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Abstract An investigation about localized CP asymmetries
for the processes of B̄0

s → π+π−π0(K 0) is presented in this
paper. The innovation of this paper is that there is a considera-
tion of three-particle ρ0(770), ω(782) and φ(1020) interfer-
ences effect. Generally, ω(782) and φ(1020) both can decay
into π+π− pair where can cause extremely small contri-
bution from isospin symmetry breaking. Nevertheless, our
analysis shows that B̄0

s → π+π−π0(K 0) decay process can
bring differential CP asymmetry about 65% (36%) because
of isospin symmetry breaking. To be better compared with
the data from experimental in the future, we integrate CP
asymmetry over the invariant mass and obtain localized CP
asymmetry value for the decay B̄0

s → π+π−π0(K 0). We
find that there is an evident signal about CP asymmetry at
invariant mass value m(π+π−) below the mass of ρ0(770)

with the decay B̄0
s → π+π−π0.

1 Introduction

The sources of CP asymmetry in particle physics have caused
a great deal of attention since 1964 [1]. It is possible for
CP asymmetry to occur during the decay of a hadron, dur-
ing the mixing of neutral hadrons, or during the interference
between the two processes [2]. The strong interaction and
electromagnetic interaction all satisfy the CP transformation
without deformation while CP symmetry breaks down only
in the weak interaction, and it has been believed that the root
is because there is a complex phase angle in the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [3]. The amplitude is
connected at least twice interaction of a weak phase and a
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strong phase in a b hadron decay [4]. The weak phase is
relevant to the Cabibbo-Kobayashi-Maskawa (CKM) matrix
while the strong phase is created by re-scattering or by
other mechanism involved in the two-body decay process.
The three-body decay process includes complex dynamic
mechanism and phase space associated with resonance and
non-resonance contributions. It is the intermediate resonance
hadrons linked to Breit-Wigner formalism that give rise to the
strong phases accounting for CP asymmetry in three-body
decay processes.

Vector meson dominance model (VMD) predicts that the
vacuum polarisation of the photon is entirely made up of
vector mesons of ρ0(770), ω(782) and φ(1020) [5]. The
photon couples to the neutral vector meson which is dom-
inated by a two-pion state when e+e− decay into the pair
of π+π−. The transitions of ω(782) and φ(1020) decay to
π+π− pair which originate in isospin breaking related to
the mixings of ω(782) − ρ0(770) and φ(1020) − ρ0(770).
One can combine the intermediate state with the physical
states from isospin states by the unitary matrix for the three
hadrons. The dynamics mechanism can be obtained from the
interference of ρ0(770), ω(782) and φ(1020) mesons [6]. A
new strong phase is formed with the help of the intermedi-
ate resonance hadrons, which may have an impact on the CP
asymmetry of hadron decay.

The LHCb collaboration has gained a lot of attention to
the CP asymmetries about B± → π±π+π− and B± →
K±π+π− decay processes in recent years [7,8]. Experi-
mental studies have found the above decay processes pro-
duce huge CP asymmetry, which reach 58% and 67% for
the local regions, respectively [9,10]. Currently, there are
many theoretical explanations for the CP asymmetry of these
three-body decay processes, for example, based on reso-
nance effects and end-state rescattering [11,12]. Especially
for B± → K±π+π− process, the huge CP asymmetry
occurs when the invariant mass of π+π− is in region of
the ρ0(770) and f0(980) resonance [10]. Although our pre-
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vious results show that when the invariant masses of π+π−
in the resonance region of ρ0(770) and ω(782) have large
CP asymmetry, we failed to compare with the experiment
because we do not consider the unevenness of phase space
distribution [13–17]. At the same time, end-state rescattering
can produce new strong phase (which can even be relatively
large), which may affect CP asymmetry [18,19]. Based on
the above considerations, we focus on the CP asymmetry in
the resonance region of ρ0(770), ω(782) and φ(1020) in this
work so that we can make a comparison with the experimen-
tal data.

An observation of CP asymmetry has been made in local-
ized phase space region from three-body decay of the B
meson [20,21]. Especially, quasi-two-body B → PV result-
ing in three-body final states from vector meson decays
are presented [22]. In view of vector mesons resonances,
the different types of resonant contributions are allowed to
estimate the strong phase. CP violations are measured in
charm-less B decay which related to the ρ(770)0 − ω(782)

mixing region. Including the ω(782) contribution, the CP
violation related to the vector resonance is measured to be
ACP (B+ → ρ(770)0π+ → π+π+π−) = −0.004 ± 0.017
and ACP (B+ → ρ0(770)K+ → K+π+π−) = 0.150 ±
0.019. The method comes from the the approximation of a
two-body interaction plus one spectator meson [23].

