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Abstract Although neutrino–antineutrino states originat-
ing from neutral-current interactions are blind concerning
the flavor state, an oscillation pattern is predicted provided
that both neutrino and antineutrino are detected. This issue
arises from both the coherence and entanglement of the
neutrino–antineutrino states. Based on quantum resource the-
ory, we use the l1-norm and concurrence to quantify quan-
tum coherence and entanglement, respectively. Considering
the localization properties by the wave packet approach and
a matter potential which appears when neutrino and antineu-
trino propagate in a material medium, we obtain the l1-norm
and concurrence. We see that the neutrino and antineutrino
remain entangled for larger baseline lengths when they prop-
agate in a material medium. In the case of the coherence
property, the l1-norm decreases in comparison to the corre-
sponding one in vacuum. However, its damping occurs for
larger distances.

1 Introduction

Quantum coherence and entanglement are two important
quantum resources that play crucial roles in quantum infor-
mation and quantum computation science, and they are inves-
tigated in various branches of condensed matter, atomic
physics, and quantum optics. Additionally, several parti-
cle physics phenomena, such as meson mixing and neu-
trino oscillation, could potentially provide suitable oppor-
tunities for their exploration [1–13]. For instance, violation
of the Leggett–Garg inequality as a manifestation of quan-
tum coherence has been investigated using MINOS data [1].
The l1-norm value as a measure of quantum coherence has
also been studied using data from the Daya Bay, KamLAND,
MINOS, and T2K neutrino experiments [2]. For instance, in
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the case of the Daya Bay experiment, in which detectors are
near the source and the measured transition probability is
low, the l1-norm takes a value much lower than its maxi-
mum, while in the case of KamLAND, in which the neutrino
baseline is about 180 km, this coherence measure reaches
the maximal value. Certainly, the neutrino oscillation pro-
cess, which is a quantum mechanical phenomenon occur-
ring on the macroscopic scale, is an appropriate medium in
which to study the quantum foundation aspects and quantum
correlations such as quantum coherence and entanglement.
Using the wave packet approach, one can give a meticulous
description of neutrino oscillation [14–17]. Specifically, the
production, propagation, and detection of a neutrino should
be considered as localized processes, and this localization
is very well fulfilled using the wave packet approach. To
be more precise, we must emphasize that the observation
of neutrino oscillation depends on the coherence of neutri-
nos during production, propagation, and detection processes.
The production and detection coherence conditions are sat-
isfied provided that the intrinsic quantum mechanical energy
uncertainties during these processes are large compared to
the energy difference �Ei j of different neutrino mass eigen-
states:

�Ei j ∼ �m2
i j

2E
� σE , (1)

where σE = min{σ prod
E , σ det

E }. This condition implies that
during the production and detection processes, one can-
not discriminate the neutrino mass eigenstates. Conservation
of coherence during propagation means that wave packets
describing the mass eigenstates overlap from the production
to the detection regions. The wave packets describing differ-
ent neutrino mass eigenstates propagate with different group
velocities. After propagating L , the separation of different

mass wave packets is
�m2

i j

2E2 L . Consequently, coherent prop-
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agation is guaranteed provided that

�m2
i j

2E2 L � σxν � vg

σE
, (2)

where vg is the average group velocity of wave packets of
different neutrino mass eigenstates, and σxν is their common
effective spatial width. In other words, similar to the double-
slit experiment, if one could determine which mass eigen-
state is created or detected, the neutrino oscillation pattern
would disappear. In particular, the conservation of energy and
momentum implies that exact determination of the energy–
momentum of charged leptons leads to determination of the
mass eigenstate of the corresponding neutrino (in fact, exact
momentum conservation causes the neutrino state to be kine-
matically entangled with the corresponding charged lepton
state), and the neutrino oscillation ceases [18,19].

Furthermore, the neutrino oscillation process is observed
provided that neutrinos have a specific initial flavor state. The
kinematic analysis shows that a neutrino state created through
charged current (CC) interactions exhibits this situation. For
instance, a muon neutrino is created by pion decay, while
muon decay only gives an electron neutrino. In contrast, the
neutral current (NC) processes or the Z0 decay are blind with
respect to the neutrino flavor states. In other words, every
flavor eigenstate and every mass eigenstate is created with
equal probability. Therefore, one can write, in general, the
state of the created neutrino and antineutrino as follows:

|νZ 〉 = 1√
3

∑

α=e,μ,τ

|να〉|ν̄α〉 = 1√
3

3∑

i=1

|νi 〉 |ν̄i 〉 . (3)

Here, the second equality is satisfied because the transforma-
tion matrix between mass and flavor eigenstates is unitary.
Thus, the usual neutrino oscillation in which either neutrino
or antineutrino is detected cannot be observed for NC neu-
trinos. However, Eq. (3) shows that there is another prop-
erty that is noticeable: the neutrino and antineutrino origi-
nating from the NC interaction are maximally entangled due
to the conservation of energy–momentum and lepton num-
ber in electroweak interactions. Hence, if both neutrino and
antineutrino are detected, it is possible that oscillation pat-
terns will be observed between detectors [22–24]. However,
if only either neutrino or antineutrino is detected, we will
have an entirely classical ensemble and will be unable to
observe any oscillation pattern. Indeed, this phenomenon can
be interpreted as a CPT transformation of half of the process
maps of the propagation of neutrino–antineutrino pairs onto
the traditional neutrino oscillation experiment. Of course,
its requirement is that the initial state is an entangled state
according to Eq. (3). Otherwise, if the initial state is separable

as follows:

