can not be seen due to the infi-
nite distance between the two-time slices, which was elabo-
rated in (41) for the disk case.

In order to see the gravitational effects in the bulk, we can
imagine the down vacuum from the past infinity evolves to
a finite time slice τ = −d/2 and starts to feel the gravity.
Then the system evolves to time slice τ = d/2. After that
gravity disappears and the system evolves to future infinity.
This means that gravity is confined in a region between time
slices τ = −d/2 and τ = d/2. Suppose the gravitational
Hamiltonian is denoted as H, one need to multiply the purity
shown in (15) by

Zgravity = 〈0d | e− ∫ d/2
−d/2 H dτ |0d〉 . (16)

Diagrammatically, the purity can be illustrated as gluing two
copies of (14) together

tr[ρ2
TMD] =

∑

ψ1,ψ2

= ,

(17)

which can be regarded as the inverse process of (10).
Comparing Eqs. (15) and (17), we can conclude that the

two-fold replica wormhole should be proportional to the tran-
sition amplitude between the up and down vacua

Z2 ∝ 〈0u |∗ 〈0u |0d〉 |0d〉∗ × Zgravity. (18)

Here, we have chosen to project the Hamiltonian onto a spe-
cific vacuum. The transition amplitude should always be pro-
portional to the volume of degenerate vacua. Nevertheless,
the point here is that the effect of the transition between dif-
ferent vacua should be included in Z2. Here we use ∝ because
the renormalization factor shown in (13) is not included.
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Now, we can see that the replica wormhole also counts the
transition from different vacua evolved from τ = −∞ to
τ = ∞. It is more clear that, as shown in (17), the state at
τ = −∞ and τ = ∞ are not necessarily the same because of
the independent circles, which is different from the Hawking
saddle where the up and down circles are connected because
of trace operation. The allowance for different vacua to exist
is suggested to understand lots of interesting physics related
to wormholes like the factorization puzzle [28–30] and the
black hole information paradox [21,31,32]. The conclusion
can be easily generalized to n-fold replica wormholes, which
can be regarded as transitions between more different vacua.

We would like to end this section with some comments
on SSB and vacuum degeneracy. For a complex scalar field
theory with Mexican hat potential, the vacuum degeneracy
comes from the SSB of the globalU (1) symmetry. The mini-
mum of the potential is characterized by a compact parameter
ρ. Let us suppose the vacuum is chosen at a specific value
|ρ0〉 and there is a possible generator Qθ that acts on the
vacuum state and changes the value of ρ. The generator can
be written as

eiQθ |ρ0〉 ∼ |ρ0 + θ〉 . (19)

The generator Qθ moves the QFT from one vacuum to a new
one. However, the operator Qθ is not in the Hilbert space
because it is not normalizable. To see this physically, we can
suppose the original vacuum is |ρ0〉, and we want to change
the global vacuum to a different one |ρ1〉. We can start to
change it with a bubble of local degrees of freedom with
vacuum |ρ1〉. There is a non-zero gradient of the scalar field
on the edge, and the energy needed to flip the vacuum is
proportional to the bubble area. Then it needs infinite energy
to move all the local degrees of freedom from vacuum |ρ0〉 to
vacuum |ρ1〉. So in QFT, superselection sectors are formed,
and a specific vacuum is chosen.

However, there are two possible exceptions, where super-
selection sectors are not formed. The first one is low-
dimension cases. In two dimensions, the area of the bub-
ble is a point, and no superselection sector is formed. That is
why we can twist left and right single trumpets for wormhole
geometries in two-dimensional JT gravity. The second one is
vacuum degeneracy due to the SSB of the large gauge (or dif-
feomorphism) symmetry. As opposed to the global case, the
operators that move the theory between different vacua are
not non-renormalizable operators. This is because would-be
gauge symmetries are labeled by local functions, the SSB of
which does not need to occur simultaneously everywhere.

As shown by HPS, there are infinite degenerate vacua at
null boundaries because of the SSB of large gauge symme-
try, and no superselection sector is formed. We can relate the
vacuum degeneracy with the wormhole geometry, and the
two-fold wormhole can be thought of as a transition between

different soft-hair-generated vacua. The replica wormhole
can be regarded as the process comparing the would-be
gauge parameter at the two boundaries, thus can decrease
the entropy of the black hole and radiation.