These processes improves our knowledge about the CP
asymmetry by precise measurements. CP asymmetry mea-
surements will soon be possible for the Bs decay with the
data obtained by the upgraded LHCb. The three-body decay
of Bs meson can provide new opportunities for searching
CP asymmetry. In the case of three-body decays, interme-
diate states often dominate through quasi-two-body decay
channels. There are several factorization techniques for cal-
culating the hadron matrix elements in two-body hadron
decays [24–27]. And by introducing a sudakov factor based
on the QCD correction, the PQCD method can calculate
decay amplitudes without endpoint divergence is more appre-
ciate. Besides, the final state of this work can be han-
dled as this quasi-two-body form B̄0

s → Vπ0(K 0), where
V = ρ0(770), ω(782), φ(1020) [28–30].

As presented in our work, we consider ρ0(770), ω(782)

and φ(1020) resonance effect for CP asymmetry, which
relates with new complex strong phase. The new strong phase
for the first order causes the isospin symmetry to shatter,
which results in the CP asymmetry. We aim at the CP asym-
metry in the decay process of B̄0

s → ρ0 (ω, φ) π0(K 0) →
π+π−π0(K 0) in perturbative QCD approach. While at the
same time, the localized integrated CP asymmetry can be
obtained to compare with the results of experiments in near
future.

We organize the information as below. In Sect. 2, theo-
retical framework about three-particle mixing is introduced.
Following that, in Sect. 3, we show the decay diagrams and

analytical formalization of the primary decay processes. Sec-
tion 4 of this paper contains the precise calculations, while
in Sect. 5 we show the numerical findings. Section 6 has a
summary and a conclusion. Acknowledge is below in Sect.
7.

2 Three-particle mixing

Using a dominant model of vector meson (VMD), vector
mesons of ρ0(770), ω(782), φ(1020) can be obtained by
the decay of photons formed by the polarization of posi-
tive and negative electron pairs in a vacuum. The momen-
tum of this process is also transmitted through VMD model.
Since the intermediate resonance state is not a physical
field, we use the unitary matrix R to make a conversion:
ρ0
I (ωI , φI ) → ρ0 (ω, φ). In the two representations, one

can get two expressions about R, where 〈ρI |ρ〉, 〈ωI |ω〈 and
〈φI |φ〈 are equal to 1 and 〈ρI |ω〈, 〈ρI |φ〈 and 〈ω|φ〉 are equal
to Aρω (s), Bρφ (s) and Cωφ (s) since they are all order
O (λ) , (λ � 1) [6]. The isospin basis vector | I, I3 > can
be constructed by using the isospin field ρ0

I (ωI , φI ), where
I and I3 refer to the isospin and the isospin third component,
respectively. Therefore, we regard physical particle states as
linear combinations of these essential vectors. We use the
orthogonal normalization method to obtain the relationship
between the physical state of the particle and the isospin basis
vector, where we define the propagator D(s). We can get the
physical states ρ0, ω and φ as follows:

ρ0 = ρ0
I − Aρω (s) ωI − Bρφ (s) φI , (1)

ω = Aρω (s) ρ0
I + ωI − Cωφ (s) φI , (2)

φ = Bρφ (s) ρ0
I + Cωφ (s) ωI + φI . (3)

Based on the physical representation, we take the method
of diagonalization about WI by the matrix R without consid-
ering higher order terms, where WI is defined as the mass
squared operator in an isospin field. Then we obtain the rela-
tionship Aρω (s), Bρφ (s) andCωφ (s) with WI . According to
the representations of physics, we can describe the propaga-
tor of intermediate state particles from vector mesons. Con-
sidering the physics and isospin effect, we make these defini-
tions respectively as follows, where DV1V2 = 〈0|T V1V2|0〉
and DI

V1V2
= 〈0|T V I

1 V
I

2 |0〉. V1 and V2 of DV1V2 which refers

to the meson of ρ0, ω or φ. After taking the expressions of
Eq.(1), Eq.(2) and Eq.(3) into the definition of DV1V2 , we can
find the form of Dρω, Dρφ and Dωφ are same. Actually, there
is no three-particle mixing under the physical appearance so
that DV1V2 is equal to zero. Besides, according to the expres-
sion for the physical state of the three-particle mixing, these
parameters of �ρω, �ωφ , �ρφ , Aρω , Bρφ andCωφ take the
leading order approximation. The product which any two of
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them is higher order and can be disregarded, which enables
us to get the formalisms of Aρω, Bρφ and Cωφ as follows:

Aρω = �ρω

sρ − sω
,

Bρφ = �ρφ

sρ − sφ
,

Cωφ = �ωφ

sω − sφ
. (4)

where sρ , sω and sφ refer to the propagators of ρ, ω and φ.
We can write sV + m2

V − imVΓV = s, where the
√
s is

the invariant mass of two pions. For the vector V, sV is the
inverse propagator, mV represents its mass and ΓV refers to
the decay rate. From above equations, we obtain �̃ρω and

�̃ρω after definition about �̃V1V2 = sV1�V1V2
sV1−sV2

(�̃ωφ can be

ignored in the next step of the calculation).
Wolfe and Maltman recently calculated the precise ρ − ω

mixing parameters [31,32]:

ReΠρω(m2
ρ) = −4470 ± 250modl ± 160dataMeV2,

ImΠρω(m2
ρ) = −5800 ± 2000modl ± 1100dataMeV2.

