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Abstract We study the inflationary era of the Universe
in a modified cosmological scenario based on the gravity-
thermodynamics conjecture with Barrow entropy instead of
the usual Bekenstein–Hawking one. The former arises from
the effort to account for quantum gravitational effects on the
horizon surface of black holes and, in a broader sense, of
the Universe. First, we extract modified Friedmann equa-
tions from the first law of thermodynamics applied to the
apparent horizon of a Friedmann–Robertson–Walker Uni-
verse. Assuming a power-law behavior for the scalar infla-
ton field, we then investigate how the inflationary dynam-
ics is affected in Barrow cosmological setup. We find that
the inflationary era may phenomenologically consist of the
slow-roll phase, while Barrow entropy is incompatible with
kinetic inflation. By demanding observational consistency
of the scalar spectral index and tensor-to-scalar ratio with
recent Planck data, we finally constrain Barrow exponent to
� � O(10−4), which is the most stringent bound in so-far
literature.

1 Introduction

The effort to understand the statistical mechanics of black
holes [1] has opened up new scenarios in modern theoreti-
cal physics, including the study of the AdS/CFT correspon-
dence [2,3] and the investigation of the connection between
gravity and thermodynamics. Beyond their intrinsic inter-
est, both these two lines of research might potentially have
a deep impact upon the development of quantum gravity,
mainly because they are the most successful realizations of
the holographic principle [4,5]. While the AdS/CFT corre-
spondence is based on the description of the background
geometry in terms of anti-de Sitter vacuum solutions, the
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interplay between gravity and thermodynamics finds its con-
ceptualization in the so-called gravity-thermodynamics con-
jecture [6–8], which states that Einstein field equations are
nothing but the gravitational counterpart of the laws of ther-
modynamics applied to spacetime [9]. Besides, in the cosmo-
logical context such a conjecture allows to extract Friedmann
equations by implementing the first law of thermodynamics
on the apparent horizon of the Universe [10–13].

In the original formulation the gravity-thermodynamic
conjecture applies Bekenstein-Hawking (BH) area law
SBH = A/A0 to the Universe apparent horizon of surface
area A = 4πr2

hor and radius rhor .1 Nevertheless, generalized
forms of BH entropy have been discussed in recent litera-
ture, motivated by either nonextensive [14–16] or quantum
gravity [17] arguments. To the latter class belongs Barrow
entropy, which deforms BH area-law to

S =
(

A

A0

)1+�/2

, 0 ≤ � ≤ 1, (1)

where Barrow exponent � embeds quantum gravitational
corrections. In particular, � = 1 corresponds to the maximal
departure from BH entropy, which is instead recovered for
� = 0. Though being proposed for black holes [17], Eq. (1) is
also applied within the cosmological framework, giving rise
to modified Friedmann equations that predict a richer phe-
nomenology comparing to the standard one [18]. In addition,
one can rephrase the holographic principle in terms of Barrow
entropy, obtaining Barrow holographic dark energy (BHDE)
(see also [19–27] for recent applications of Barrow entropy
in Cosmology). Comparison of the above constructions with
observations sets upper limits on Barrow exponent [28–32],
which slightly deviates from zero, as expected.

1 Here and henceforth we work in natural units � = c = G = kB = 1.
Accordingly, the Planck area is A0 = 4.
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In physical cosmology, inflation is supposed to be a crucial
era in the evolution of the Universe, consisting of a very short-
lived, but extremely accelerated expansion phase occurred
right after the Big Bang. Originally proposed in [33–36], it
has been getting increasing attention over the years, becom-
ing one of the two pillars of the present cosmological model
along with the late time acceleration [37–39]. In spite of this,
the origin of inflation has not been well understood yet. The
most commonly adopted scenario is that it has been driven
by a particular form of dark energy represented by a scalar
field with slow rolling assumptions [40]. Alternative mod-
els have been recently proposed in [41–48]. The inflationary
phase has also been studied in connection with holographic
dark energy [49–52], motivated by the plausible role of the
latter as a mechanism responsible for the late time cosmic
acceleration.

