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Abstract The Karmarkar embedding condition in different
spherically symmetrical metrics is studied in general using
Lie symmetries. In this study, the Lie symmetries for con-
formally flat and shear-free metrics are studied which extend
recent results. The Lie symmetries for geodesic metrics and
general spherical spacetimes are also obtained for the first
time. In all cases group invariant exact solutions to the Kar-
markar embedding condition are obtained via a Lie group
analysis. It is further demonstrated that the Karmarkar condi-
tion can be used to produce a model with interesting features:
an embeddable relativistic radiating star with a barotropic
equation of state via Lie symmetries.

1 Introduction

The embedding of a 4-dimensional Riemann manifold into
a higher dimensional Euclidean space has special interest
in general relativity. Embeddings provide a way to geomet-
rically characterise models in cosmology and astrophysics
in a systematic fashion. They may also lead to new exact
solutions of the Einstein field equations and modified grav-
ity theories. In addition to classical gravity theories, embed-
dings are important in applications arising in extrinsic grav-
ity studies, models of strings and membranes, and the brane
world scenario [1]. Much attention has been given to find-
ing explicit embeddings of well known spacetimes over
the years. Important information and reviews on isometric
embeddings of Riemann manifolds can be found in Eisenhart
[2] and Stephani et al. [3]. The relevant conditions are con-
tained in the Gauss–Codazzi–Ricci equations. The Riemann
tensor has to be written in terms of a rank two symmetric ten-
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sor for an embedding to be possible. In a recent study Murad
[4] provides a history of embeddings and references to early
papers in the subject. In this treatment a general algorithm
is described to embed anisotropic compact stellar objects.
Spherical symmetry has received the most attention because
of cosmological and astrophysical applications. Early results
on spherical symmetry with embedding conditions are con-
tained in the works of Eiesland [5], Karmarkar [6] and Kohler
and Chao [7].

Compact objects in strong gravitational fields with high
densities are of interest in astrophysics. Recently the con-
nections between compact objects, static spherical geome-
try and embeddings have received considerable attention in
many studies [8–30]. These studies show that embeddings
may lead to solutions of the field equations which are phys-
ically acceptable in the description of superdense astronom-
ical objects. Radiating spherically symmetric stars with rel-
ativistic effects are also of physical importance. Such radi-
ating objects are more difficult to study in conjunction with
the Gauss–Codazzi–Ricci equations. A few models in this
context have been obtained recently. Naidu et al. [31] found
a radiating model using the embedding equations for specific
choices of the potentials. A shear-free dissipative model was
studied by Ospino and Nunez [32]. An initial static core even-
tually contracts through dissipation loading to a radiating
model considered by Govender et al. [33]. Models obtained
through embeddings generate realistic temperature profiles
and are consistent with causal thermodynamics as shown by
Jaryal [34]. We expect that embeddings in radiating struc-
tures will reveal interesting behaviour not easily describable
in other approaches when solving the field equations or the
boundary condition at the surface of the star.

A Lie group analysis can be used to obtain group invariant
solutions to partial differential equations. Lie symmetries can
be used to create group invariants which locally transform
partial differential equations to ordinary differential equa-
tions. Lie symmetries frequently arise in stellar models as
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seen in the studies of [35–37]. The possibility of utilising
Lie symmetries for the embedding equations was consid-
ered for particular conformally flat and shear-free spherical
geometries by Paliathanasis et al. [38]. Lie symmetries do
lead to radiating stars via embedding. We find that in this
study that the Karmarkar condition in spherical symmetry
always admits Lie point symmetries. Hence simplification
of the Karmarkar condition is possible by a change of vari-
able simplifying the process of finding exact solutions to the
embedding equations. These solutions will hold in any theory
of gravity as the embedding condition is geometrical. Such
solutions to the field equations may be used to generate cos-
mological models. If the boundary conditions at the stellar
surface are satisfied in addition to the Karmarkar condition
then we can generate a relativistic star.

