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Abstract Finsler geometry is a natural and fundamental
generalization of Riemann geometry, and is a tool to research
Lorentz invariance violation. We find the connection between
the most general modified dispersion relation and a pseudo-
Finsler structure, and then we calculate the arrival time delay
of astroparticles with different modified dispersion relations
in the framework of Finsler geometry. The result suggests
that the time delay is irrelevant with the exact form of the
modified dispersion relation. If the modified term becomes
0 when E = p, there is no arrival time difference, otherwise
the time delays only depend on the Lorentz violation scale
and the order at which the Lorentz invariance breaks.

1 Introduction

As a basic symmetry of space-time, Lorentz invariance has
played important roles in various fields of physics, and it
can be ranked as the crystallization of human wisdom in
understanding space-time. However, quantum gravity (QG)
phenomenology covers a wide range of subjects [1], and one
of the most important QG effects is the Lorentz violation
(LV) [2]. There are many kinds of theoretical models includ-
ing LV effects: (i) Quantum gravity theory, which aims at
solving the conflict between the standard model and general
relativity, such as string theory [3]. (ii) Space-time structure
theory, which constructs new models from the perspective of
space-time structure. These theories include the very special
relativity (VSR) [4] and the doubly special relativity (DSR)
[5–8]. Later researches suggest that the VSR is a kind of
Finsler special relativity [9–11], and also the DSR can be
incorporated into the framework of Finsler geometry [12].
(iii) Effective theory with extra-terms, such as the standard-
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model extension (SME) [13]. The connection between SME
and Finsler geometry has been studied in recent years [14–
21]. A common feature of many studies of LV is the introduc-
tion of modified dispersion relations (MDRs). Girelli et al.
[22] proposed a possible relation between MDRs and Finsler
geometry to account for the nontrivial structure of Planckian
spacetime.

The above facts imply that new physics may be connected
with Finsler geometry. In fact, many kinds of Finsler geome-
try are studied to pursue new physics [23–27]. Also, the con-
nection between Finsler geometry and gravitation has been
studied [28,29]. Finsler and Finsler-like cosmology is also
studied [30–33], aimed to solve the problem of dark energy,
dark matter, inflation, and the bounce cosmology. Ideally,
physicists hope to derive the full theory from basic assump-
tions in a top-down way, such as those in Refs. [30–33]. As
the circumstance of applying Finsler geometry to LV stud-
ies, we hope that we can construct a well-defined LV theory
from basic assumptions on Finsler structure, thus we can
derive the value of the Lorentz-violation scale ELV. How-
ever, till now we know little about how we can constrain the
Finsler structure to fit it with LV studies. Thus we adopt the
bottom-up method, which begins with MDRs and researches
on the corresponding Finsler structure and the follow-up con-
sequences.

An advantage of Finsler geometry is that we can dis-
cuss the trajectories of particles. In Finsler spacetime, the
observed trajectories are identified with the geodesics of the
Finsler geometry. A large source of information about the
physical properties of spacetime is obtained by observing the
motion of point particles. In fact, many works tested LV form
high-energy photons [34–39] and ultrahigh-energy neutrinos
[40–46], by the arrival time differences between high-energy
and low-energy particles from the same source. For the MDR
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as the form

E2 = m2 + p2 + αpn+2, (1)

where n we call the broken order here, and α is a param-
eter with mass dimension and [α] = −n, Jacob and Piran
suggested a time difference formula between a high-energy
astroparticle and a normally low-energy photon in the stan-
dard model of cosmology as [47]

�t = αEn
obs

1 + n

2H0

∫ z

0

(
1 + z′

)n dz′√
�m (1 + z′)3 + ��

, (2)

where z is the redshift of the source of the two particles,
Eobs is the observed energy of the high-energy particle from
Earth equipment, �m and �� are universe constants, and
H0 is the current Hubble parameter. In our previous research
[48], we reconsidered the time difference problem in Finsler
spacetime, the result suggested that for the MDR as Eq. (1),
the arrival time difference formula is surprisingly the same as
Eq. (2). However, in different models, the dispersion relations
are not necessarily the same form as Eq. (1). For example,
the dispersion relation in DSR-1 [5,6] is