Starting from the above premises, in this work we study
the evolution and inflation of the Universe in the context of
Barrow entropy-based Cosmology. In this sense, our analysis
should be regarded as a preliminary attempt to explore the
effects of quantum gravity on the dynamics of the Universe.
In particular, we apply Barrow formula (1) to the entropy
associated with the apparent horizon of a (n+1)-dimensional
homogeneous and isotropic (Friedmann Robertson Walker-
like) Universe, assuming that the matter inside the horizon
is represented by a scalar field with a potential. In this set-
ting, modified Friedmann equations are derived from the first
law of thermodynamics and compared with the result of [22]
for the specific case of n = 3. Furthermore, we investigate
the early inflationary dynamics of Barrow cosmology with
the power-law potential function. Contrary to nonextensive
(Tsallis-like) scenario [53], where it has been shown that
inflation may consist of both slow roll- and kinetic-phases,
here we find that only the first stage is eligible, the kinetic
energy era being incompatible with the allowed values of Bar-
row exponent �. After computing the characteristic inflation
parameters, we infer an upper bound on � in compliance
with recent observational constraints on the scalar spectral
index and the tensor-to-scalar ratio. We finally comment on
the consistency of our results with other approaches in liter-
ature aimed at exploring inflation driven by BHDE.

The remainder of the work is structured as follows: in the
next Section, we derive modified Friedmann equations from
Barrow entropy. Section 3 is devoted to to the study of the
inflationary era in BHDE, while conclusions and outlook are
summarized in Sect. 4.

2 Modified Friedmann equations in barrow cosmology

Let us consider a homogenous and isotropic Friedmann–
Robertson–Walker (FRW) Universe of spatial curvature k.
We first set notation by following [22] and focusing on

(3 + 1)-dimensions. To be as general as possible, the deriva-
tion of the modified Friedmann equations in Barrow Cos-
mology is then performed for the (n + 1)-dimensional case,
with n ≥ 3.

For a (3+1)-dimensional FRW Universe, the line element
can be written as

ds2 = hbcdx
bdxc + r̃2

(
dθ2 + sin2 θ dφ2

)
, (2)

where we have denoted the metric of the (1+1)-dimensional
subspace by hbc = diag[−1, a2/(1− kr2)]. Moreover, xb =
(t, r), r̃ = a(t)r , a(t) is the (time-dependent) scale factor
and r the comoving radius.

Following [54], the dynamical apparent horizon is
obtained from the geometric condition

hbc∂br̃ ∂cr̃ = 0. (3)

For the FRW Universe (2), explicit calculations yield

r̃A = 1√
H2 + k/a2

, (4)

where H = ȧ(t)/a(t) is the Hubble parameter and the over-
head dot indicates derivative respect to the cosmic time t .

The apparent horizon has an associated temperature

T = κ

2π
= − 1

2π r̃A

(
1 −

˙̃rA
2Hr̃A

)
, (5)

where κ represents the surface gravity. Clearly, for ˙̃rA ≤
2Hr̃A we have T ≤ 0. To avoid meaningless negative
temperatures, one can define T = |κ|/2π . Furthermore,
it is possible to assume that ˙̃rA � 2Hr̃A in an infinitesi-
mal time interval dt , which amounts to keeping the appar-
ent horizon radius fixed. This implies the approximation
T � 1/2π r̃A [11].

We now suppose that the matter content of the Universe is
represented by a scalar field φ characterized by a perfect fluid
form. The corresponding Lagrangian is given by Lφ = X −
V (φ), where X = − 1

2h
μν∂μφ∂νφ and V (φ) are the kinetic

and (spatially homogenous) potential terms, respectively. In
turn, the stress–energy tensor is

Tμν = (ρφ + pφ)uμuν + pφ hμν, (6)

where uμ is the four-velocity of the fluid and

ρφ = φ̇2

2
+ V (φ), (7a)

pφ = φ̇2

2
− V (φ). (7b)

represent its energy density and pressure, respectively [48].
In turn, the conservation equation ∇μTμν = 0 gives the
continuity equation

ρ̇φ + 3H(ρφ + pφ) = 0. (8)
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Combining Eqs. (7) and (8), we obtain the dynamics equa-
tion of the canonical scalar field as

φ̈ + 3H φ̇ + ∂φV = 0, (9)

where the term containing the Hubble constant serves as a
kind of friction term resulting from the expansion.