The purpose of this paper is to consider the role of the Kar-
markar embedding condition in a general spherically sym-
metric spacetime utilising Lie groups. Our approach may be
viewed as an extension to the study in [38]. However unlike
[38], we do not place any restrictions on the metric functions
when obtaining the Lie symmetries. This allows for a more
general treatment to be conducted. We first consider the spe-
cial geometric cases of conformally flat, geodesic and shear-
free metrics. The Lie symmetries are obtained for the embed-
ding condition in each case with related exact solutions. In
addition, we consider the general embedding equation, with-
out any geometric restrictions, and find the Lie symmetries
of the Karmarkar condition without any restrictions in the
case of spherical symmetry. Exact solutions are found in this
general case; we believe that this is the first such analysis. We
also use one of the solutions for the Karmarkar condition to
find a radiating stellar model. This model has the remarkable
feature of having three distinct properties: group invariant
under the one parameter Lie symmetry group, embeddable
in a higher dimensional Euclidean space, and satisfying an
equation of state.

2 Karmarkar condition

The general line element for a spherically symmetric space-
time is given by

ds2 = −A2dt2 + B2dr2 + Y 2
(

dθ2 + sin2 θdφ2
)

, (1)

where A, B and Y represent the gravitational potential func-
tions, which are functions of r and t . The Karmarkar con-
dition can be used to embed a 4-dimensional spherically
symmetric spacetime into a 5-dimensional pseudo Euclidean
space, and was expressed in [6] via the Riemann tensor com-
ponents in a spherically symmetric spacetime. The relation-
ship between the Riemann tensor components is give by

R1010R2323 = R1212R3030 − R2102R3103, (2)

where (xa) = (
x0, x1, x2, x3

) = (t, r, θ, φ). The nonzero
Riemann tensor components are given by

R1010 = 1

AB

(
−Ar A

2Br +At B
2Bt+Arr A

2B−AB2Btt

)
,

(3a)

R2323 = sin2(θ)Y 2

A2B2

(
A2B2 − A2Y 2

r + B2Y 2
t

)
, (3b)

R1212 = − 1

A2B
Y

(
−A2BrYr + A2BYrr − B2BtYt

)
, (3c)

R3030 = sin2(θ)Y

AB2

(
At B

2Yt + Ar A
2Yr − AB2Ytt

)
, (3d)

R2102 = Y

AB
(−Ar BYt − ABtYr + ABYrt ) , (3e)

R3103 = sin2(θ)Y

AB
(−Ar BYt − ABtYr + ABYrt ) . (3f)

Unless otherwise stated, throughout this paper subscripts on
the variables denote partial differentiation. We use (2) and
(3) to express the Karmarkar condition for the line element
(1) as the partial differential equation

AB (B (ArYt − AYrt ) + ABtYr )
2 +

(
−Ar A

2Br

+B2 (At Bt − ABtt ) + Arr A
2B

) (
B2

(
A2 + Y 2

t

)

−A2Y 2
r

)
−

(
B2 (AtYt − AYtt ) + Ar A

2Yr
)

×
(
A2BrYr − A2BYrr + B2BtYt

)
= 0. (4)

Particular solutions to the embedding condition (4) have been
found in the past. The physically interesting cases are listed
in Stephani et al. [3]. Some other special cases are presented
in Paliathanasis et al. [38]. Our treatment is a general anal-
ysis using Lie symmetries in a group theoretical approach.
We first consider conformally flat, shear-free and geodesic
metrics. Finally the general spherically symmetric metric is
analysed without placing any restriction on the spacetime. In
all cases the Lie point symmetries for the Karmarkar condi-
tion (4) are found. Exact solutions to (4) are presented.

3 Conformally flat metric

We first consider conformally flat metrics. Note that a space-
time is conformally flat if and only if the Weyl tensor vanishes
[3]. It is therefore not necessary to consider Weyl-free metrics
unlike the case in the study conducted in [38]; the Weyl-free
metrics can all be transformed to the form given in (5). For
conformal flatness we set A = B and Y = r B in (1) and
obtain the line element

ds2 = B2
(
−dt2 + dr2 + r2

(
dθ2 + sin2 θdφ2

))
. (5)
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For this metric (4) reduces to

−4r2Bt Br Brt + B
(
r2B2

r t + B2
r + r Btt Br

−r (r Btt + Br ) Brr ) + 2r B2
r (r Btt + Br )

+2r B2
t (r Brr − Br ) = 0, (6)

which is the Karmarkar condition. We use the software pack-
age SY M [39] interactively to obtain all Lie symmetries in
this paper. The symmetries for (6) are given by

X1 = ∂t , (7a)

X2 = B∂B, (7b)