4 Two-dimensional JT gravity

Let us check if the above proposal makes sense in the two-
dimensional Euclidean JT gravity. In this calculable low-
dimensional quantum gravity theory, we can check the prop-
erty of the wormhole geometry.

The action of JT gravity can be written as

IJT [g, Φ] = −S0χ − 1

16πGN

∫

M

√|g|Φ(R + 2)

− 1

8πGN

∮

∂M

√|g|Φ(K − 1), (20)

with constant S0 and Euler characteristic χ . With boundary
condition

htt
∣∣
∂M = 1

ε2 , Φ
∣∣
∂M = Φb

ε
, (21)

the boundary action can be written as

Ibdy[F] = −C
∫

dτ {F, τ }, C = Φb

16πGN
. (22)

We have ε → 0 near the boundary, and {F, τ } is the
Schwarzian derivative. In the black hole frame, we have

F(τ ) = tan
π

β
f τ. (23)

The new variable f (τ ) can be interpreted as a time repara-
metrization of the boundary thermal circle, with properties

f (τ + β) = f (τ ) + β, f ′(τ ) ≥ 0. (24)

The bulk geometry is fixed to R + 2 = 0, so the boundary
theory and f (τ ) are the main object people usually care about
in boundary theory. The boundary partition function, or the
bulk disk partition function, can be calculated perturbatively.
It was shown by Stanford and Witten [33] that the Schwarzian
theory is one-loop exact using fermionic localization. The
bulk black hole partition function can be written as (see [34]
for review)

Z1(β) = 1

4π2

(
2πC

β

)3/2

eS0+ 2π2C
β (25)
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Let us consider gravitational partition function with n
boundaries

Z(β1, β2, . . . , βn). (26)

The partition function includes all possible topologies of the
spacetime, and can be decomposed by Euler characteristic
χ , i.e.

Z(β1, β2, . . . , βn) =
∑

g

eS0(2−2g−n) × Zg,n(β1, β2, . . . , βn).

(27)

Z0,2(β1, β2) is what we care about in this paper, so let us
see what this partition function is in JT gravity. We end up
with two parts: disconnected and connected geometries. For
disconnected disks, the partition function is

Z1(β1)Z1(β2) = × . (28)

For connected geometry, we can glue two disk geometries
with insertions of defects that breaks PSL(2, R) to U (1),
which are called single trumpets. The partition function of
the single trumpet is also one-loop exact and can be evaluated
as

Z trumpet(β) = 1

2π

√
2πC

β
e− C

2β
b2

(29)

The remaining U (1) is characterized by the twist parameter
τ , and b is the length of the geodesic at the middle of the
geometry

. (30)

The wormhole partition function should be an integral over
the twist parameter τ , with

∫ b
0 dτ = b. This is because (29)

is independent of τ . Then, one can integrate all possible b to
count all of the on-shell effects2

Z0,2(β1, β2) =
∫ ∞

0
Z trumpet(β1)Z trumpet(β2) b db. (31)

Note that we expect the wormhole geometry as a saddle of
the path integral, while here the integral is over all possible

2 The measure can be derived from the first-order formalism [35].

quantum configurations. Is there a “stable” wormhole saddle
in the above integral? From (29), because b is pushed to zero
in the exponential. But if we include the twist parameter and
extremize the integrand, there is a stable value of b.3 Solving

∂b[Z trumpet(β1)Z trumpet(β2) b] = 0, (32)

one finds the solution

b̄ =
√

β1β2√
C(β1 + β2)

. (33)

The corresponding partition function can be written as

Z̄0,2(β1, β2) = b̄ × C

2π
√
eβ1β2

. (34)

b̄ is the length of the twist parameter τ , that lables the U (1)

circle, as discussed in this section.
So, the JT calculation can be regarded as evidence of what

we discussed in the previous section, shown in (18). The
wormhole partition function is proportional to the number of
vacua generated by the symmetry of the geometry.