2.1 Modified Friedmann equations in (n + 1) dimensions

The above ingredients provide the basics to derive the modi-
fied Friedmann equations in Barrow entropy-based Cosmol-
ogy. Following [55], here we extract such equations from the
first law of thermodynamics

dE = T dS + WdV, (10)

applied to the apparent horizon of the FRW Universe in (n+
1)-dimensions, where

W = (ρφ − pφ)/2, (11)

is the work density associated to the Universe expansion and

S = γ

(
A

A(n−1)/2
0

)1+�/2

, (12)

is the generalized Barrow entropy. We have denoted the
n-dimensional horizon surface by A = n�nr̃

n−1
A , where

�n ≡ πn/2

�(n/2+1)
is the angular part of the n-dimensional

sphere and � the Euler’s function. The dimensionless con-
stant γ is such that γ → 1 for n = 3, so that Eq. (1) is
restored in this limit. Its explicit expression shall be fixed
later. In passing, we mention that an alternative derivation of
modified Friedmann equations can be built upon Padmanab-
han’s paradigm of emergent gravity [56], which states that
the spatial expansion of our Universe can be understood as
the consequence of the emergence of space with the progress
of cosmic time.

Now, by taking into account that the total energy of the
Universe inside the n-dimensional volume V = �nr̃ nA is
E = ρφV , we have

dE = Vdρφ + ρφdV = �nr̃
n
A ρ̇φ dt + ρφ �nnr̃

n−1
A dr̃A.

(13)

This relation can be further manipulated by resorting to the
generalized continuity equation

ρ̇φ + nH(ρφ + pφ) = 0, (14)

to give

dE = −�nr̃
n
AnH

(
ρφ + pφ

)
dt + ρφ �nnr̃

n−1
A dr̃A. (15)

On the other hand, by differentiating the entropy (12) we
get

dS = γ

(
1

A(n−1)/2
0

)1+�/2

n�n

(
1 + �

2

)
(n − 1)

×
(
n�n r̃

n−1
A

)�/2
r̃ n−2
A dr̃A. (16)

By plugging Eqs. (13)–(16) into (10), we arrive to

H
(
ρφ + pφ

)
dt =

γ (n − 1)
(
1 + �

2

) (
n�r̃ n−1

A

)�/2

2π r̃3
A

×
(

1

A(n−1)/2
0

)1+�/2

dr. (17)

With the further use of the continuity Eq. (14), this becomes

−
2π

(
A(n−1)/2

0

)1+�/2

γ n (n − 1) (1 + �
2 ) (n�)�/2

dρφ = r̃ (n−1)�/2−3
A dr̃A.

(18)

Integrating both sides, we are led to

r̃ (n−1)(1+�/2)−n−1
A

=
π [4 − (n − 1) �]

(
A(n−1)/2

0

)1+�/2

γ n (n − 1)
(
1 + �

2

)
(n�)�/2

ρφ, (19)

where the integration constant has been fixed by imposing
the boundary condition 8πρφ =  � 0. Finally, with the
help of the definition (4), we obtain

(
H2 + k

a2

)1−(n−1)�/4

= 8πG(n−1)/2
e f f

3
σ ρφ, (20)

where we have defined

σ ≡ 3

n − 2

[
n + 1 − (n − 1)

(
1 + �

2

)]
n (2 − �)

, (21)

and we have set

γ = π(n−1)�/4

2 (n�n)
�/2 4(1+�/2)(1−n)/2

(n − 2)

(n−1)

(
2−�

2+�

)(3−n)/2

.

(22)

Furthermore, we have introduced the effective gravitational
constant [22]

Gef f = A0

4

(
2 − �

2 + �

) (
A0

4π

)�/2

. (23)

Some comments are in order here: first, we notice that for
n = 3, we have γ → 1, consistently with the discussion
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below Eq. (12). The same is true for σ , so that Eq. (20) for
n = 3 becomes
(
H2 + k

a2

)1−�/2

= 8πGef f

3
ρφ. (24)

This is nothing but the first modified Friedmann equation
derived in [22] when ρφ ≡ ρ (normal matter). Furthermore,
the limit � → 0 correctly reproduces the standard Fried-
mann equation

H2 + k

a2 = 8π

3

A0

4
ρφ. (25)

As a final remark, it must be emphasized that, due to the
positive definition of the energy density, Eqs. (20) and (21)
imply the upper bound

n + 1 − (n − 1)

(
1 + �

2

)
> 0 	⇒ � <

4

n − 1
, (26)

which is obviously satisfied for any allowed value of n.
Now, from the time derivative of Eq. (24), one can easily

obtain the second modified Friedmann equation as follows

2H

[
1 − (n − 1)

�

4

] (
H2 + k

a2

)−(n−1)�/4

×
(
ä

a
− H2 − k

a2

)
= 8πG(n−1)/2

e f f

3
σ ρ̇φ. (27)

By use of the continuity Eq. (14), this gives

[
1 − (n − 1)

�

4

] (
H2 + k

a2

)−(n−1)�/4

×
(
ä

a
− H2 − k

a2

)
= −4πG(n−1)/2

e f f

3
σn

(
ρφ + pφ

)
.