X3 = 1

r
∂r , (7c)

X4 = B2∂B (7d)

X5 =
(
r2 − t2

)
B2∂B, (7e)

X6 = t B2∂B, (7f)

X7 = r∂r + t∂t , (7g)

X8 = 1

r B
∂r , (7h)

X9 = t2

r
∂r + t∂t , (7i)

X10 = t

r
∂r , (7j)

X11 = t

r B
∂r + 1

B
∂t , (7k)

X12 =
(
t3

r
− r t

)
∂r − (r2 − t2)∂t , (7l)

X13 = 2t B∂B − 2r t∂r − (r2 + t2)∂t , (7m)

X14 = 2∂B −
(

t2

r B
+ r

B

)
∂r − 2t

B
∂t , (7n)

X15 =
(

2r2B − 2t2B
)

∂B +
(
t4

r
− r3

)
∂r

+
(

2t3 − 2r2t
)

∂t . (7o)

In Paliathanasis et al. [38] only the Lie symmetries X1 to X7

are presented. However, there exist another eight Lie point
symmetries given by X8 to X15 which are given above.There-
fore there exists a 15-dimensional Lie algebra of symmetries
for theKarmarkar condition for the conformally flatmetric in
general.Conformally flat metrics are equivalent to Weyl-free
metrics, therefore there exists a 15-dimensional Lie algebra
of symmetries for metrics with a vanishing Weyl tensor.

We demonstrate that group invariant exact solutions to the
embedding condition (6) can be obtained via the Lie group
approach. We take a general linear combination of X1, X2

and X3 to obtain

U = a2B
∂

∂B
+ a3

r

∂

∂r
+ a1

∂

∂t
, (8)

where a1, a2 and a3 are arbitrary constants. We use (8) to
obtain the group invariants

x = r2

2a3
− t

a1
, (9a)

B = f e
a2
a1

t
, (9b)

where f is a function of x . We substitute (9) into (6) to obtain
the ordinary differential equation

− f f ′ (a2
1 f ′′ + a2

2a3 f
′) + 2a2

1 f ′3 + a2
2a3 f

2 f ′′ = 0. (10)

We solve (10) to obtain

f = d2e

√
a4

1+2a2
1a

2
2a3x+2a2

2a3d1

a2
1

a2
1 +

√
a4

1 + 2a2
1a

2
2a3x + 2a2

2a3d1

, (11)

where d1 and d2 are the arbitrary constants of integrations.
Therefore we have the explicit form

x = r2

2a3
− t

a1
, (12a)

B = c2

a2
1 +

√
a4

1 + a2
1a

2
2r

2 − 2a1a2
2a3t + 2a2

2a3d1

× exp

⎛
⎝

√
a4

1 + a2
1a

2
2r

2 − 2a1a2
2a3t + 2a2

2a3d1

a2
1

+ d1a2t

a2
1

⎞
⎠ ,

(12b)

which represents a solution set to (6).

4 Shear-free metric

We now consider another important physical case that arises
in many models of radiating relativistic stars; that of shear-
free metrics. The shear-free condition requires Y = r B in
(1). We now work with the shear-free line element

ds2 = −A2dt2 + B2
(

dr2 + r2
(

dθ2 + sin2 θdφ2
))

. (13)

Note that A and B are still arbitrary. In particular, A is not
constrained as in [38]. For this metric (4) reduces to
(
−A2 (r Br + B)2 + A2B2 + r2B2

t B
2
)

×
(
−Ar A

2Br + B2 (At Bt − ABtt ) + Arr A
2B

)

+AB (r Bt (Ar B + ABr ) − r ABBrt )
2

−
(
Ar A

2 (r Br + B) + r At B
2Bt − r AB2Btt

)

×
(
r A2B2

r − A2B (Br + r Brr ) + r B2B2
t

)
= 0, (14)

which is the Karmarkar condition.

123



333 Page 4 of 8 Eur. Phys. J. C (2023) 83 :333

We obtain the following Lie symmetries for (14) in the
form

X1 = A∂A + B∂B, (15a)

X2 = −AT ′∂A + T ∂t , (15b)

X3 = −B∂B + r∂r , (15c)

X4 = 1

r B
∂r , (15d)

X5 = 2∂B − r

B
∂r , (15e)

where T is an arbitrary function of t . Paliathanasis et al. [38]
obtained only three Lie symmetries for a restricted case of
the shear-free spacetime by assuming a relationship between
A and B. We find that five Lie symmetries exist for the Kar-
markar condition for the general shear-free metric.