(5)

Mixing parameters ρ − φ near the φ meson have been
given as follows [33]:

Fρφ = (0.72 ± 0.18) × 10−3 − i (0.87 ± 0.32) 10−3. (6)

Different mixing parameters relate to the momentum
dependence of ρ − ω mixing and ρ − φ mixing, which are
Π̃ρω (s) and Π̃ρφ (s) respectively. To absorb the contribution
of ω and φ decay into π+π− pair, we anticipate discovering
evidence of mixing in the resonance area of ω and φ where
two pions are also generated by breaking isospin symme-
try. We use Π̃ρω (s) = �eΠ̃ρω

(
m2

ω

) + ImΠ̃ρω

(
m2

ω

)
and

Π̃ρφ (s) = �eΠ̃ρφ

(
m2

φ

)
+ ImΠ̃ρφ

(
m2

φ

)
expressions and

update the values as below [34–36] (Table 1):

3 CP asymmetry in
B̄0
s → ρ (ω, φ) π0(K 0) → π+π−π0(K 0)

For the convenience of representing decay process in our
work, we replace ρ0(770), ω(782), and φ(1020) with ρ0,
ω and φ respectively. And the main decay diagrams of
B̄0
s → ρ (ω, φ) π0(K 0) → π+π−π0(K 0) can be expressed

in Fig. 1. One can see that the quasi-two-body decay of
B̄0
s → ρ (ω, φ) π0(K 0) → π+π−π0(K 0) is associated the

diagrams (a) ∼( f ) of Fig. 1. The main contribution depends
on (a) diagram of the Fig. 1 since the decay rate of ρ → ππ

is 100%. For simplify, we only present a few of the major
graphs.

In the diagram (a), B̄0
s meson decays into π0(K 0) and

π+π− pair which is produced directly by ρ0 resonance
effect. Meanwhile, it is known that π+π− pair can also exist
by the resonance effect ofω orφ meson, where corresponding
mixing parameters are involved. As shown in the diagram of
(b), ρ0 meson decays into π+π− by ω resonance. The mixing
parameter �ρω is generated during the ω resonance, which
as shown in the black dots of (b). Diagram of (c) is almost
similar to diagram (b), but the differences are the resonance
effect is φ and the mixing parameter is �ρφ . In the diagram
(d), the meson of ω or φ decay into π+π− compared with the
ρ meson is extremely small. Furthermore, the contributions
from the diagram (e) and diagram (f) are so tiny that can be
neglected since ω and φ decay into π+π− through the res-
onance effect of ω − φ mixing. After considering above,
we can see B̄0

s → ρ (ω, φ) π0(K 0) → π+π−π0(K 0)

decay process receives effectively diagrams contributions
from (a) ∼ (c).

The procedure of the decay amplitude A( Ā) is described
as:

Atotal = < π+π−π0(K 0)|H|B̄0
s >

= < π+π−π0(K 0)|HT |B̄0
s >

+ < π+π−π0(K 0)|HP |B̄0
s >, (7)

where < π+π−π0(K 0)|HT (HP ) |B̄0
s > |B̄0

s > is the con-
tribution of tree (penguin). Through above contribution, we
can define:

r ≡
∣∣
∣∣
< π+π−π0(K 0)|HP |B̄0

s >

< π+π−π0(K 0)|HT |B̄0
s >

∣∣
∣∣ . (8)

The relative value r of the contributions made by the tree
operator and the penguin operator are described below:

A =< π+π−π0(K 0)|HT |B̄0
s >

[
1 + rei(δ+φ)

]
, (9)

where δ and φ refer to the strong phase and weak phase,
respectively.

We can get the physical information from diagrams (a),
(b) and (c) in Fig. 1:

Table 1 The value of the
mixing parameter �eΠ̃ρω

(
m2

ω

) = −4760 ± 440MeV 2 ImΠ̃ρω

(
m2

ω

) = −6180 ± 3300MeV 2

�eΠ̃ρφ

(
m2

ω

) = 796 ± 312MeV 2 ImΠ̃ρφ

(
m2

φ

)
= −101 ± 67MeV 2
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Fig. 1 The diagrams of B̄0
s → π+π−π0(K 0) decay process

< π+π−π0(K 0)|HT |B̄0
s >= gρ

sρsω

∼
�ρωtω

+ gρ

sρsφ

∼
�ρφ tφ + gρ

sρ
tρ, (10)