5 Conclusion and discussion

In this paper, we address the question of how to understand
the replica wormhole. When deriving the island rule from the
Euclidean path integral, the replica wormhole saddle natu-
rally arises and plays a vital role in the post-Page time. The
replica wormhole connecting different replicas in the replica
trick is a confusing object, and it is important to better under-
stand the physical meaning of those wormhole geometries.

We have shown that the replica wormhole should be
regarded as a transition between different degenerate vacua.
More specifically, all the possible vacua in the Hawking sad-
dle are identified because of the trace operation shown in
Fig. 2, but the situation is different for the replica wormhole
saddle in Fig. 1. There can be different vacua represented by
the left and right black circles, and the purity of the TMD
density matrix is shown to be proportional to the transition
between two different vacua, which is illustrated in Eqs. 15
and 17. The same argument can be generalized to n-fold
wormholes.

So, the contribution of the replica wormhole saddles
should be controlled by the manifold of the degenerate vacua.
We have checked the above proposal in two-dimensional JT
gravity and explicitly shown that the partition function of the
wormhole saddle is proportional to the manifold of the twist

3 This is similar to constrained instantons [36,37].
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parameter. Furthermore, following [19–21], the wormhole
geometries connecting different vacua are suggested to be
regarded as the measurement process that compares differ-
ent vacuum configurations. The measurement process con-
necting different vacuum configurations decreases the fine-
grained entropy of the system, and the Page curve can also
be derived by comparing the rate of the Hawking radiation
and measurement processes.

For further studies, we would like to explore possible con-
nections between the island prescription and the soft BHIP
approach, which is related to the attempts to understand
the BHIP using the concept of projecting black holes to
specific soft hair configurations [19–21]. Especially in our
recent work [20], we have started to study the possible rela-
tion between different wormhole geometries and soft hair
measurements, and the disconnected Page curve shown in
Fig. 7 of [20] can be regarded as transitions between differ-
ent wormhole saddles. Further connections between the soft
hair approach and replica wormholes might require looking
closely at the black hole soft S-matrix [38,39], which needs
further study. In this triumph, the whole island prescription
might be understood in terms of HPS’s soft hair.
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Appendix A: A review of Euclidean path integral

In this appendix, let us review and emphasize some useful
concepts in QFT. This section will discuss the path integral
representation of QFT and some useful concepts in black
hole thermodynamics. All the selected concepts and related

interpretations will be crucial for understanding the replica
wormhole later.

For a scalar field theory, the transition amplitude between
|φ1〉 and |φ2〉 can be represented as the following path integral

〈φ2(t2)|φ1(t1)〉 = 〈φ2| e−i H(t2−t1) |φ1〉 =
∫ φ(t2)=φ2

φ(t1)=φ1

Dφ ei S .

(35)

Writing everything with Euclidean time τ = i t , we can
express the transition amplitude as

〈φ2(τ )|φ1(0)〉 = 〈φ2| e−τH |φ1〉 =
∫ φ(τ)=φ2

φ(0)=φ1

Dφ e−SE ,

(36)

with the Euclidean action SE . Now we have a Euclidean path
integral from φ1 to φ2, which can be illustrated diagrammat-
ically as follows

∫ φ(τ)=φ2

φ(0)=φ1

Dφ e−SE = . (37)

The path integral is over the grey region, and φ1 and φ2 should
serve as boundary conditions on a fixed Cauchy surface. Cor-
respondingly, we can also express the wave function |Ψ 〉 as

|Ψ 〉 = e−τH |φ1〉 =
∫ ??

φ(0)=φ1

Dφ e−SE = ,

(38)

which can be measured by the overlap with state 〈φ2| as
Ψ [φ2] = 〈φ2|Ψ 〉. For the wave function shown in (38), the
up boundary condition is not specified. Following the same
logic, the thermal density matrix ρ can be depicted as

〈φ2| ρ |φ1〉 = 〈φ2| e−βH |φ1〉 = . (39)

Taking the trace of the above density matrix gives out the
thermal partition function Z(β), which can be represented
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as

Z(β) = tr e−βH =
∑

φ

〈φ| e−βH |φ〉 = .

(40)

One can also insert some operators in the bulk to calculate
correlation functions, and then (40) can be used to explain
why thermal Green’s function has periodicity β.