E2 = m2 + p2 + αEp2, (3)

while in DSR-2 [7,8] the dispersion relation is

E2 − p2

(1 − λE)2 = m2, (4)

and series Eq. (4) in the leading order of λ the dispersion
relation becomes

E2 = m2 + p2 − 2λE(E2 − p2). (5)

Different kinds of MDRs may bring different time delay for-
mulas. For example, previous researches such as [49] suggest
that the MDR of DSR-2 as Eq. (4) brings no time delays. In
the framework of Finsler geometry, different MDRs mean
that the corresponding geometries are different, and thus the
geodesic equations and trajectories of particles are different.
So in Finsler spacetime, the time delays corresponding to
different MDRs should be considered carefully.

2 A brief introduction to Finsler geometry

Finsler geometry [50] is a natural and fundamental general-
ization of Riemann geometry. For a manifold M , denote by
TxM the tangent space at x ∈ M , and by T M the tangent
bundle of M . Each element of T M has the form (x, y), where
x ∈ M and y ∈ TxM . The natural projection π : T M → M
is given by π(x, y) ≡ x . A Finsler structure, or Finsler norm
of M is a function

F : T M → [0,∞) (6)

with the following properties: (i) Regularity: F is C∞ on the
entire slit tangent bundle T M\0. (ii) Positive homogeneity:
F(x, λy) = λF(x, y) for all λ > 0. (iii) Strong convexity:
The n × n Hessian matrix

gi j ≡
(

1

2
F2

)
yi y j

(7)

is positive-definite at every point of T M\0, where we have
used the notation ()yi = ∂

∂yi
(). Finsler geometry has its gen-

esis in integrals of the form
∫ r

s
F

(
x1, · · · , xn; dx

1

dτ
, · · · ,

dxn

dτ

)
dτ, (8)

and its geometric meaning is the distance between two points
in the Finsler manifold through a certain path. Given a man-
ifold M and a Finsler structure F on T M , the pair (M, F)

is called as a Finsler manifold. It is obvious that the Finsler
structure F is a function of

(
xi , yi

)
. In the case of gi j depend-

ing on xi only, the Finsler manifold reduces to Riemannian
manifold.

To describe the “1 + 3” spacetime, instead of Finsler geom-
etry we turn to pseudo-Finsler geometry. A pseudo-Finsler
metric is said to be locally Minkowskian if at every point
there is a local coordinate system, such that F = F(y) is
independent of the position x . For a massive particle propa-
gating in 1+3 spacetime, its action can be expressed as

S = m
∫

F
(
xμ, yμ

)
dτ, (9)

where m is the mass of the particle, and yμ = dxμ

dτ
is the 4-

speed of the particle. And thus the Lagrangian of the particle
is

L = mF
(
xμ, yμ

)
. (10)

In this work we focus on the geodesic equation of Finsler
geometry. The geodesic equation for the Finsler manifold is
given as [50]

d2xμ

dτ 2 + 2Gμ = 0, (11)

where

Gμ = 1

4
gμν

(
∂2F2

∂xλ∂yν
yλ − ∂F2

∂xν

)
(12)

is called the geodesic spray coefficient. Obviously if F is a
Riemann metric, then

Gμ = 1

2
γ

μ
νλy

ν yλ, (13)

where γ
μ
νλ is the Riemann Christoffel symbol. We can also

see that if F is locally Minkowskian, then Gμ = 0, and the
geodesic equation (11) is actually d2xμ

dτ 2 = 0.
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3 Pseudo-Finsler structure of particles subject to
general forms of Lorentz violation