< π+π−π0(K 0)|HP |B̄0
s >= gρ

sρsω

∼
�ρω pω

+ gρ

sρsφ

∼
�ρφ pφ + gρ

sρ
pρ. (11)

where tV (pV ) is the tree (penguin) amplitudes, gρ refers to
the coupling constant and sV represents the Breit-Wigner
formalism of vector meson(V = ρ, ω, φ). We define these
equations of B̄0

s → ρ0(ω, φ)π0(K 0) to obtain CP asymme-
try according to the Wolfenstein parametrization [37]:

in Table 2 above, the corresponding decay process of
B̄0
s → ρ0 (ω, φ) π0 on the left side of the table is a pure

annihilation decay process. These two expressions for ρ and
η obtained from the Wilson coefficients are associated with
Vtb, V ∗

ts and Vub,V ∗
us . The CKM matrix, whose elements are

determined from experiments can be expressed in terms of
the Wolfenstein parameters A, ρ, λ and η. Then we can get
the expressions of Vtb = 1, V ∗

ts = −Aλ2, Vub = Aλ3(ρ−iη)

and V ∗
us = λ. Therefore, we can get the relationships ρ and

η between sin φ and cos φ in B̄0
s → ρ0 (ω, φ) π0 decay pro-

cess since the weak phase φ is related with VtbV ∗
ts

VubV ∗
us

. Simi-

larly, the decay process of B̄0
s → ρ0 (ω, φ) K 0 on the right

side of the table is a tree-dominate decay process whose two
expressions for ρ and η obtained are associated with Vtb, V ∗

td

and Vub,V ∗
ud . We can obtain the expressions of sin φ and

cos φ in B̄0
s → ρ0 (ω, φ) π0 decay process after simplifying

Vtb = 1, V ∗
td = Aλ3(1 − ρ + iη), Vub = Aλ3(ρ − iη) and

V ∗
ud = 1 − 1

2λ2.

Therefore, the differential parameter of CP asymmetry is
shown as below:

ACP = |A|2 − ∣∣A
∣∣2

|A|2 + ∣
∣A

∣
∣2 . (12)

In the future, we need to compare our results with exper-
imental data while taking into consideration the localized
integrated direct CP asymmetry of decay processes. For the
decay amplitude of B̄0

s → ρ0π0(K 0) → π+π−π0(K 0)

process, we consider the contributions of B̄0
s → ρ0π0(K 0)

and ρ0 → π+π−.
The amplitude of the B̄0

s → ρ0π0(K 0) can be written
as Mλ

B̄0
s →ρ0π0(K 0)

= αPB̄0
s

· ε∗ (λ) , α is the effective cou-

pling constant, PB̄0
s

is the momenta of B̄0
s , ε is the polar-

ization vector of ρ0, λ is the helicity of vector meson. And
the amplitude for ρ0 → π+π− can be written as follows:
Mλ

ρ0→π+π− = gρε (λ) ·(p1 − p2), where p1 is the momenta

of π+ and p2 is the momenta of π−. Hence, the amplitude
of B̄0

s → ρ0π0(K 0) → π+π−π0(K 0) is [38,39]:

A = gρα

sρ
Pμ

B̄0
s

∑

λ=±1,0

ε∗
μ (λ) εr (λ) · (p1 − p2)

r

= −gρα

sρ
Pμ

B̄0
s

[

gμr − (p1 + p2)μ (p1 + p2)r

m2
ρ

]

(p1 − p2)
r .
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Table 2 The relationships about
ρ and η for
B̄0
s → ρ (ω, φ) π0(K 0) decay

processes

B̄0
s → ρ0(ω, φ)π0 B̄0

s → ρ0(ω, φ)K 0

− sin φ
√

ρ2 + η2 = η sin φ
√[ρ(1 − ρ) − η2]2 + η2 = η

− cos φ
√

ρ2 + η2 = ρ cos φ
√[ρ(1 − ρ) − η2]2 + η2 + η2 = ρ(1 − ρ)

(13)

In the three body decay process, we obtain PB̄0
s

= p1 +
p2 + p3 and m2

i j = p2
i j since conservation of energy and

momentum. Thus, the amplitude can be written as:

A = gρ

sρ
·
Mλ

B̄0
s →ρ0π0(K )

PB̄0
s
.ε∗ ·

(
ξ − s

′) =
(
ξ − s

′) · M. (14)

Using this formula,
√
s ′ (√s

)
is the high (low) invariance

mass of the π+π− pair. According to the equation above, ξ is

equal to 1
2

(
s

′
max + s

′
min

)
, where s

′
max ( s

′
min) is the maximum

(minimum) value of s
′

for fixed s.
Integrate ACP within the invariant mass range, which may

be quantified by experiments. Then we are able to estimate
the localized integrated CP asymmetry in this location:

AΩ
CP =

∫ s2
s1

ds
∫ s

′
2

s
′
1

ds
′ (

ξ − s
′)2 (

|M|2 − ∣∣M∣∣2
)

∫ s2
s1

ds
∫ s

′
2

s
′
1

ds ′ (
ξ − s ′)2

(
|M|2 + ∣∣M∣∣2

) . (15)

By analyzing the kinematic of three body decay process

in the region of Ω
(
s1 < s < s2, s

′
1 < s

′
< s

′
2

)
, we are able

to conclude that ξ = 1
2

(
s

′
min + s

′
max

)
is correlated with s

based on the kinematics. ξ is taken to be a constant in this
case because s varies only in minimal scale [7]. This not

only results in the cancellation of
∫ s

′
2

s
′
1

ds
′ (

ξ − s
′)2

but also

AΩ
CP is independent of the high invariant mass of positive

and negative meson pais in this way. We consider the s is
dependent between the values of s

′
max and s

′
min in our calcu-

lations. It is assumed that s
′
min < s

′
< s

′
max represents an

integral interval of the high invariance mass of π+π− while
∫ s

′
max

s
′
min

ds
′ (

ξ − s
′)2

represents the factor that is dependent

upon s [20].