ρ = 1

3

∑

γ

|νγ 〉|ν̄γ 〉〈νγ |〈ν̄γ |, (4)

using the CPT transformation on the antineutrino process,
one can show that the probability of detecting a neutrino
with flavor state |να〉 at a detector and an antineutrino with
flavor state |νβ〉 at another detector is

Pαβ = 1

3

∑

γ

PγαPβγ , (5)

which is not the traditional neutrino oscillation probabil-
ity. Although NC neutrino oscillation is beyond the reach
of any experiment, it can be implemented analogically by
the double-double-slit experiment performed in Ref. [25].
In this experiment, the path-entangled photons are passed
through opposite screens with a double slit. Due to entan-
glement, each photon can reveal the which-slit-path infor-
mation of the other photon. Therefore, the two-photon inter-
ference pattern appears if detection locations of photons are
correlated without revealing the which-slit-path information.
However, it has also been shown experimentally and theoreti-
cally that two-photon quantum interference disappears when
the which-slit-path of one photon is detected in the double-
double-slit.

When neutrinos (antineutrinos) propagate in a material
medium, they might have a forward coherent scattering off
electrons and nucleons of the matter via both weak CC and
weak NC interactions [26,27]. All three neutrino (antineu-
trino) flavor states can interact with the matter through NC,
but the electron neutrino (antineutrino) has an additional
interaction (i.e., interaction through the CC) which causes
it to feel an additional potential. In the calculations, we
only consider the effective potential due to the CC interac-
tion because the potentials coming from the NC interactions
induce common phases for all three neutrino (antineutrino)
flavor states and do not alter neutrino oscillating behaviors.
Therefore, the effective potential of matter which must be
considered isVCC = √

2GFNe (V̄CC = −√
2GFNe), where

GF and Ne are the Fermi coupling constant and the density
of electrons in the medium, respectively. If the matter density
of the medium is nonuniform, the potential depends on the
coordinate; otherwise, it is constant.

According to Eq. (3), the neutrino and antineutrino pro-
duced by NC interactions are entangled with respect to either
their flavor or mass modes. Indeed, this state has a maximal
entanglement similar to the Bell states.1 Moreover, they are

1 Bell states are the four states that can be created when two qubits
are maximally entangled. The four states are represented as |
±〉 =
|00〉±|11〉√

2
and |�±〉 = |10〉±|10〉√

2
.
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entangled due to energy–momentum conservation. In fact,
the predicted oscillation pattern between two detectors is
based on these features. Also, as a result of entanglement,
the coherence condition obtained by considering localization
properties via the wave packet approach is stronger than that
obtained by imposing the non-separation mass wave packet
constraint analogous to Eq. (2) [23,24]. In fact, the coherent
propagation of both neutrino and antineutrino is not suffi-
cient because the oscillation pattern ceases if the distance
between the detectors is larger than the coherence length.
In this paper, we consider the matter refraction to reanalyze
this problem in the context of two-flavor neutrino oscilla-
tions. In this case, the NC neutrino oscillation cannot be
concluded by a CPT transformation of half the process. How-
ever, since the mixing in the source is independent of matter
potential, the initial state can be written in mass eigenstate
according to Eq. (3). Therefore, as we will show, one can
obtain the standard oscillation pattern in a material medium
for the NC neutrinos. Moreover, using quantum resource the-
ory, we study the quantum entanglement and quantum coher-
ence under these conditions. For this purpose, concurrence
and l1-norm are defined as a measure for entanglement and
quantum coherence, respectively. Coherence is the quantum
resource of neutrino oscillation, and its origin during pro-
duction and detection processes, as well as its conservation
during propagation, has been discussed extensively and accu-
rately in the literature; for instance, see [14–21]. Meanwhile,
using quantum resource theory, one can quantify quantum
coherence, entanglement, or another quantum resource by
introducing some measure quantities [31–36]. In the case of
usual neutrino oscillation, the refraction of the neutrino in
a dense medium leads to a decrease in the quantum coher-
ence in standard neutrino oscillation [9]. However, as we will
see, the value of entanglement of neutrino–antineutrino pairs
shows different behavior in terms of matter potential.

In the next section, treating the neutrino and antineutrino
as a wave packet, we obtain the probability of the NC neutrino
oscillation in a material medium with constant density for
the two-flavor schema. In Sect. 3, we explore the variation
in entanglement and quantum coherence for this issue in the
quantum resource theory framework. For this purpose, we
use concurrence and l1-norm measures for entanglement and
coherence, respectively. We summarize our results in the last
section.