Exact solutions to (14) can be found using Lie symmetries.
We take a general linear combination of (15a), (15b) and
(15c) to obtain

U = A
(
a1 − a2T ′) ∂

∂A
+ B (a1 − a3)

∂

∂B

+a3r
∂

∂r
+ a2T

∂

∂t
, (16)

where a1, a2 and a3 are arbitrary constants. We use (16) to
obtain the group invariants

x = 1

a1

∫
1

T dt − log(r)

a3
, (17a)

A = f

T e
(a2+a3)

a1

∫ 1
T dt

, (17b)

B = gra2/a3, (17c)

where f and g are functions of x . We use (17) to reduce (14)
to the ordinary differential equation

a2
1 f 3e2x(a2+a3)

(
g

(
g′ (−

((
3a2

2 + 6a2a3 + 2a2
3

)
f ′)

−2(a2 + a3) f
′′) + (a2 + a3) f

′g′′)

+g′ (g′ (2(a2 + a3) f
′ + f ′′) − f ′g′′)

+a2(a2 + 2a3)g
2 (

(a2 + a3) f
′ + f ′′))

+a2
3 f gg′ (a2(a2 + 2a3)g

2 f ′ + g
(
f ′g′′

−g′ (4(a2 + a3) f
′ + f ′′)) + 2 f ′g′2) + a2

3 f 2 (2(a2

+a3)gg
′3 + (a2 + a3)g

2g′ (g′′ − 2(a2 + a3)g
′)

+a2(a2 + 2a3)g
3 (

(a2 + a3)g
′ − g′′) − g′4)

−a2
3g

2 f ′2g′2 = 0. (18)

Then we set

f = c1g and a2 = −a3, (19)

where c1 is an arbitrary constant, in (18) to obtain the reduced
equation

a3c1g(a3 − a1c1)(a1c1 + a3)
(
gg′′ − g′2) = 0. (20)

This has solution

g = d2e
d1x , (21)

where d1 and d2 are the arbitrary constants of integrations.
Therefore we have the analytic forms

x =
∫ 1

T dt

a1
− log(r)

a3
, (22a)

A = c1d2ed1x

T , (22b)

B = d2ed1x

r
, (22c)

which comprise a solution to (14).

5 Geodesic metric

In this final physically important case, the particles are not
accelerating and so exhibit geodesic motion. This requires
A = 1 in (1) and we obtain the line element

ds2 = −dt2 + B2dr2 + Y 2
(

dθ2 + sin2 θdφ2
)

. (23)

The Karmarkar condition for the metric (23) is given by the
partial differential equation

(BtYr − BYrt )
2 − BBtt

(
B2

(
Y 2
t + 1

)
− Y 2

r

)

+BYtt
(
Bt B

2Yt + BrYr − BYrr
)

= 0. (24)

We obtain the following Lie symmetries to (24) in the
form

X1 = −BR′∂B + R∂r, (25a)

X2 = ∂t , (25b)

X3 = B∂B + t∂t + Y ∂Y . (25c)

X4 = ∂r (25d)

X5 = ∂Y , (25e)

X6 = Y ∂t − t∂Y , (25f)

where R is an arbitrary function of r . Note that the geodesic
case was not considered in the reference [38]. We find that
there are six Lie symmetries to the Karmarkar condition for
the geodesic metric.
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We now show that group invariant solutions to (24) exist.
We take a linear combination of (25a), (25b) and (25c) to
obtain

U = B
(
a3 − a1R′) ∂

∂B
+ a3Y

∂

∂Y
+ a1R

∂

∂r

+ (a2 + a3t)
∂

∂t
, (26)

where a1, a2 and a3 are arbitrary constants. Then (26) gives
the group invariants

x = (a2 + a3t)
1/a3e

− 1
a1

∫ 1
R dr

, (27a)

B = g

Re
a3
a1

∫ 1
R dr

, (27b)

Y = h(a2 + a3t), (27c)

where f and g are functions of x . We use (27) to transform
(24) to the ordinary differential equation

a2
1g

3
(
xg′′ ((

a3h + xh′)2 + 1
)

− g′ ((a3h + xh′)