The ground state |0〉 can be got by evolving any state |X〉
for ∞ amount of time. Decomposing the state |X〉 on energy
eigenstates |n〉 with H |n〉 = En |n〉, the ground state can be
obtained by

lim
τ→∞ e−τH |X〉 = |0〉 + lim

τ→∞
∑

n �=0

e−τ En |n〉 → |0〉 , (41)

because all the high energy eigenstates with non-zero En are
largely suppressed by e−τ En as τ → ∞. The above argument
can be interpreted as, after ∞-Euclidean time, all the high
energy states die off, and only the vacuum state survives.
Diagrammatically, we can depict the vacuum wave functional
as

〈φ2|0〉 =
∫ φ(0)=φ2

φ(−∞)

Dφ e−SE = , (42)

where the solid line labeled by −∞ can be used to represent
the vacuum state because only the ground state can survive
after the evolution. Furthermore, it is straightforward to see
that the vacuum-to-vacuum amplitude 〈0|0〉 can be obtained
by inserting an identity

〈0|0〉 =
∑

φ

〈0|φ〉 〈φ|0〉 , (43)

whose Euclidean path integral representation can be illus-
trated as

〈0|0〉 =
∫ φ(∞)

φ(−∞)

Dφ e−SE = , (44)

where we simply glue two diagrams shown in (42) together.
All the above diagrams can also be generalized to situations
where φs are defined on boundaries with different topologies,
and there can also be handles and holes in the bulk.

Next, let us consider the Rindler space and derive the
Unruh effect from the Minkowski vacuum. The density
matrix of the Minkowski vacuum can be written as

ρ = |0〉M 〈0| . (45)

Because of the presence of the Rindler horizon, we divide
the spatial surface into two parts, the r > 0 region A and the
r < 0 region B. The reduced density matrix in region A can
be written as

ρA = trB |0〉M 〈0| , (46)

whose path integral representation is

〈φ2| ρA |φ1〉 =
∑

φB

〈φ2| ⊗ 〈φB |0〉M 〈0|φB〉 ⊗ |φ1〉

=
∑

φB

. (47)

The trace over fields φB in region B glues the B region
together. With a different foliation, the above density matrix
can be depicted as

∑

φB

= = ,

(48)

where the θ direction can be regarded as the Euclidean time
for Rindler spacetime. So the reduced density matrix ρA can
be regarded as a thermal density matrix with inverse temper-
ature β = 2π , which can be written as

〈φ2| ρA |φ1〉 = 〈φ2| e−2πHθ |φ1〉 , (49)

with the Rindler Hamiltonian Hθ . Now, we can identify the
inverse temperature of Rindler space as β = 2π . Let us
call the figure shown in equation (48) “Pacman”. Now, we
have derived the Unruh density matrix by tracing out the B
region of the Minkowski vacuum. Besides the density matrix,
the Minkowski vacuum itself can be treated from a different
point of view. The vacuum wave functional measured by the
overlap with state 〈φ2| ⊗ 〈φ1| can be represented as
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〈φ2| ⊗ 〈φ1|0〉M = = 〈φ1| e− β
2 Hθ |φ2〉 ,

(50)

which can be further expressed as

〈φ1| e− β
2 Hθ |φ2〉 =

∑

n

e− β
2 En 〈φ1|n1〉 ⊗ 〈φ2|n2〉∗ . (51)

|n〉 is the eigenstates of Rindler Hamiltonian Hθ on the left
and right sides, with Hθ |n〉 = En |n〉. The * symbol repre-
sents the CPT transformation. Comparing (50) and (51), we
can conclude that the Minkowski vacuum can be regarded as
a purification of the Rindler Hilbert space

|0〉M =
∑

n

e− β
2 Hθ |n2〉∗ ⊗ |n1〉 , (52)

which is called thermo-field double (TFD) state [40]. We
have shown the origin of the thermal spectrum for the Rindler
observer restricted to the Rindler patch. The same argument
can be generalized to the black hole case, which can be used
to explain the thermal spectrum of the Hartle-Hawking state.
The so-called “cigar” geometry replaces the disk partition
function obtained from tracing the Pacman figure because
of the curvature of the black hole. The black hole partition
function can be represented diagrammatically as

ZBH =
∑

φ

= . (53)
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