2 Probability of NC neutrino oscillation in matter

According to the quantum wave packet approach, we should
describe the neutrino and antineutrino by a localized wave
function at the space-time coordinates (x, t) and (x̄, t̄),
respectively. Moreover, it is assumed that the neutrino and
antineutrino detectors are located at distances L and L̄ from

the source, respectively. The neutrino and antineutrino com-
ing from the Z0 boson must be described by a bipartite entan-
gled state. Therefore, this state can be written as follows:

∣∣νZ , x, t, x̄, t̄
〉 = 1√

2

∑

i

�m
iS(x, t, x̄, t̄) |νi 〉 |ν̄i 〉 , (6)

where

�m
iS(x, t, x̄, t̄) = N

∫
d3 p

(
√

2π)3

∫
d3 p̄

(
√

2π)3

× fS(p,pmi ) f̄S( p̄, p̄mi )δ3(p − p̄)

× exp[−i Em
i (p)(t − tp) + ip(x − xp)

−i Ēm
i ( p̄)(t̄ − tp) + i p̄ · (x̄ − xp)]. (7)

The superscript m refers to the propagation in a material
medium, and the subscript S indicates that this state is related
to the source. Here, fS(p,pmi ) and f̄S( p̄, p̄mi ) are the momen-
tum distribution functions of the neutrino and antineutrino
with mean momenta pmi and p̄mi . Also, Em

i (p) and Ēm
i ( p̄)

are the energies of the neutrino and antineutrino with mass
mi , respectively, and tp and xp denote the production coor-
dinates. The Dirac delta factor is added in Eq. (7) to ensure
that the momentum is conserved (here, we consider those
Z0 bosons as being almost at rest in the frame where the
matter effect is constant). Indeed, the time evolution of neu-
trino states in a matter medium is governed by the following
effective Hamiltonian [28]:

δHm = H0 + VCC = 1

2E
[Udiag(0,�m2

21)U
†

+diag(2EV (x), 0)]. (8)

In the case of the antineutrino, we denote the correspond-
ing Hamiltonian by δ H̄m , and it is obtained from Eq. (8)
by replacing V (x) with −V (x). We consider the density of
matter to be constant. The unitary mixing matrix U for a
two-generation platform is parameterized as follows:

U =
[

cos θ sin θ

− sin θ cos θ

]
. (9)

Therefore, one can obtain the following eigenvalues for the
Hamiltonian given by Eq. (8):

δEm
1 =

�m2
21 + 2EV −

√
4E2V 2 + �m4

21 − 4EV�m2
21 cos 2θ

4E
,

(10)

and

δEm
2 =

�m2
21 + 2EV +

√
4E2V 2 + �m4

21 − 4EV�m2
21 cos 2θ

4E
,

(11)
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and the corresponding mixing angle is given by

θm = 1

2
arctan

(
�m2

21 sin 2θ

�m2
21 cos 2θ − 2EV

)
. (12)

In the case of the antineutrino, we denote the eigenvalues
of δ H̄m and corresponding mixing angle by δ Ē

m
1,2 and θ̄m ,

respectively. These parameters can be represented by the cor-
responding expressions given in Eqs. (10), (11), and (12),
with the difference that V must be replaced by −V . It is
clear from Eq. (12) that there is a resonance in mixing of
neutrinos provided that V � �m2

21 cos 2θ/2E . However, no
resonance exists for antineutrino mixing.

For the momentum distribution function of the neutrino
and antineutrino in Eq. (7), we use the Gaussian momentum
wave function as follows:

f (p,pi ) =
(

2π

σ 2
p

) 3
4

exp

[
− (p − pi )

2

4σ 2
p

]
. (13)

Hereafter, the momentum uncertainties of the neutrino and
antineutrino are denoted by σp and σ̄p, respectively. It is
appropriate to assume that σp and σ̄p are much smaller
than the corresponding mean momenta. Therefore, one can
expand the energy up to the first order of the departure from
the mean momentum as follows:

Em
i (p) � Em

i + vmi (p − pmi ), (14)

where

Em
i ≡ Em

i (pmi ) =
√
m2

i + pmi
2, (15)

and vmi is the group velocity of the i th mass eigenstate and
is given by vmi = dEm/dp|p=pmi

. Likewise, we can write a
similar expression for antineutrinos. Consequently, one can
write the position wave packet given in Eq. (7) as follows:

�m
iS(x, t, x̄, t̄) ∝ exp

[
−i(Em

i t + Ēm
i t̄) − (σ 2

xν σ̄
2
x ν̄ )

(σ 2
xν + σ̄ 2

x ν̄ )

(pmi − p̄mi )2 − (x + x̄ − vmi t − v̄mi t̄)
2

4(σ 2
xν + σ̄ 2

x ν̄ )

+ i

(σ 2
xν + σ̄ 2

x ν̄ )
(x + x̄)(σ̄ 2

x ν̄ p̄
m
i + σ 2

xνp
m
i )

+ i

(σ 2
xν + σ̄ 2

x ν̄ )
(pmi − p̄mi )(σ̄ 2

x ν̄v
m
i t − σ 2

xν v̄
m
i t̄)

]
. (16)

where σ 2
xν and σ̄ 2

x ν̄ are the position uncertainties of the neu-
trino and antineutrino in the source, and they are given by
σx = 1/2σp and σ̄x = 1/2σ̄p, respectively.