×
(

2a3xh
′ + (a3 − 1)a3h + x2h′′) + a3 − 1

))

−x2a3+3g′2h′2 + x2a3+2gh′ (g′ (2a3h
′ + xh′′)

−xg′′h′) . (28)

We set

h = c1x
−a3 and a3 = −1, (29)

where c1 is an arbitrary constant. Then (28) reduces to

xgg′′ (c2
1 − a2

1g
2
)

+ c2
1xg

′2 = 0, (30)

with solution

g =
√
c2

1 − a4
1d

2
1 (d2 + x)2

a1
, (31)

where d1 and d2 are the arbitrary constants of integrations.
Therefore we have the explicit forms

x = (a2 + t)e
− 1

a1

∫ 1
R dr

(32a)

B =
√
c2

1 − a4
1d

2
1 (d2 + x)2e

1
a1

∫ 1
R dr

a1R
, (32b)

Y = c1e
1
a1

∫ 1
R dr

, (32c)

which is a solution set to (24).

6 General metric

In this general case we place no restrictions on the metric
functions in (1). The Karmarkar condition (4) has to be anal-
ysed in full generality.

The Lie symmetries of (4) are given by

X1 = −AT ′∂A + T ∂t , (33a)

X2 = −BR′∂B + R∂r , (33b)

X3 = A∂A + B∂B + Y ∂Y , (33c)

X4 = ∂Y , (33d)

where R and T are arbitrary functions of r and t respect-
fully. This general case was not considered by Paliathanasis
et al. [38] or any other treatment. We find that four Lie point
symmetries exist to the Karmarkar condition for the general
metric (1). It is remarkable that four explicit Lie point sym-
metries can be found for the Karmarkar condition for the
general spherically symmetric metric. We take a general lin-
ear combination of the system of Lie symmetries (33a), (33b)
and (33c) to obtain

U = A
(
a3 − a1T ′) ∂

∂A
+ B

(
a3 − a2R′) ∂

∂B

+a3Y
∂

∂Y
+ a1T

∂

∂t
+ a2R

∂

∂r
, (34)

where a1, a2 and a3 are arbitrary constants. We now show
that exact solutions to the embedding condition (4) can be
found for the general metric (1). Using (34) we obtain the
group invariants

x = 1

a1

∫
1

T dt − 1

a2

∫
1

R dr, (35a)

A = f e
a3
a1

∫ 1
T dt

T , (35b)

B = ge
a3
a2

∫ 1
R dr

R , (35c)

Y = he
a3
a1

∫ 1
T dt

, (35d)

where f , g and h are functions of x . We use (35) to transform
(4) to the ordinary differential equation

a4
1e

2a3x f 3
(
a2

2g
(
f ′ (a3g − g′) + g f ′′)

−e2a3xh′ ( f ′′h′ − f ′h′′)) + a2
1a

2
2 f g

(
a2

2g
2 f ′g′

+e2a3x
(
g

(
a3h + h′) (

a3h
(
a3 f

′ + f ′′) + f ′′h′

− f ′h′′) − f ′g′ (a2
3h

2 + 2a3hh
′ + 2h′2)))

+a2
2g

2 (
a3h + h′) (

a2
1e

2a3x f ′2 (
a3h + h′)

+a2
2g

(
g′ (2a3h

′ + h′′) + a3h
(
a3g

′ − g′′) − g′′h′))

+a2
1a

2
2 f 2

(
a2

2g
3 (
a3g

′ − g′′) − e2a3xh′ (gg′h′′

−h′ (g (
g′′ − 2a3g

′) + g′2)))
= 0. (36)

We set

f = c1g and a3 = 0, (37)
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where c1 is an arbitrary constant, in (36) to obtain

g3
(
a2

1c
2
1 − a2

2

) (
a2

1a
2
2c

2
1g

2g′′ − a2
1a

2
2c

2
1gg

′2

+(a1c1 + a2)(a2 − a1c1)h
′ (g′′h′ − g′h′′)) = 0, (38)

which is a more tractable equation.

6.1 Model I

We note setting a2 = ±a1c1 solves (38). Hence we have the
explicit forms

x = 1

a1

∫
1

T dt ± 1

a1c1

∫
1

R dr, (39a)

A = c1g

T , (39b)

B = g

R , (39c)

Y = h. (39d)

This represents simple solutions to (4). In this class of models
g and h are arbitrary.