4 Calculation

In this paper, we take the perturbative QCD (PQCD) method
to work out, which is obtained by applying the kT factoriza-
tion formalism to the decay process of two-body. Hadrons
have a transverse momentum kT , which we must take into
account to calculate its transverse momentum. Besides, it

introduces an additional energy scale that produces dou-
ble logarithms in the QCD corrections. As a result, the re-
normalization group method is a great way to get factors of
Sudakov once the terms in this matrix have been resumed.
Because of this, the distribution amplitude of mesons in the
tiny transverse momentum zone is effectively suppressed in
this form factor, which increases the accuracy of the PQCD
approach even in this region. The PQCD method has been
widely used in the reach of pure annihilation decays. As a
result, we believe this approach is appropriate for dealing
with processes that are not factorizable and determining the
contribution to the annihilation diagram [40].

In this work, we use the channel of B̄0
s

→ ρ0(ω, φ)π0(K 0) → π+π−π0(K 0) as an illustration of
how the process conducts under the perturbative QCD. The
formalism of tV and pV (V = ρ, ω, φ), which are obtained
from the tree (penguin) level contribution to the equation
must be obtained to calculate the CP asymmetry.

Using CKM matrix elements of VubV ∗
us (VubV ∗

ud ) and
VtbV ∗

ts (VtbV ∗
td ) as a basis for analysis, the amplitude in

B̄0
s → ρ0π0(K 0) → π+π−π0(K 0) process can be writ-

ten as

A
(
B̄0
s → ρ0

(
ρ0 → π+π−)

π0
)

=
∑

λ=0,±1

GF PB̄0
s

· ε∗ (λ) gρε (λ) · (pπ+ − pπ−)√
2sρ0

×
{

1

2

[
A

(
B̄0
s → π+ρ−)

+ A
(
B̄0
s → ρ+π−)]}

.

(16)

where

A
(
B̄0
s → π+ρ−)

= GF√
2
VubV

∗
us

{ [
fBs F

LL
ann (a2) + MLL

ann (c2)
] }

−GF√
2
VtbV

∗
ts

{
fBs F

LL
ann (a3 + a9)

− fBs F
LR
ann (a5 + a7) + MLL

ann (c4 + c10)

−MSP
ann (c6 + c8) + (

π+ ↔ ρ−) }
,

A
(
B̄0
s → ρ+π−)

= GF√
2
VubV

∗
us

{ [
fBs F

LL
ann (a2) + MLL

ann (c2)
] }
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−GF√
2
VtbV

∗
ts

{
fBs F

LL
ann (a3 + a9) − fBs F

LR
ann (a5 + a7)

+MLL
ann (c4 + c10) − MSP

ann (c6 + c8) + (
ρ+ ↔ π−) }

.

where the amplitude of B̄0
s → ρ0π0 is composed of two

parts B̄0
s → π+ρ− and B̄0

s → ρ+π−. And they are related
to each other as 2A

(
B̄0
s → ρ0π0

) = A
(
B̄0
s → π+ρ−) +

A
(
B̄0
s → ρ+π−)

.

A
(
B̄0
s → ρ0

(
ρ0 → π+π−)

K 0
)

=
∑

λ=0,±1

GF PB̄0
s

· ε∗ (λ) gρε (λ) · (pπ+ − pπ−)

2sρ0

×{
VubV

∗
ud

[
fρF

LL
Bs→K (a2)

+MLL
Bs→K (c2)

]
− VtbV

∗
td

[
fρF

LL
Bs→K

×
(

−a4 + 3

2
a7 + 1

2
a10 + 3

2
a9

)

+MLR
Bs→K

(
−c5 + 1

2
c7

)

+MLL
Bs→K

(
−c3 + 1

2
c9 + 3

2
c10

)

−MSP
Bs→K

(
3

2
c8

)

+ fBs F
LL
ann

(
−a4 + 1

2
a10

)

− fBs F
SP
ann

(
−a6 + 1

2
a8

)

+ MLL
ann

(
−c3 + 1

2
c9

)

+MLR
ann

(
−c5 + 1

2
c7

)]}
. (17)

It is possible to write the decay amplitudes of B̄0
s →

ωπ0(K 0) → π+π−π0(K 0) as follows:

A
(
B̄0
s → ω

(
ω → π+π−)

π0
)