On the other hand, since the detection processes are essen-
tially time-independent, detected states have no time depen-
dence. Therefore, the wave function of the detected neutrino

and antineutrino states is described by
∣∣να, x − L, ν̄β , x̄ − L̄

〉

=
∑

i

∑

j

Um∗
αi Ū

m
β j�

m
iD(x − L)�̄m

j D̄
(x̄ − L̄) |νi 〉

∣∣ν̄ j
〉
,

(17)

where �m
iD(x − L) and �̄m

j D̄
(x̄ − L̄) are the wave functions

of the detected neutrino and antineutrino at positions L and
L̄, respectively. Moreover,Um

αi and Ūm
βi in Eq. (17) are mixing

matrices of neutrinos and antineutrinos in a material medium.
In fact, Um (Ūm) has a form similar to Eq. (9), with the
difference that θ is replaced by θm (θ̄m), given by Eq. (12).
Again, we assume a localized Gaussian wave function in
momentum space similar to (13) for both the neutrino and
antineutrino detected in the corresponding detectors. Under
this scenario, the detected state Eq. (17) can be written as
follows:

∣∣να, x − L, ν̄β , x̄ − L̄
〉 =

∑

i

Um∗
αi Ū

m
β j exp

[
ip′m

i (x − L)

+i p̄′m
i (x̄ − L̄) − (x − L)2

4σ 2
xD

− (x̄ − L̄)2

4σ̄ 2
x D̄

]
|νi 〉

∣∣ν̄ j
〉
,

(18)

where σ 2
xD and σ̄ 2

x D̄
are the uncertainties of the detected

neutrino and antineutrino processes. In general, the mean
momenta of the produced particles, pi and p̄i , are different
from one of the detected particles, p′

i and p̄′
i . However, we

assume that they coincide. Then, the transition amplitude of
detecting να and ν̄β in the corresponding detectors becomes

Am
αβ =

∫
d3x

∫
d3 x̄〈να, x − L, ν̄β , x̄ − L̄ | νZ , x, t, x̄, t̄〉.

(19)

Substituting Eq. (6) with �m
iS given in Eqs. (16) and (18)

into the above equation and calculating the integrals over the
position coordinates, we obtain

Am
αβ ∝ 1√

2

∑

i

Um∗
αi Ū

m
βiexp

[
− i Em

i t − i Ēm
i t̄

− (L + L̄ − vmi t − v̄mi t̄)
2

8σ 2
x

− σ 2
x (pmi − p̄mi )2

2

+ i(L + L̄)(pmi + p̄mi )

2
+ i(pmi − p̄mi )(vmi t − v̄mi t̄)

2

]
,

(20)

where we assume that the position uncertainties of neutrinos
and antineutrinos, which are defined as

σ 2
x ≡ σ 2

xν + σ 2
xD, σ̄ 2

x ≡ σ̄ 2
x ν̄ + σ̄ 2

x D̄
, (21)

are approximately equal σ 2
x � σ̄ 2

x .
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We want to obtain the probability of detecting a neutrino
with flavor state |να〉 at one detector and the corresponding
antineutrino with flavor state |νβ〉 at another. In general, the
distance of the two detectors from the production location
may be different. In this case, the arrival times of the neu-
trino and antineutrino at their corresponding detectors are
not equal. It is suitable that instead of t and t̄ , we select the
following time variables:

T = t + t̄, and τ = |t − t̄ |. (22)

Meanwhile, the emission time and the corresponding arrival
times of the neutrino and antineutrino are not measured.
Hence, we integrate over T , which is the arrival time of
the neutrino or antineutrino from its own detector to another
detector. Therefore, the probability of the oscillation pattern
between detectors can be obtained as follows:

Pm
αβ ∝ 1

2

∑

i, j

Um∗
αi U

m
α j Ū

m∗
β j Ū

m
βi exp

{
− (L + L̄)2

8σ 2
x

(�vmi j + �v̄mi j )
2

(vmi + v̄mi )2 + (vmj + v̄mj )2 − 2σ 2
x (�Em

i j + �Ēm
i j )

2

(vmi + v̄mi )2 + (vmj + v̄mj )2

−σ 2
x

2

[(
p̄mi − pmi

)2 +
(
p̄mj − pmj

)2
]

− i
(L + L̄)(�Em

i j + �Ēm
i j )(v

m
i + vmj + v̄mi + v̄mj )

(vmi + v̄mi )2 + (vmj + v̄mj )2 + i
(L + L̄)(�pmi j + �p̄mi j )

2

+2σ 2
x

(�Em
i j + �Ēm

i j )
[
(v̄mi − vmi )(p̄mi − pmi ) − (v̄mj − vmj )(p̄mj − pmj )

]

(vmi + v̄mi )2 + (vmj + v̄mj )2

−σ 2
x

2

[
(vmi − v̄mi )(p̄mi − pmi ) − (vmj − v̄mj )(p̄mj − pmj )

]2

(vmi + v̄mi )2 + (vmj + v̄mj )2

−i
(L + L̄)

2

(vmi + vmj + v̄mi + v̄mj )
[
(p̄mi − pmi )(vmi − v̄mi ) − (p̄mj − pmj )(vmj − v̄mj )