6.2 Model II

We observe that it is also possible to integrate (38) to obtain a
functional form for h in terms of g. This leads to the explicit
form

h=
∫ x

1

√
a2

1a
2
2c

2
1g(w)2 + (

a2
1c

2
1 − a2

2

)
d1g′(w)2

√
a2

1c
2
1 − a2

2

dw + d2,

(40)

where d1 and d2 represents constants of integration and w

represents the dummy variable of integration. Hence a par-
ticular solution to (4) has the form

x = 1

a1

∫
1

T dt − 1

a2

∫
1

R dr, (41a)

A = c1g

T , (41b)

B = g

R , (41c)

Y =
∫ x

1

√
a2

1a
2
2c

2
1g(w)2 + (

a2
1c

2
1 − a2

2

)
d1g′(w)2

√
a2

1c
2
1 − a2

2

dw + d2.

(41d)

In this second model the solution of the Karmarkar condition
depends only on the function g.

7 Applications

We have shown that the Karmarkar embedding condition
has a rich structure in spherically symmetric spacetimes. Lie
symmetries exist in cases with kinematical constraints and
also for the general metric (1). The existence of Lie symme-
tries allows us to define new variables, replacing the coordi-
nates t and r , leading to simplified forms of the Karmarkar
condition. Then demonstrating exact solutions to (4) is sim-
plified. Consequently solutions to the Karmakar condition,
together with the field equations lead to cosmological mod-
els. In this cosmological context we mention a special case of
the general spherically symmetric metric (1). The expanding
de Sitter spacetime is described by H2 = �

3 , where H is the
Hubble constant and � is the cosmological constant. The de
Sitter metric is given by

ds2 = −dt2 + e2Ht
(

dr2 + r2
(

dθ2 + sin2 θdφ2
))

. (42)

The de Sitter model is homogeneous and isotropic, represent-
ing a section of a maximally symmetric manifold. The metric
(42) is written in comoving synchronous coordinates, and it
is important in describing cosmological processes such as in
studies of dark energy. The Riemann tensor components of
the de Sitter metric (42) satisfies the Karmarkar condition (2)
and the spacetime is therefore embeddable in 5-dimensional
pseudo Euclidean space. Note that the full set of the Gauss–
Codazzi–Ricci equations are satisfied for the de Sitter geom-
etry [3]. If we wish to describe astrophysical models with a
radiating star in general relativity then the boundary condi-
tions at the surface of the star have to be satisfied. We show
that this is possible by considering a particular example. For
more information on radiating stars in general relativity see
the treatment of Maharaj and Brassel [40].

7.1 Boundary condition

We consider the shear-free metric. The field equations for the
line element (13) can be given by

8πρ = 1

r A2B4

(
r A2B2

r − 4A2BBr − 2r A2B(Brr

+3r B2B2
t

)
, (43a)

8πp‖ = 1

r A3B4

(
2r Ar A

2BBr + 2r At B
3Bt

+2Ar A
2B2 + r A3B2

r + 2A3BBr

−r AB2B2
t − 2r AB3Btt

)
, (43b)
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8πp⊥ = 1

r A3B4

(
2r At B

3Bt + Ar A
2B2

+r Arr A
2B2 − r A3B2

r + A3BBr

+r A3BBrr − r AB2B2
t − 2r AB3Btt

)
, (43c)

8πq = 2

A2B3 (−Ar BBt − ABt Br + ABBrt ) , (43d)

where ρ, p‖, p⊥ and q respectively represent the energy
density, radial pressure, tangential pressure and heat flux.
At the boundary of a radiating star the radial pressure p‖ is
nonvanishing. This leads to the condition

p‖ = q. (44)

We substitute (43b) and (43d) into (44) to obtain the partial
differential equation

2r Ar A
2BBr + 2r Ar AB

2Bt + 2r At B
3Bt

+2Ar A
2B2 + r A3B2

r + 2A3BBr + 2r A2BBt Br

−2r A2B2Brt − r AB2B2
t − 2r AB3Btt = 0. (45)

Equation (44) must be satisfied at the surface for a radiating
stellar model. The general and complete solution to (45) is
currently unknown.