To simplify the discussion, here we introduce the concept of
homogeneous function [51]. A function f (�x) is a homoge-
neous function when f (�x) satisfies

f (λ�x) = λn f (�x), (14)

and n is called the degree of homogeneity, or simply the
degree. A slightly more general form of homogeneity is
called positive homogeneity, by requiring only that the above
identities hold for λ > 0, and allowing any real number n as a
degree of homogeneity. In the following we only consider the
case of positive homogeneity. Euler’s homogeneous function
theorem asserts that the positively homogeneous functions of
degree n are exactly the solution of a specific partial differ-
ential equation

n f (�x) =
k∑

i=1

∂

∂xi
f (�x). (15)

We can easily see that a locally Minkowskian Finsler norm
F(y) is a 1-order homogeneous function.

Here we consider the most general form of modified dis-
persion relations of broken order n. The modified dispersion
relations can be expressed in the most general form as the
leading term of Taylor series in natural units as

p2
0 = m2 + | �p|2 + αh(p0, �p), (16)

where p0 = E is the energy of the particle, and α is a param-
eter with mass dimension and [α] = −n. We can easily see
that h(p0, �p) is a homogeneous function of order n+2, which
means that h(λp0, λ �p) = λn+2h(p0, �p).

Girelli et al. [22] provided a workflow to construct Finsler
norms corresponding to dispersion relations. However, the
algorithm in Ref. [22] is complicated when dealing with a
general MDR, so here we derive the pseudo-Finsler norm of
the above MDR in a different way by means of the property
of the homogeneous function. According to the result of our
previous work [48], we assume that the pseudo-Finsler norm
correspond to Eq. (16) can be expressed as

F =
√

� + αmng(y0, �y), (17)

where � = ημν yμyν = (y0)2 − |�y|2, yμ = ẋμ = dxμ

dτ
, and

ημν = diag(1,−1,−1,−1). The Lagrangian of the particle
is

L = mF(x, ẋ) = m
√

� + αmng(y0, �y), (18)

by pμ = ∂L/∂yμ, in the first order of α, we have

p0 = my0

√
�

+ 1

2
αmn+1

(
− y0g(y0, �y)

�
3
2

+ g0(y0, �y)√
�

)
,

pa = −mya√
�

+ 1

2
αmn+1

(
yag(y0, �y)

�
3
2

+ ga(y0, �y)√
�

)
,

(19)

where a = 1, 2, 3 is a spatial index, and gi (y0, �y) means
∂

∂yi
g(y0, �y). Coming Eqs. (19) and Eq. (16), we get the equa-

tion for g(y0, �y) in the first order of α as

g(y0, �y) − yμgμ(y0, �y) + � · h
(

y0

√
�

,− �y√
�

)
= 0. (20)

Euler’s homogeneous function theorem tells us that the gen-
eral solution of g(y0, �y) − yμgμ(y0, �y) = 0 is any 1-order

homogeneous function. Notice that � · h(
y0√
�

,− �y√
�

) is a

2-order homogeneous function of yμ, we can easily check

that g(y0, �y) = � · h(
y0√
�

,− �y√
�

) is a particular solution of
Eq. (20). So the general solution to Eq. (20) is

g(y0, �y) = � · h
(

y0

√
�

,− �y√
�

)
+ C(yμ), (21)

where C(yμ) is any 1-order homogeneous function. How-
ever, the property of Finsler norm requests that g(y0, �y)
should be a 2-order homogeneous function, which means
C(yμ) = 0. So the pseudo-Finsler norm of the modified
dispersion relations above in the first order of α is

F =
√

�

[
1 + αmnh

(
y0

√
�

,− �y√
�

)]

= √
� + αmn

2�
n+1

2

h
(
y0,−�y

)
,

(22)

where � = ημν yμyν = (y0)2 − |�y|2 and ημν =
diag(1,−1,−1,−1). The result corresponds to the result
obtained by Lobo and Pfeifer [52], and when h(p0, �p) =
| �p|n+2, Eq. (22) becomes Eq. (21) of our previous work [48].