]

(vmi + v̄mi )2 + (vmj + v̄mj )2 − (v̄mj v
m
i − v̄mi v

m
j )2τ 2

8σ 2
x ((vmi + v̄mi )2 + (vmj + v̄mj )2)

−i
�Em

i j τ

(vmi + v̄mi )2 + (vmj + v̄mj )2 (v̄m2
i + v̄m2

j + v̄mi v
m
i + v̄mj v

m
j ) + i

�Ēm
i j τ

(vmi + v̄mi )2 + (vmj + v̄mj )2 (vm2
i + vm2

j + v̄mi v
m
i + v̄mj v

m
j )

+ (L + L̄)(v̄mi v
m
j − v̄mj v

m
i )τ

4σ 2
x ((vmi + v̄mi )2 + (vmj + v̄mj )2)

(�vmi j + �v̄mi j ) + i
τ

2((vmi + v̄mi )2 + (vmj + v̄mj )2)

×
[(

2v̄mi v
m
i (v̄mi + vmi ) + (v̄mj + vmj )(v̄mj v

m
i + v̄mi v

m
j )

)
(pmi − p̄mi )

−
(

2v̄mj v
m
j (v̄mj + vmj ) + (v̄mi + vmi )(v̄mj v

m
i + v̄mi v

m
j )

)
(pmj − p̄mj )

]}
, (23)

in which �Em
i j (�Ēm

i j ) and �vmi j (�v̄mi j ) are the energy and
group velocity differences in the material medium between
the two mass eigenstates of the neutrino (antineutrino),
respectively. By using relativistic approximations, one can
write the mean energies as follows:

Em
i ≈ E + ξδEm

i , (24)

and

Ēm
i ≈ E + ξδ Ēm

i , (25)

where E is the neutrino and antineutrino energy in the limit of
zero mass. Also, ξ denotes a dimensionless quantity whose
value can be estimated from energy-momentum conservation
in the production process [29,30]. In the case of Z0 boson
decay in the rest frame, we have ξ ≈ 0. Similarly, the corre-
sponding momenta can be given by

pmi ≈ E + (ξ − 1)δEm
i , (26)

and

p̄mi ≈ E + (ξ − 1)δ Ēm
i . (27)

Furthermore, in this approximation, the group velocity of a
mass eigenstate is also written as

vmi ≈ dEm
i

dE
= 1 + dδEm

i

dE
(28)

for neutrinos and

v̄mi ≈ d Ēm
i

dE
= 1 + dδ Ēm

i

dE
, (29)

123
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for antineutrinos. Therefore, Eq. (23) can be simplified as
follows:

Pm
αβ(L, L̄) ∝ 1

2

∑

i, j

Um∗
αi Ū

m
βiU

m
α j Ū

m∗
β j

× exp

{
− 2π i

(L + L̄)

Lmosc
i j

− 1

2

(L + L̄

Lmcoh
i j

)2 −
(2πξσx

Lmosc
i j

)2

−σ 2
x (ξ − 1)2

2

[
(δEm

i − δ Ēm
i )2 + ((δEm

j − δ Ēm
j ))2

]}

×exp

{
τ

64

[
− 32i(�δEm

i j − �δ Ēm
i j )

+ 1

σ 2
x
(�v̄mi j − �vmi j )

(
2(L + L̄)(�v̄mi j + �vmi j )

−(�v̄mi j − �vmi j )τ
)]}

, (30)

where the oscillation length Lmosc
i j and the coherence length

Lmcoh
i j , for i = j , are defined by

Lmosc
i j ≡ 4π

�δEm
i j + �δ Ēm

i j

, (31)

in which �δEm
i j ≡ δEm

i − δEm
j and �δ Ēm

i j ≡ δ Ēm
i − δ Ēm

j ,
and

Lmcoh
i j ≡ 4

√
2σx

| �vmi j + �v̄mi j | , (32)

respectively. According to Eq. (28), the differences in the
neutrino group velocities appearing in Eq. (32) become

�vi j = −�m2
21(�m2

21 − 2EV cos 2θ)

4E3�δEm
i j

. (33)

For �v̄mi j , we obtain a similar expression, with the differ-

ence that �δEm
i j and V must be replaced by �δ Ēm

i j and
−V . For neutrinos, �vi j becomes zero provided that V =
�m2

21/2E cos 2θ . But in the case of antineutrinos, it does not
happen. Therefore, according to Eq. (32), the greatest value
of Lmcoh

i j occurs when �vmi j = 0. The last exponential factor
appearing in Eq. (30) is due to the non-simultaneous neutrino
and antineutrino detection processes. This factor depends on
the subtraction of the difference between the energies and
group velocities of the neutrino and antineutrino mass eigen-
states. This difference is zero in vacuum, and in the material
medium with usual densities its effect can be completely
ignored compared to the oscillation and decoherence fac-
tors. Therefore, with accuracy such that this factor can be
ignored, the processes of neutrino and antineutrino detection
can be considered to be simultaneous. Furthermore, the first
three terms appearing in the first exponential, in Eq. (30),
are the same as the results of Refs. [23,24], with the differ-
ence that Lmosc

i j and Lmcoh
i j are modified due to the neutrino

and antineutrino scattering off matter. However, the last term

in this exponential is coming absolutely from the difference
between the potential of neutrinos and antineutrinos. Similar
to the terms coming from the non-simultaneity of neutrino
and antineutrino detection processes, the effect of this term
can also be ignored.