=
∑

λ=0,±1

GF PB̄0
s

· ε∗ (λ) gωε (λ) · (pπ+ − pπ−)

2
√

2sω

×
{
VubV

∗
usM

LL
ann (c2)

−VtbV
∗
ts

[
MLL

ann

(
3

2
c10

)
− MSP

ann

(
3

2
c8

)

+
(
π0 ↔ ω

) ]}
. (18)

A
(
B̄0
s → ω

(
ω → π+π−)

K 0
)

=
∑

λ=0,±1

GF PB̄0
s

· ε∗ (λ) gωε (λ) · (pπ+ − pπ−)

2sω

×
{
VubV

∗
ud

[
fωF

LL
Bs→K 0 (a2) + MLL

Bs→K (c2)
]

−VtbV
∗
td

[
fωF

LL
Bs→K 0

(
2a3 + a4 + 2a5+

1

2
a7 + 1

2
a9 − 1

2
a10

)

+MLR
Bs→K 0

(
c5 − 1

2
c7

)

+MLL
Bs→K 0

(
c3 + 2c4 − 1

2
c9 + 1

2
c10

)

−MSP
BS→K 0

(
2c6 + 1

2
c8

)

+ fBs F
LL
ann

(
a4 − 1

2
a10

)

+ fBs F
SP
ann

(
a6 − 1

2
a8

)

+ MLL
ann

(
c3 − 1

2
c9

)
+ MLR

ann

(
c5 − 1

2
c7

)]}
. (19)

In order to calculate the amplitude of B̄0
s → φπ0(K 0) →

π+π−π0(K 0), we use the following formula:

A
(
B̄0
s → φ

(
φ → π+π−)

π0
)

=
∑

λ=0,±1

GF PB̄0
s

· ε∗ (λ) gφε (λ) · (pπ+ − pπ−)

2sφ

×
{
VubV

∗
us

[
fπ F

LL
Bs→φ (a2) + MLL

Bs→φ (c2)
]

−VtbV
∗
ts

[
fπ F

LL
Bs→φ

(
3

2
a9 − 3

2
a7

)

+ MLL
Bs→φ

(
3

2
c8 + 3

2
c8

)]}
. (20)

A
(
B̄0
s → φ

(
φ → π+π−)

K 0
)

= −
∑

λ=0,±1

GF PB̄0
s

· ε∗ (λ) gφε (λ) · (pπ+ − pπ−)√
2sφ

×
{
VtbV

∗
td

[
fφF

LL
Bs→K

(
a3 + a5 − 1

2
a7 − 1

2
a9

)

+ fK FLL
Bs→φ

(
a4 − 1

2
a10

)
− fK FSP

Bs→φ

(
a6 − 1

2
a8

)

+MLL
Bs→K

(
c4 − 1

2
c10

)
+ MLL

Bs→φ

(
c3 − 1

2
c9

)

−MSP
Bs→K

(
c6 − 1

2
c8

)
− MLR

Bs→φ

(
c5 − 1

2
c7

)

+ fBs F
LL
ann

(
a4 − 1

2
a10

)
− fBs F

SP
ann

(
a6 − 1

2
a8

)
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Fig. 2 Plot of ACP as a function of
√
s corresponding to central

parameter values of CKM matrix elements for the decay channel of
B̄0
s → π+π−π0

Fig. 3 Plot of sinδ as a function of
√
s corresponding to central

parameter values of CKM matrix elements for the decay channel of
B̄0
s → π+π−π0

+MLL
ann

(
c3 − 1

2
c9

)
−MLR

ann

(
c5 − 1

2
c7

)]}
. (21)

gV is the effective coupling constant of vector meson
(V=ρ, ω and φ). GF = 1.16639 × 10−5GeV−2 is the Fermi
constant, and ai are related to the coefficients of Wilson ci .
Besides FBs→M3 and MBs→M3 represent the contributions
of factorable emission diagrams and annihilation-type dia-
grams, respectively. LL, LR and SP refer to the contribu-
tions from (V − A) ⊗ (V − A), (V − A) ⊗ (V + A) and
(S − P) ⊗ (S + P) operators, respectively. There is an non-
factorable emission diagram and an annihilation-type dia-
gram in Fann and Mann , which indicate their respective con-
tributions. The formalisms of the above expressions can be
found in the literatures about perturbative QCD [22,41].

5 Numerical results

We investigate the CP asymmetry about B̄0
s → π+π−π0

and B̄0
s → π+π−K 0 decay processes. According to Eqs.