(28)

Replacing ρφ by the first Friedmann equation (20), we find
after some simplification

[4 − (n − 1) �]
ä

a

(
H2 + k

a2

)−(n−1)�/4

+ [2n − 4 + �(n − 1)]

(
H2 + k

a2

)1−(n−1)�/4

= −16πG(n−1)/2
e f f

3
σ n pφ. (29)

This is the second modified Friedmann equation in Barrow
Cosmology. Again, one can check that n = 3 gives back the
result of [22]

(2 − �)
ä

a

(
H2+ k

a2

)−�/2

+ (1+�)

(
H2+ k

a2

)1−�/2

= −8πGef f pφ. (30)

The further limit � → 0 reproduces the standard second
Friedmann equation, here rewritten as

Ḣ + H2 = −4π

3

(
ρφ + 3pφ

)
, (31)

where we have used the relation

Ḣ = ä

a
− H2. (32)

3 Inflation in barrow cosmology

Let us now move onto the study of the inflationary era of
the Universe. Within the scalar theory framework consid-
ered above, the characteristic quantities to compute are the
inflation slow-roll parameters, which are defined by

ε = − Ḣ

H2 , (33)

η = − Ḧ

2H Ḣ
. (34)

Slow-roll conditions assert that both these two parameters
take very small values during inflation, i.e. ε, η � 1. In the
slow-roll theoretical framework, the only requirement ε � 1
is actually needed to ensure the existence of an early infla-
tionary era, Then, by imposing φ̇2, φ̈ � 1 on the equation of
motion of the theory, the first Friedmann equation (20) under
the slow-roll assumptions becomes

H2 �
[

8πGef f

3
V (φ)

]2/(2−�)

, (35)

where we have focused on the case n = 3 and we have
resorted to Eq. (7a).

On the other hand, from the second Friedmann equa-
tion (30) we get

Ḣ � 3φ̇2

2 (� − 2)

(
8πGef f

3

)2/(2−�)

V (φ)�/(2−�). (36)

Combining Eqs. (35) and (36), the slow-roll parameters (33)
and (34) take the form

ε � 3φ̇2

2 (2 − �)
V (φ)−1, (37)

η � −
(

8πGef f

3
V (φ)

)1/(�−2) [
φ̈

φ̇
+ φ̇ �

4 − 2�

∂φV (φ)

V (φ)

]
.

(38)

Let us now remark that the above parameters should be com-
puted at horizon crossing, where the fluctuations of the infla-
tion field freeze [53].

The scalar spectral index of the primordial curvature per-
turbations and the tensor-to-scalar ratio are defined by

ns � 1 − 6ε + 2η, (39)
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r � 16ε, (40)

respectively, which also need to be evaluated at the horizon
crossing. For later convenience, it is useful to introduce the
e-folding time

N =
∫ t f

ti
H(t)dt, (41)

where ti (t f ) represents the initial (final) time of the inflation-
ary era. Consistently with the above discussion, we consider
ti = tc as the horizon crossing time, so that Eq. (41) can be

rewritten as N = ∫ φ f
φc

H φ̇−1 dφ, where we have used the
notation φc ≡ φ(tc) and φ f ≡ φ(t f ).

3.1 Slow-roll inflation with power-law potential

We now examine inflation from the dynamical point of view.
Toward this end, we assume a power-law behavior for the
scalar potential V (φ) in the form

V (φ) � φm, (42)

wherem > 0 is the power-term. The latest observational data
prefer models with m ∼ O(10−1) or m ∼ O(1), although
m ≥ 2 is disfavored in the minimally coupled scalar field.2 In
what follows, we focus on the m ∼ O(1) scenario. We also
remark that power law inflation is a very useful model to
assess approximation schemes for the computation of scalar
power spectra, since its spectrum is exactly solvable.