Since the lifetime of Z0 is so small (about τZ0 � 3 ×
10−25s), the interval between two nearest collisions becomes
smaller than the mean distance between particles in the
nucleus. Therefore, σx is determined by the Z0 decay width
�Z0 as follows [16]:

σx � p

E
�−1
Z0

. (34)

The energy of the neutrino and antineutrino coming from
the decay of a rest Z0 is about E = 46GeV. If we take
�m2

21 = 7.53 × 10−5eV 2, and θ = 33.46◦ [37], σx of
approximately 10−16m is obtained. With these values for rel-
evant parameters, using (32) and (31), coherence and oscilla-
tion length of about 1010m and 1015m are obtained, respec-
tively. Therefore, under this condition, the oscillation pattern
ceases due to the separation of mass eigenstate wave packets.
This situation is not improved by choosing the oscillation
parameters between the second and third generations, and
the oscillation length will still be several orders of magni-
tude larger than the coherence length. In the following, how-
ever, we want to investigate quantum coherence and entangle-
ment as a resource of the oscillation pattern in this problem.
Therefore, we suppose σx to be about the atomic distance
(5×10−10m) so that the oscillating behavior does not cease.

For greater clarification, we illustrate the probabilities of
the survival (a) and transition patterns (b) between detectors
versus their distance L+ L̄ in Fig. 1. Specifically, we plot the
probability in terms of L+ L̄ for four cases: vacuum (V = 0,
blue curve), for a value of the potential which corresponds to
the neutrino resonance mixing (V = 3.208 × 10−16eV, pink
curve), for a value of the potential in which Lmcoh

12 takes the
maximum value (V = 2.087 × 10−15eV, green curve), and
for a matter-dominated potential (V = 5 × 10−14eV, brown
curve).

3 Quantum correlations

As mentioned, the NC neutrino oscillation originates from
the neutrino and antineutrino entanglement and quantum
coherence due to the overlap of mass eigenstate wave func-
tions. Both of these correlations are affected by the disentan-
gling and decoherence due to the separation of wave packets
as well as the scattering of neutrinos and antineutrinos off
material medium. Therefore, in this section, we use concur-
rence and l1-norm, respectively, as a measure for entangle-
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Fig. 1 Probabilities of the survival (a) and transition (b) patterns between detectors versus their distance L + L̄ . The matter potential is taken as
V = 0 (blue), V = 3.208 × 10−16eV (pink), V = 2.087 × 10−15eV (green), and V = 5 × 10−14eV (brown)

ment and quantum coherence in the framework of quantum
resource theory, in order to investigate the mentioned effects.

Entanglement as a quantum correlation is studied exten-
sively in the framework of the quantum resource theory [31–
34]. Concurrence is one of the measures suggested to quantify
entanglement. First, let us define ρ̃ as follows:

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy). (35)

The concurrence measure is generally defined by [33,34]

C(ρ) = max(λ1 − λ2 − λ3 − λ4, 0), (36)

where λi ’s are the square roots of the four eigenvalues of the
non-Hermitian matrix ρρ̃ in decreasing order. Accordingly,
considering a general two-qubit state, we have

|φ〉 = α00 |0, 0〉 + α01 |0, 1〉 + α10 |1, 0〉 + α11 |1, 1〉 . (37)

The concurrence for this state is obtained as follows:

C(ρ) = 2 | α00α11 − α01α10 | . (38)

Clearly, for Bell states, we have C(ρ) = 1. Otherwise, if the
coefficients in Eq. (37) are such that |φ〉 is separable, C(ρ)

will be zero. For other cases, one obtains a value between 0
and 1. The more entangled the state, the closer the value of
C(ρ) is to 1.

For an entangled neutrino and antineutrino state originat-
ing from the Z0 decay, the corresponding bipartite state is
given in Eq. (6), which is written based on the wave packet
approach. The density matrix operator corresponding to this

state, after integrating over the related momenta and time,2

is obtained as

ρ(x, x̄) ∝ 1

2

∑

i, j

exp

[
− 1

8σ 2
x ((vi + v̄i)2 + (vj + v̄j)2)

×(x + x̄)2(�vi j + �v̄i j )2

+ i

2
(�pi j + �p̄i j )(x + x̄) − σ 2

x

2
((p̄i − pi)2 + (p̄j − pj)2)

− 1

8σ 2
x ((vi + v̄i)2 + (vj + v̄j)2)

[(x + x̄)(vi + vj + v̄i + v̄j)]2

+ 1

8σ 2
x ((vi + v̄i)2 + (vj + v̄j)2)

[−4iσ 2
x (�Ei j + �Ēi j )

+(x + x̄)(vi + vj + v̄i + v̄j)

+2iσ 2
x (p̄j − pj)(v̄ j − v j ) − 2iσ 2

x (p̄i − pi)(v̄i − vi )]2
]