As we can see from Eq. (22), the pseudo-Finsler norms
of particles with LV strongly rely on the forms of dispersion
relations. Even if two forms of dispersion relations are of the
same broken order, the corresponding pseudo-Finsler norms
can be different. Thus the trajectories of particles with dif-
ferent MDRs are different. So it is important to discuss how
different forms of MDRs influence the time delays in Finsler
geometry, and this is what we discuss in the next section.

4 Time delay in finsler expanding universe

Here we derive the time delay of astroparticles with disper-
sion relations as Eq. (16) in pseudo-Finsler spacetime. We use
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the same method as our previous work [48]: First, we con-
struct the pseudo-Finsler norm of the particle in the expand-
ing Universe; Second, we obtain the geodesic equations of
the particle; Last, we solve the geodesic equations and cal-
culate the time delay. Since the pseudo-Finsler norm is the
most general and more complicated than our previous work
[48], the derivation is more complicated.

Since h(p0, �p) is a (n + 2)-order homogeneous function
of pμ, we can rewrite h(p0, �p) as

h(p0, �p) = pn+2
0 H

( �p
p0

)
, (23)

and correspondingly,

h(y0,−�y) = (y0)n+2H

(
− �y
y0

)
. (24)

Consider a particle propagating in “1+1” flat spacetime, the
pseudo-Finsler norm can be expressed as

F =
√

(y0)2 − (y1)2

+ αmn

2

(y0)n+2

(√
(y0)2 − (y1)2

)n+1 H

(
− y1

y0

)
,

(25)

where y0 = ẋ0 = dt/dτ and y1 = ẋ1 = dx/dτ . In Rie-
mann geometry, the expanding universe can be described
by the Friedmann-Robertson-Walker (FRW) metric, and in
a 1 + 1 Riemann spacetime the length element is ds =√
dt2 − a(t)2dx2, where a(t) is the cosmological expansion

factor. In the form of Finsler structure, the corresponding
pseudo-Finsler norm of FRW universe is

FR =
√

(y0)2 − (a(x0)y1)2. (26)

The FRW metric can be obtained by replacing the space
component d �x in Riemann Minkowski metric with a(t)d �x ,
or the space component yα with a(t)yα in the language of
Finsler geometry. It is natural to think in this way because
a(t) describes how the space expands and it should be mul-
tiplied to every space component in the metric. For the
expanding pseudo-Finsler spacetime, the flat Finsler struc-
ture ds = F(y0, �y)dτ = F(dt, d �x) should also be changed
to ds = F(dt, a(t)d �x) = F(y0, a(x0)�y)dτ . Thus in the
expanding 1+1 spacetime the pseudo-Finsler norm can be
assumed to be

F ′ =
√

(y0)2 − (a(x0)y1)2

+ αmn

2

(y0)n+2

(√
(y0)2 − (a(x0)y1)2

)n+1 H

(
−a(x0)y1

y0

)
.

(27)

In fact, Eq. (27) is the general case of the result of Lobe et
al.[53], where they begin with the MDR in the expanding
universe and reach the corresponding pseudo-Finsler norm.

Assume that a particle starts to move at t = −T and
x = X with redshift z0 and reaches us at t = 0 and x = 0,
and we can measure its energy and momentum Eobs and Pobs.
Obviously, we have y0 = dt/dτ > 0, y1 = dx/dτ < 0, and
dx/dt < 0. After tedious calculation (see Appendix V), the
motion of the particle can be expressed as

dx

dt
= − Eobs

a
√
m2a2 + E2

obs

+ α

[
− C2mn+2Eobsa

C1(m2a2 + E2
obs)

3
2

+ C3mnE3
obsa

C2
1 (m2a2 + E2

obs)
3
2

+ a

2(m2a2 + E2
obs)