In order to extract analytical solutions of the inflationary
observable indices, we express φ̇ and φ̈ in terms of the scalar
field by using the slow-roll conditions. In this regard, let us
observe that the evolution Eq. (9) can be rewritten as

φ̇ � − 1

3H
∂φV . (43)

By plugging into (35), we get

φ̇ = −m

3

(
8πGef f

3

)1/(�−2)

φ[(2−�)(m−1)−m]/(2−�). (44)

We can now derive the expression of φ f by noticing that
inflation is supposed to end when ε(φ f ) ∼ 1. By inverting
Eq. (37), we are led to

φ f =
[

6 (2 − �)

m2

(
8πGef f

3

)2/(2−�)
](2−�)/[�(2−m)−4]

.

(45)

Similarly, insertion of Eqs. (35) and (44) into (41) allows
to infer the following expression for the scalar field at horizon

2 More generally, one can assume V (φ) = V0φ
m , where V0 is a posi-

tive constant with dimensions of [E]4−m . However, since observational
indices are shown to be independent of this quantity, we can set V0 = 1
in suitable units without loss of generality.

crossing

φc =
{

m

3 (2 − �)

(
8πGef f

3

)2/(�−2)

{
m

2
+ N [4 + �(m − 2)]

}}(2−�)/[4+�(m−2)]

. (46)

The scalar spectral index (39) and the tensor-to-scalar
ratio (40) can be cast in terms of the power-term m and the
e-folding time N as

ns � 1 − 2 [4 + �(m − 2) + m]

m
{
1 + 2N

m [4 + �(m − 2)]
} , (47)

r � 16

1 + 2N
m [4 + �(m − 2)]

. (48)

Remarkably, we see that the slow-roll indices only depend on
the power-term m and Barrow parameter �. A similar result
has been exhibited in the context of Tsallis deformation of
entropy-area law [53].

In order to constrain Barrow exponent �, let us require
consistency of Eqs. (47) and (48) with observations. Specifi-
cally, we consider Planck 2018 measurements, which set the
following bounds on ns and r [57]

ns = 0.9649 ± 0.0042 (68% CL)

from Planck TT, TE, EE + lowE + lensing, (49)

r < 0.064 (95% CL)

from Planck TT, TE, EE + lensing + lowEB. (50)

Figure 1 shows the plot of ns (left panel) and r (right panel)
as a function of �. For sufficiently long inflation (N � 30
e-folds) and m ∼ O(1), we see that, while � � O(10−2)

would be still allowed by the experimental bound (50) on r ,
the constraint (49) on ns necessarily requires � � O(10−4).
We would like to emphasize that the best we can do at this
stage is to provide the order of magnitude of the bound on
�, rather than its exact value, since we are only considering
an estimate of the order of magnitude of other model param-
eters, such as the power-term m. Thus, deviations from zero
of Barrow parameter higher than the above threshold appear
phenomenologically incompatible with the description of
the slow-roll inflation with power-law potential. Clearly, the
above result could be improved allowing N and m to vary
too and applying suitable simulation techniques. We reserve
this technical analysis for future study.

For comparison with recent literature on Barrow entropy,
we notice that the obtained bound � � O(10−4) improves
the constraints � = 0.0094+0.094

−0.101 and � � 0.08 derived
through Supernovae (SNIa) Pantheon sample [28,29] and
baryogenesis [32] measurements, respectively, and is con-
sistent with the most stringent bound � � 1.4 × 10−4 found
through Big Bang Nucleosynthesis [30].
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Fig. 1 Plot of ns (left panel) and r (right panel) versus the Barrow parameter �. The shaded region is excluded by the observational constraints (49)-
(50)

3.2 Kinetic inflation with power-law potential

Above we have argued that the slow-roll inflation terminates
when ε ∼ 1. Two scenarios can then occur: either the scalar
field oscillates to the minimal value of the potential, leading
the Universe into a decelerated expansion phase,or the infla-
tion goes on but with different features. Here, we shall exam-
ine whether the latter possibility is allowed within Barrow
entropy-based Cosmology. In particular, a crucial assump-
tion of the slow-roll inflation is that the kinetic energy of
the scalar field can be neglected. However, if the volume of
the Universe is large enough before the field starts to oscil-
late, then a kinetic term might arise and drive a transition
from a vacuum state to quintessence. We assume the kinetic
contribute in the form

φ̇2 = mV (φ). (51)

The above expression can be actually deduced from the
dynamics relation (9) and the modified Friedmann equa-
tions (24) and (30), here rewritten for convenience as