× | νi , ν̄i 〉〈ν j , ν̄ j | . (39)

Taking into account the issues related to energies, momenta,
and group velocities, given in Eqs. (24)–(29), and using the
definitions given in Eqs. (31) and (32), one can simplify this
relation as follows:

ρ(x, x̄) ∝ 1

2

∑

i, j

exp

⎡

⎣−2π i
(x + x̄)
Lmosc

i j
− 1

2

(
x + x̄

Lmcoh
i j

)2

−
(

2πξσx

Lmosc
i j

)2

− σ 2
x

2
(ξ − 1)2[(δEm

i − δ Ēm
i )2

+ (δEm
j − δ Ēm

j )2]
⎤

⎦ | νi , ν̄i 〉〈ν j , ν̄ j |, (40)

2 Similar to the calculation of the oscillation probability, we integrate
over the propagation time because in all existing neutrino oscillation
experiments only the source detector distance is known.

123



417 Page 8 of 11 Eur. Phys. J. C (2023) 83 :417

Fig. 2 Concurrence versus propagation length for various matter
potentials. The second and third values of potential have been cho-
sen to correspond to the resonance and the infinite coherence length of
a neutrino, respectively

The behavior of this density matrix in terms of x + x̄ is
analogous to that obtained in Ref. [21], with some differ-
ences coming from the distinct propagation of neutrinos and
antineutrinos in a material medium.

Now we can calculate the concurrence whose definition
is given in Eq. (36) as a measure of the neutrino and antineu-
trino entanglement. By direct calculation, one can obtain the
following expression for concurrence:

C(ρ) = exp

[
−1

2

(
x + x̄

Lmcoh
12

)2

−
(

2πξσx

Lmosc
12

)2

−σ 2
x

2
(ξ − 1)2[(δEm

1 − δ Ēm
1 )2 + (δEm

2 − δ Ēm
2 )2]

]
.

(41)

In fact, the first term in the exponential has a decisive role
in the behavior of C(ρ) when the propagation length is of
the order of the coherence length. Furthermore, we should
emphasize that if one uses a plane wave description for
neutrinos, the value of concurrence remains equal to 1 for
every value of x + x̄ and V . Meanwhile, in the wave packet
approach, the concurrence depends on V as well as x + x̄; it
becomes zero when x+ x̄ exceeds the coherence length, and
its falling is postponed for higher matter density (see Fig. 2).

Specifically, according to Eq. (41), when the localization
properties are considered by the wave packet approach, the
overlap of mass eigenstate wave packets is diminished for a
propagation length larger than the coherence length because
the corresponding velocities are different. However, it can
be compensated by propagation of the neutrino in the mate-
rial medium. In other words, the refraction of neutrinos in a
dense medium causes the difference in wave packet veloci-
ties to decrease. While the concurrence vanishes for smaller
matter potentials for a specific propagation length, it becomes
nonzero for larger potentials; for example, see Fig. 3.

Fig. 3 Concurrence versus matter potential for various propagation
lengths

Now let us study the coherence of neutrinos and antineu-
trinos originating from the Z0 decay process. As was noted,
in order for oscillation to occur, neutrinos must be coherent
during the production, propagation, and detection processes.
In the framework of the quantum resource theory, quantum
coherence is a quantum correlations that can be quantified
by appropriate measure quantities [35,36]. Among the sev-
eral measures for quantum coherence, a very intuitive one is
related to the off-diagonal elements of the considered quan-
tum state. Hence, for a given density matrix, ρ, the l1-norm
as a measure of quantum coherence is defined by

c(ρ) =
∑

i = j

|ρi j |. (42)

In general, the maximum possible value for c(ρ) is d − 1,
where d is the dimension of the corresponding density matrix
[36]. Therefore, the neutrino oscillation shows that the off-
diagonal elements of the corresponding density matrix in the
basis of the flavor state are nonzero, and consequently we
have no vanishing l1 − norm [9].

In the case of NC neutrinos, the dimension of the density
matrix given in Eq. (40) is four in two-flavor schema. In
this case, therefore, the maximum value of the l1-norm is
3. According to the definition given in Eq. (42), one can
write this parameter in terms of the transition amplitudes as
follows:

c(ρ) = 2

{
|Am

ee(x, x̄)A
m∗
eμ (x, x̄)| + |Am

ee(x, x̄)A
m∗
μe (x, x̄)|

+|Am
ee(x, x̄)A

m∗
μμ(x, x̄)|

+|Am
eμ(x, x̄)Am∗

μe (x, x̄)| + |Am
eμ(x, x̄)Am∗

μμ(x, x̄)|

+|Am
μe(x, x̄)A

m∗
μμ(x, x̄)|

}
. (43)

Here, the first and second terms and the fifth and sixth terms
are identical. An explicit form of c(ρm) in terms of neutrino
oscillation parameters is given in the Appendix. We illus-
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Fig. 4 l1-norm versus the baseline x̄ + x for three values of matter
potential

trate the behavior of c(ρm) versus the distance of detectors
x + x̄ through Fig. 4. In this plot, we consider three val-
ues for matter potential: vacuum (V = 0), the value corre-
sponding to the infinite coherence length for neutrinos, and
a matter-dominated value. We see that although for baseline
less than the coherence length the matter effect causes c(ρm)

to drop relative to vacuum, the coherence length in a material
medium becomes larger than one in the vacuum.