(9) and (12), we find the CP asymmetry is associated with

Fig. 4 Plot of r as a function of
√
s corresponding to central param-

eter values of CKM matrix elements for the decay channel of B̄0
s →

π+π−π0

Fig. 5 Plot of ACP as a function of
√
s corresponding to central

parameter values of CKM matrix elements for the decay channel of
B̄0
s → π+π−K 0

Fig. 6 Plot of sinδ as a function of
√
s corresponding to central

parameter values of CKM matrix elements for the decay channel of
B̄0
s → π+π−K 0

the weak phase difference, strong phase difference and r .
Our results are affected slightly by the variation of CKM
matrix elements, which determine the weak phase. Thus, the
results are presented based on the central parameter values
of the CKM matrix elements. For the B̄0

s → π+π−π0 decay
process, Figs. 2, 3 and 4 show the results. As seen in Fig.
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Fig. 7 Plot of r as a function of
√
s corresponding to central param-

eter values of CKM matrix elements for the decay channel of B̄0
s →

π+π−K 0

2, it is easy to see the CP asymmetry of B̄0
s → π+π−π0

channel changes when the invariant masses of the π+π− pair
is surrounding the ω resonance and the φ resonance range,
where the maximum CP asymmetry can reach 65%.

The values of sinδ and r as a function of
√
s are shown on

the plots of in Figs. 3 and 4. If the mass invariant of the π+π−
pair is in the area where the ω resonance is located, then one
can find that the sinδ and r vary sharply and sinδ and r vary
slightly around the φ resonance range which compared to
the former. With regard to B̄0

s → ρ0 (ω, φ) π0 → π+π−π0

process, we obtain the CP asymmetries vary from 65% to
-23% (0% to −0.05%) when invariant mass of the π+π−
pair is in ρ − ω (ρ − φ) resonance range.

Figure 5 illustrates the sharp change in CP asymmetry for
B̄0
s → π+π−K 0 channel when the invariant masses of the

π+π− pairs are around the ω and φ resonance range, where
the maximum CP asymmetry can be achieved 36%. Then,
we consider these two situations as follows. When π+π−
pairs are around the region of ρ − ω mixing, we find the CP
asymmetry of B̄0

s → π+π−K 0 can reach 36%. While the CP
asymmetry is just 2% when π+π− pairs is in the mixing of
ρ−φ. Similarly, we analyse the change map about sinδ and r
at the resonance regions in Figs. 6 and 7. Apparent resonance
can be found around region of ρ −ω mixing comparing with
slight effect from the ρ − φ interference.

Concerning the three-body decay process, there are com-
plex phase space problems from final states associated with
the mechanism of dynamics. The subsequent V → π+π− is
described as the combination of the coupling constant and the
momenta of double π . Integration of the phase space provides
observation of CP asymmetry for detecting the structure of
intermediate hadrons. The signals of CP asymmetry are fixed
to low mass candidate regions of vectors. We scan the entire
resonance regions to detect the large local CP asymmetry.
Integrating CP asymmetry over the invariant mass of double
π , the localized CP asymmetry values from −0.006 to −0.01

(−0.014 to −0.02) in B̄0
s → π+π−π0(K 0). Related to the

interferences of the vectors, the desired large CP asymmetry
is not emerge, and cancel each other from the positive and
negative values. The results are in the same order of mag-
nitude as one percent. However, a clear evident of large CP
asymmetry is found at invariant mass valuem(π+π−) below
the mass of ρ(770)0 with the decay B̄0

s → π+π−π0. In the
regions between 0.65 GeV and 0.78 GeV, CP asymmetry is
consistent to the value of 0.13. From the 0.78 GeV to 1.1 GeV
region, CP asymmetry changes the sign and reach −0.02.

In the above process, we take the intermediate value of
CKM when we obtain these diagrams. Although it is a value
with a range, we consider the middle value after we look
at the range of values it takes and find it has little effect
on the result. But there are still uncertainties we must con-
sider when we calculate the amplitude in this work under
the perturbative QCD method. The first error refer to the
variation of the CKM parameters, which can be expressed
in terms of the Wolfenstein parameters meet the following
relationships λ = 0.22650 ± 0.00048, A = 0.790+0.017

−0.012,

ρ̄ = 0.141+0.016
−0.017 and η̄ = 0.357 ± 0.011 [37]. The second

error comes from hadronic parameters: decay constant, form
factor, and the wave function of Bs meson. In this work, we
take fρ = 215.6 ± 5.9MeV , f Tρ = 165 ± 9MeV , f ω =
196.5±4.8MeV , f Tω = 145±10MeV , f φ = 231±4MeV
and f Tω = 200 ± 10MeV these decay constants [42–44].
FBs→π = 0.23+0.05

−0.04 and FBs→K = 0.24+0.05
−0.04 are taken as

form factors for the decays process of B̄0
s → π+π−π0(K 0)

respectively. Besides, we take ωb = 0.5 ± 0.05GeV and
fBs = 0.23 ± 0.03GeV which can influence the wave func-
tion of Bs meson [22]. The third error corresponds to the
choice of the hard scales, which vary from 0.75t to 1.25t,
characterizing the size of the next-to-leading order QCD con-
tributions. For these parameters of hadronic, they all have a
range of values. Then we take the maximum, the minimum,
and the intermediate values respectively. We calculate the
ACP = 65.6+1.01+0.25+0.68

−0.17−0.33−0.26% for B̄0
s → ρ0π0 decay pro-

cess and ACP = 36.5+3.23+0.15+0.05
−0.11−0.16−0.25% for B̄0

s → ρ0K 0

decay process. In this way, the numerical results are more
intuitive.