H2 =
(

8πGef f

3

)2/(2−�) [
φ̇2

2
+ V (φ)

]2/(2−�)

, (52)

Ḣ = 3

� − 2
φ̇2

(
8πGef f

3

)2/(2−�) (
φ̇2

2
+ V

)�/(2−�)

.(53)

These equations also allow us to express the slow-roll
parameters as

ε = 6m

(2 − �) (m + 2)
, (54)

η = m3/2

(� − 2)

(
8πGef f

3

)1/(�−2) (
m + 2

2

)1/(�−2)

×φ[�(2−m)−4]/[2(2−�)]. (55)

Now, the end of the kinetic inflation is set by the condition
η(φ f ) � 1 [53], which gives from the definition (41)

φc =
{(

8πGef f

3

)1/(�−2) (
m + 2

2

)1/(�−2) m1/2

2(� − 2)

× [2m + N [4 + �(m − 2)]]

}2(2−�)/[4+�(m−2)]
.

(56)

From Eqs. (54) and (55), we then get

ns=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1+4m

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

9

(m+2) (�−2)
+

{
m1/2

2(�−2)

(m+2
2

)1/(�−2)
(

8πGef f
3

)1/(�−2)

[2m+N [4+� (m−2)]]

}n�/[2(�−2)]

2m+N [4+� (m−2)]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

2(2−�)/[4+�(m−2)]

,

(57)

r = 96m

(m + 2) (2 − �)
. (58)

Unlike the previous scenario, we now find that observa-
tional consistency for m ∼ O(1) is obtained, provided that
� assumes largely negative values. This can be easily seen
from Eq. (58) (see also the plot in Fig. 2). The same occurs for
m ∼ O(10−1). However, such a condition is at odds with the
assumption (1), apparently implying that a kinetic-like infla-
tion may not be explained within Barrow’s framework. This
is a remarkable difference with the case of inflation based
on Tsallis entropy [53], which allows for kinetic phase too.
Specifically, in that case the kinetic inflation is associated to a
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Fig. 2 3D plot of r versus the power-term m and Barrow parameter �

regime of decreasing horizon entropy and ensuing clumping
of fluctuations in particular regions of spacetime.

4 Discussion and conclusions

Inspired by Covid-19 fractal structure, the modified entropy-
area law (1) has been proposed by Barrow to take into account
quantum gravitational effects on the black hole horizon sur-
face [17]. In the lines of the gravity-thermodynamic conjec-
ture, this paradigm has been applied to the Universe horizon
too, the ensuing framework being known as Barrow Cosmol-
ogy. Within this framework, we have studied the evolution
of FRW Universe, assuming the matter content to be repre-
sented by a homogeneous scalar field in the form of a perfect
fluid. As a first step, by using the first law of thermodynam-
ics applied to the horizon of the FRW Universe, we have
derived modified (�-dependent) Friedmann equations. The
obtained result has been used to analyze the inflationary era.
Toward this end, we have supposed a power-law behavior
for the scalar inflaton field. We have found that inflation in
Barrow Cosmology can consist of the slow-roll phase only,
the kinetic inflation being incompatible with the allowed val-
ues of Barrow deformation parameter. We have finally con-
strained Barrow exponent to � � O(10−4) by demanding
consistency of the scalar spectral index and tensor-to-scalar
ratio with recent observational Planck data.

Other aspects deserve further analysis. Besides the back-
ground and inflationary evolution, it would be interesting to
study the growth rate of matter density perturbations and
structure formation. This is an important testing ground to
discriminate among existing modified cosmological mod-
els. Preliminary investigation in this direction has been pro-
posed in [58] in the context of both Tsallis and Barrow
entropies, showing that the entropic deformation parameter

significantly influences the growth of perturbations. More-
over, one can attempt to extend the present considerations to
Cosmology based on other deformed entropies, such as Tsal-
lis entropy with or without radiation sector [59], Kaniadakis
entropy [60], which is a self-consistent relativistic general-
ization of Boltzmann–Gibbs entropy with non-trivial cosmo-
logical implications [61], Rényi [62] or Sharma-Mittal [63]
entropy, which both arise in the context of information the-
ory. Finally, since our models is an effort to include quantum
gravity corrections in the analysis of inflation, it is essential to
examine the obtained results in connection with predictions
from more fundamental theories of quantum gravity [64].
Work along these and other directions is under active con-
sideration and will be presented elsewhere.
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