3
2

∫
a−n−3(m2a2 + E2

obs)
n−2

2

×
(
(n + 1)(n + 2)E3

obs(m
2a2 + E2

obs)

× H

⎛
⎝ Eobs√

m2a2 + E2
obs

⎞
⎠

+m2a2
√
m2a2 + E2

obs

(
−m2a2 + (2n + 1)E2

obs

)

× H ′
⎛
⎝ Eobs√

m2a2 + E2
obs

⎞
⎠

+m4a4EobsH
′′
⎛
⎝ Eobs√

a2m2 + E2
obs

⎞
⎠

⎞
⎠ da

⎤
⎦ ,

(28)

where C1,C2 and C3 are integration constants generated
from the process of solving differential equations. For
astroparticles, Eobs 	 m, the first two terms with integration
constants in the square brackets are suppressed in compari-
son to the third term in the square brackets, so we can omit
the contribution of the two terms. We can clearly see that
the equation of motion depends on the form of H(x), or the
form of the MDR. However, with limit m → 0, surprisingly
Eq. (28) has a very simple form as

dx

dt
= −

(
1

a
+ n + 1

2
αH(1)En

obs
1

an+1

)
. (29)

If H(1) 
= 0, we can absorb the value of H(1) in α by define
α1 = αH(1) and H1(x) = H(x)/H(1). In other words,
if H(1) 
= 0, we can always assume H(1) = 1, and thus
Eq. (29) becomes the same as Eq. (40) of our previous work,
and thus the time delay is

�t = αEn
obs

n + 1

2H0

∫ z

0

(1 + z′)n√
�m (1 + z′)3 + ��

dz′, (30)
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and is still the same formula obtained by Jacob and Piran
[47] in the standard model of cosmology. If H(1) = 0, e.g.,
the dispersion relation of DSR-2 as Eq. (5) where H(x) =
−2(1 − x2), Eq. (29) becomes

dx

dt
= −1

a
+ O(α2), (31)

and the time delay becomes

�t = O(α2), (32)

which means that there is almost no time delay between
astroparticles with different energies, as mentioned in Sect. 1.
The result that if H(1) = 0 then there is no time delay is
almost obvious in phenomenological analysis. In the limit
m → 0, H(1) = 0 means that the modified term of the
MDR turns to 0 when E = p, which means that the MDR
can be simplified as E = p, just as the dispersion of normal
photons, and of course no time delay appears.

The result above suggests a surprising conclusion. For
modified dispersion relations as

E2 = m2 + p2 + αEn+2H
( p

E

)
, (33)

the corresponding pseudo-Finsler structures are related with
H(x), but the time delays calculated by solving geodesic
equations in pseudo-Finsler spacetime are irrelevant with the
form of H(x). If H(1) = 0, there will be no time delay,
otherwise we can assume H(1) = 1, and the formula of time
delay is the same as the time delay induced by the Lorentz
violation effect between two particles with different energies
in the expanding universe, i.e., Eq. (2) obtained by Jacob and
Piran [47] in the standard model of cosmology.

5 Conclusion and discussion

This work is a promotion of our previous work [48]. In our
previous work [48], we derived the pseudo-Finsler structure
corresponding to the MDR as Eq. (1), and calculated the
arrival time delay between astroparticles by solving geodesic
equations, and found an interesting result that the time delay
formula is the same as Jacob and Piran [47] got in a dif-
ferent way from the standard model of cosmology. In this
work, we find an even more surprising and interesting result.
We consider a MDR with the most general form, and using
the property of homogeneous function, we get the corre-
sponding pseudo-Finsler norm. By solving geodesic equa-
tions, we get the equation of motion as Eq. (28). The equa-
tion depends on the exact form of the MDR, but interestingly,
when Eobs 	 m, the dependence vanishes and the time delay
formula becomes the same as Eq. (2) if the modified term of
MDR is not 0 when E = p. For the circumstance that the
modified term of MDR is 0 when E = p, the time delay

is 0 in Finsler spacetime, just the same as the result of phe-
nomenological analysis.