We set

d1 = a1a3c1√
3a2

1c
2
1 − 2a1a3c1 − a2

3

(46)

in (22) to obtain the potentials

x =
∫ 1

T dt

a1
− log(r)

a3
, (47a)

A = c1d2

T e

a1a3c1x√
3a2

1 c
2
1−2a1a3c1−a2

3 , (47b)

B = d2

r
e

a1a3c1x√
3a2

1 c
2
1−2a1a3c1−a2

3 . (47c)

The solution set (47) satisfies the system of partial differen-
tial equations consisting of the Karmarkar condition (14) and
the boundary condition (45). Therefore we have generated a
relativistic radiating star via an embedding with the assis-
tance of Lie symmetries. Other examples of radiating stars
which can be embedded in a 5-dimensional Euclidean space
are given by Naidu et al. [31] and Paliathanasis et al. [38].

7.2 Equation of state

The exact solution (47) exhibits a desirable physical feature.
A requirement for a physical radiating star is that a linear
equation of state exists with

p‖ = αρ, (48)

where α is the equation of state parameter. For the shear-
free metric (13), Eq. (48) can be expressed as the partial

differential equation

2r Ar A
2BBr + 2r At B

3Bt + 2Ar A
2B2

−αr A3B2
r + 4αA3BBr + 2αr A3BBrr

−3αr AB2B2
t + r A3B2

r + 2A3BBr − r AB2B2
t

−2r AB3Btt = 0. (49)

The solution set (47) when

α = a1a3c1

a2
1c

2
1 − a1a3c1 + a2

3

, (50)

satisfies the system of partial differential equations consisting
of Karmarkar condition (14), the boundary condition (45)
and equation of state (49). Consequently our radiating stellar
model obtained via embedding admits a linear barotropic
equation of state. Boundary conditions that admit equation
of states in radiating relativistic stars are studied in Naidoo
et al. [41]. It is therefore possible that other relativistic stars
which are embeddable can be found with equations of state
for the general spherical metric.

8 Discussion

We have performed a Lie symmetry analysis on the Kar-
markar embedding condition for conformally flat, shear-free,
geodesic and general spherical line elements. In each case we
used (2) to express the Karmarkar condition as a partial dif-
ferential equation. Then we obtained the Lie symmetries of
the resulting partial differential equations, which we used to
find group invariants. We then used the group invariants to
transform the partial differential equations to ordinary differ-
ential equations. In each case we presented solutions to the
transformed Karmarkar ordinary differential equations. Our
results extend the earlier Lie group analysis of Paliathana-
sis et al. [38] who considered particular metrics in spheri-
cal geometry. We have found that additional Lie symmetries
exist for conformally flat and shear-free metrics. We have also
considered the geodesic and general spherical metrics, and
found the corresponding Lie symmetries and exact solutions
to the Karmarkar condition. Our analysis was comprehen-
sive. The solutions we obtained to the Karmarkar condition
are physically reasonable. We provided an application of the
Karmarkar embedding condition to astrophysics in Sect. 6,
by showing that the embedding solution (22), when certain
parameters are restricted, can be used in a shear-free radi-
ating star model that admits an equation of state. This stel-
lar model has interesting properties: firstly, the solutions are
(Lie) group invariant. Secondly, they satisfy the Karmarkar
condition. Finally, they also admit an equation of state. As
far as we are aware this is the first such model with all these
properties.
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It is important to note that the Lie symmetries for the
conformally flat (5), shear-free (13), and geodesic metrics
(23) for the embedding conditions are not contained in the
Lie symmetries of the embedding condition for the general
line element (1). This is because Lie symmetries can only
be used to create local transformations in partial differential
equations, and not all Lie symmetries for the different physi-
cal scenarios, considered in Sects. 3, 4 and 5 can be obtained
from the general Karmarkar condition (4). (This is similar to
the case of a preliminary group classification where special
cases of more general equations admit different Lie algebras
of symmetries [42].) When restrictions are placed on the gen-
eral Karmarkar condition (4) additional symmetries can be
obtained. This study demonstrates the importance of the Lie
symmetry approach in solving partial differential equations.
This is seen in the group invariant exact solution set (47) and
(50) that satisfies the system of partial differential equations
consisting of Karmarkar condition (14), the boundary con-
dition (45) and equation of state (49). In future studies we
will explore additional approaches to solving the Karmarkar
embedding conditions that involve other symmetries such as
Noether or contact symmetries.
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