6 Summary and conclusion

The results of this study illustrate the ρ − ω − φ interfer-
ence caused by the breaking of isospin. Resonance contribu-
tions of ρ − ω, ρ − φ and ω − φ can be used to generate a
new strong phase. In the processes of B̄0

s → π+π−π0 and
B̄0
s → π+π−K 0, a large CP asymmetry is found to occur in

the resonance range. It is possible to reach a maximum CP
asymmetry about 65% in B̄0

s → π+π−π0 progress. A max-

123



Eur. Phys. J. C (2023) 83 :345 Page 9 of 10 345

imum CP asymmetry of 36% can occur in B̄0
s → π+π−K 0

channel.
After integration from 0.65 GeV to 1.1 GeV for the decay

processes of B̄0
s → π+π−π0 and B̄0

s → π+π−K 0, we
obtain the local CP asymmetry as follows:

AΩ
CP (B̄0

s → π+π−π0) = −0.008 ± 0.002, (22)

AΩ
CP (B̄0

s → π+π−K 0) = −0.017 ± 0.003. (23)

The three-body decay process of bottom and charm
mesons is formulated appropriately by the chain decay
of quasi-two-body. We use B → RP3 decay process as
the case in analyses of quasi-two-body decay. During the
progress, R is the state of intermediate resonance state which
can further decay to two hadrons P1,2, and P3 refers to
another final hadron. This process can be factorized by
using the narrow width approximation (NWA), which is also
known as the factorization relation. As a result, B → RP3

can be written as follows: B (B → RP3 → P1P2P3) =
B (B → RP3)B (B → P1P2) due to the branching ratio.
In quasi-two-body decay processes with small widths ω

and φ, the effects can be safely ignored. In light of the
large decay rate of ρ(770), it makes sense to carry out a
correction. According to the QCD factorization approach,
the correction factor for the quasi-two-body decays pro-
cess of B− → ρ(770)π− → π+π−π− is at level
7%. As a measure of the degree of approximation of
Γ (B → RP3)B (B → P1P2) = ηRΓ

(
B → RP3 →

P1P2P3
)
, the parameter ηR is introduced [46,47]. The

formalisms of decay amplitudes contain the Breit-Wigner
shapes which depend on the parameters of invariant mass
mπ+π− associated with the Dalitz plot. We integrate over
invariant massmπ+π− in order to obtain localized value of CP
asymmetry by quasi-two-body approximation. In the present
manuscript, we neglect the effect of this correction within
our range of accuracy. According to the QCD factorization
approach, the correction is around at level of 7%. This is one
of the sources of error in our results.

CP asymmetry measurements in the decay of B mesons
have become more accurate thanks to the large number of data
collected by the LHC in recent years. Theoretical develop-
ments using different methods have already led to many pre-
dictions of CP asymmetry. The LHCb experiments focus on
the contribution to B Physics and the search of new physics.
During the last few years, the LHC has made several upgrades
and increased its luminosity by a factor of five.

Based on the amplitude analysis of B+ → π+π−π−
decay, LHCb Collaboration reports different sources of CP
asymmetry. The hadronic structure of intermediate states is
sensitive to observation of CP asymmetry. Contradicting the
predictions of the theory, large CP asymmetry connected with
the ρ and ω interference is found, and cancels when intergra-
tion with the phase spaces. However, there is a evident sig-

nal about CP asymmetry at invariant mass value m(π+π−)

below the mass of ρ(770)0 from the decay B+ → π+π−π−
[39,48,49]. The search for direct CP asymmetry in charm-
less Bs decay may be measured in the near future. The inter-
ferences ρ − ω, ρ − φ and ω − φ resonances relate to the
quasi-two-body decay B̄0

s → π+π−π0(K 0). Analysis of CP
asymmetry indicates that the resonance of ρ(770)0 presents
the dominant contribution. In fact, the results does not avoid
the interference of ρ(770)0 and ω(782) in experiments [23].
Hence, the measurement of CP asymmetry includes the effect
of ω(782) meson when one concerns the contribution of
ρ(770)0 meson. Although, the mass of φ(1020) is away from
the mass of ρ(770)0 and ω(782) hadrons. With regard to the
SU(3) symmetry of flavour and Isospin symmetry, we can
classify the ρ(770)0, ω(782) and φ(1020) hadrons associ-
ated with the properties in low mass region of vector inter-
ference. The results manifest that main contribution is from
the resonances of ρ(770)0 and ω(782) in comparison to the
interferences of ρ(770)0 − φ(1020) and ω(782) − φ(1020)

as we expected.
The CP asymmetry can be presented in the regions of

ρ − ω and ρ − φ regions by reconstructing the ρ, ω and
φ mesons when the invariant masses of π+π− are at the
resonant regions. Hopefully, our predictions will guide future
experiments in the right direction.
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