The result of this work provides a new perspective on
the recent tests on Lorentz violation. Researches on Lorentz
violation from high-energy photons [34–39] and ultrahigh-
energy neutrinos [40–46] suggest that high-energy photons
and neutrinos may be subject to Lorentz violation with bro-
ken order 1. In previous researches we may assume the dis-

persion relation might be E2 = m2 + p2 + s p3

ELV
, where

s = ±1 and ELV is the Lorentz violation scale from obser-
vation. However, the result of this work suggests that the
dispersion relation can be expressed as

E2 = m2 + p2 + s
E3

ELV
H

( p

E

)
, (34)

and the only constraint on H(x) is H(1) = 1. This perspec-
tive can provide more possibilities on different models of
Lorentz violation.
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Appendix: Technical details

From Eq. (11), the geodesic equations of the pseudo-Finsler
norm as Eq. (27) can be derived as

ẏ0 + a(x0)a′(x0)(y1)2 + αmn a′(x0)(y0)n−2y1

2
[
(y0)2 − a(x0)2(y1)2

] n+2
2

·

·
[(

(n2 + 3n + 2)a(x0)3(y0)2(y1)3

−(n + 2)a(x0)(y0)4y1
)
H

(
−a(x0)y1

y0

)

+2y0
(
(n + 1)a(x0)4(y1)4

−(n + 2)a(x0)2(y0)2(y1)2 + (y0)4
)
H ′

(
−a(x0)y1

y0

)
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+a(x0)y1
(
(y0)2 − a(x0)2(y1)2

)2
H ′′

(
−a(x0)y1

y0

)]
= 0,

(A.1a)

ẏ1 + 2
a′(x0)

a(x0)
y0y1

+αmn a′(x0)(y0)n−1

2a(x0)2
[
(y0)2 − a(x0)2(y1)2

] n+2
2

·

·
[
n(n + 2)a(x0)3(y0)2(y1)3H

(
−a(x0)y1

y0

)

+
(
(2n + 1)a(x0)4y0(y1)4 − 2(n + 1)a(x0)2(y0)3(y1)2

+(y0)5
)
H ′

(
−a(x0)y1

y0

)

+a(x0)y1
(
(y0)2 − a(x0)2(y1)2

)2
H ′′

(
−a(x0)y1

y0

)]
= 0.

(A.1b)

To solve the geodesic equations at leading order in α, fol-
lowing our previous work [48], we assume that the solution
has the form

y1 = C1

a(x0)2 + αmn f (τ ), (A.2a)

y0 =
√

ε + C2
1

a(x0)2 + αmng(τ ), (A.2b)

where C1 < 0 because y1 = dx/dτ < 0. Combing
Eqs. (A.1) and (A.2), and expanding the equations to O(α2),
we can get the equations for f (τ ) and g(τ ). We notice that
f ′(τ ) = d f

da
da
dx0

dx0

dτ
= a′(x0)y0 d f

da and the same for g(τ ).
Using this, we can get the equations for f (a) and g(a) as

f ′(a) + 2

a
f (a) + (εa2 + C2

1 )
n−2

2

2ε
n+2

2 an+5

×
⎡
⎣n(n + 2)C3

1 (εa2 + C2
1 )H

⎛
⎝ −C1√

εa2 + C2
1

⎞
⎠

+εa2
√

εa2 + C2
1 (εa2 − 2nC2

1 )H ′
⎛
⎝ −C1√

εa2 + C2
1

⎞
⎠

+C1ε2a4H ′′
⎛
⎝ −C1√

εa2 + C2
1

⎞
⎠

⎤
⎦ = 0, (A.3a)

g′(a) − C2
1

a(εa2 + C2
1 )

g(a) + 2C1√
εa2 + C2

1

f (a)