Furthermore, in Fig. 5, the behavior of c(ρm) in terms of
the matter potential is depicted for the results obtained based
on both plane wave (a) and wave packet (b) approaches. We
consider two values for the baseline: a value smaller than the
coherence length, 1016m (blue curve), and a value greater
than that, 1018m (pink curve). In the case of the former (blue
curve), c(ρm) obtained in both approaches behaves similarly.
Although for some values of the potential a slight increase
in the value of c(ρm) is seen, as the value of the potential
increases, c(ρm) eventually decreases to a value less than the
corresponding one in the vacuum. However, in the case of
1018m baseline (pink curve), we see that in the plane wave
approach, c(ρm) achieves the maximum value for a region
of the potential values, while in the wave packet approach,
c(ρm) is certainly smaller than the maximum value. This is
due to the decoherence effects coming from the separation
of neutrino wave packets.

4 Conclusion

According to the theory of neutrino oscillation, it is possible
to observe an oscillation pattern between the detectors of neu-
trinos and antineutrinos coming from Z0 boson decay when
the neutrino production, propagation, and detection coher-
ence conditions are satisfied. We see that under a realistic
condition for Z0 boson decay, σx is estimated to be about
10−16m. Thus the coherence length is smaller than the oscil-

lation length, and the propagation coherence conditions are
not satisfied. Nevertheless, we have assumed σx = 5×10−10

so that the coherence conditions are satisfied. However, if
only one of them is detected, neutrino oscillation cannot be
observed. This phenomenon results from the fact that the
neutrino and antineutrino arising from the Z0 decay are both
entangled and coherent. These quantum properties can be
quantified according to the quantum resource theory. In this
paper, we use the concurrence and l1-norm to quantify entan-
glement and quantum coherence, respectively. On the other
hand, considering localization properties by using the wave
packet approach, one can see that the wave packet separa-
tion of neutrino mass eigenstates due to the difference in the
corresponding velocities suppresses the amount of entangle-
ment and coherence measures. Another factor that can affect
these quantum correlations is the propagation of neutrinos
and antineutrinos in material media. Hence, in this paper, we
have reanalyzed the Z0 decay neutrino oscillation by con-
sidering the localization properties and matter potential. In
particular, we have obtained the concurrence and l1-norm in
two-flavor schema. If the localization effects are ignored and,
in other words, the plane wave approach is used to obtain
the transition probability, the concurrence always remains
1. Otherwise, the concurrence ceases when the propagation
length exceeds the coherence length. However, the matter
potential causes the coherence length to increase, and as a
result, this damping occurs in larger propagation lengths (see
Fig. 2). Indeed, the propagation in material medium causes
wave packet separation, with the result that the damping of
entanglement is compensated to some extent (see Fig. 3). Fur-
thermore, we have shown that although the matter potential
causes the l1-norm value to be small compared to the corre-
sponding one in the vacuum, the damping due to the wave
packet separation occurs in larger propagation lengths as well
(see Fig. 4). As another point, we have compared the behavior
of the l1-norm in terms of matter potential for the case when
using the plane wave approach and when using the wave
packet approach. Obviously, when the propagation length
is smaller than the coherence length, both approaches give
the same result. Otherwise, in the plane wave approach, the
coherence value is maintained, but it is ultimately suppressed
due to the interaction with the material medium. In the wave
packet approach, its value is suppressed before the significant
impact of the potential (see Fig. 5).
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Fig. 5 l1-norm versus the matter potential in both the plane wave (a) and wave packet approaches (b). Two values are taken for the baseline; a
value smaller and a value larger than the coherence length
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Appendix A

Using Eq. (40) for density matrix, one can obtain the follow-
ing expression for the l1-norm in the limit of a large baseline:

c(ρ) =
2∑

i=1

√
h2

12�
2
i − 1

4
γ 2

1 (h2
12 sin2(2π f12)−1)−γ1�i h12 cos(2π f12)

+
√

γ 2
2 +h2

12 sin2 2θm−γ 2
1 h

2
12 cos2(2π f12)−2γ1γ4h12 cos(2π f12)

+
√

γ 2
3 +h2

12 sin2 2θ̄m−γ 2
1 h

2
12 cos2(2π f12)−2γ1γ4h12 cos(2π f12), ∗−10pt

(A1)

in which

h12 = exp

[
− 1

2

(
x + x̄

Lmcoh
12

)2

−
(

2πξσx

Lmosc
12

)2]
(A2)

f12 = x + x̄
Lmosc

12
(A3)

and

�1 = cos2 θm sin2 θ̄m + sin2 θm cos2 θ̄m, (A4)

�2 = −
(

cos2 θm cos2 θ̄m + sin2 θm sin2 θ̄m
)

, (A5)

γ1 = sin 2θm sin 2θ̄m, (A6)

γ2 = cos 2θm sin 2θ̄m, (A7)

γ3 = sin 2θm cos 2θ̄m, (A8)

γ4 = cos 2θm cos 2θ̄m . (A9)
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