+C1(εa2 + C2
1 )

n−3
2

2ε
n+2

2 an+4
·

·
⎡
⎣−(n + 2)C1(εa2 + C2

1 )(εa2 − nC2
1 )H

⎛
⎝ −C1√

εa2 + C2
1

⎞
⎠

× 2εa2
√

εa2 + C2
1 (εa2 − nC2

1 )H ′
⎛
⎝ −C1√

εa2 + C2
1

⎞
⎠

+C1ε2a4H ′′
⎛
⎝ −C1√

εa2 + C2
1

⎞
⎠

⎤
⎦ = 0. (A.3b)

The solutions to Eq. (A.3) is

f (a) = C2

a2 − 1

2ε
n+2

2 a2

∫
(εa2 + C2

1 )
n−2

2

an+3

×
⎡
⎣n(n + 2)C3

1(εa2 + C2
1 )H

⎛
⎝ −C1√

εa2 + C2
1

⎞
⎠

+ εa2
√

εa2 + C2
1 (εa2 − 2nC2

1 )H ′
⎛
⎝ −C1√

εa2 + C2
1

⎞
⎠

+C1ε
2a4H ′′

⎛
⎝ −C1√

εa2 + C2
1

⎞
⎠

⎤
⎦ da, (A.4a)

g(a) = C3a√
εa2 + C2

1

+ C1C2

a
√

εa2 + C2
1

+ C1

2ε
n+2

2 a
√

εa2 + C2
1

·

·
[
εa2

∫
(εa2 + C2

1 )
n−1

2

an+3

(
(n + 2)C1

√
εa2 + C2

1 H

×
⎛
⎝ −C1√

εa2 + C2
1

⎞
⎠ − εa2H ′

⎛
⎝ −C1√

εa2 + C2
1

⎞
⎠

⎞
⎠ da

−
∫

(εa2 + C2
1 )

n−2
2

an+3

(
n(n + 2)C3

1(εa2 + C2
1 )H

×
⎛
⎝ −C1√

εa2 + C2
1

⎞
⎠

+εa2
√

εa2 + C2
1 (εa2 − 2nC2

1 )H ′
⎛
⎝ −C1√

εa2 + C2
1

⎞
⎠

+C1ε
2a4H ′′

⎛
⎝ −C1√

εa2 + C2
1

⎞
⎠

⎞
⎠ da

⎤
⎦ . (A.4b)

From Eqs. (A.2) and (A.4), the ratio dx/dt = y1/y0 can be
derived in the leading order of α as

dx

dt
= C1

a
√

εa2 + C2
1

+ αmn

[
εC2a

(εa2 + C2
1 )

3
2

− C1C3a

(εa2 + C2
1 )

3
2

− a

2ε
n
2 (εa2 + C2

1 )
3
2

∫
(εa2 + C2

1 )
n
2

an+3

×
⎛
⎝C3

1(n2 + 3n + 2)H

⎛
⎝ −C1√

εa2 + C2
1

⎞
⎠
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+εa2(εa2 − (2n + 1)C2
1 )√

εa2 + C2
1

H ′
⎛
⎝ −C1√

εa2 + C2
1

⎞
⎠

+ C1ε
2a4

εa2 + C2
1

H ′′
⎛
⎝ −C1√

εa2 + C2
1

⎞
⎠

⎞
⎠ da

⎤
⎦ . (A.5)

Like our previous work [48], we let

ε = C2
1m

2

P2
o

, (A.6)

where [Po] = [m] and Po > 0. Discussion in Ref. [48]
suggests that Pobs = Po+O(α2), and the dispersion relation
as Eq. (16) suggests that Pobs = Eobs + O(α), thus here
Po = Eobs + O(α) can be regarded as the observed energy
of the particle on earth equipment. Thus we get Eq. (28).
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