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Abstract We investigate whether quasinormal modes
(QNMs) can be used in the search for signatures of extra
dimensions. To address a gap in the Beyond the Standard
Model (BSM) literature, we focus here on higher dimen-
sions characterised by negative Ricci curvature. As a first
step, we consider a product space comprised of a four-
dimensional Schwarzschild black hole space-time and a
three-dimensional nilmanifold (twisted torus); we model the
black hole perturbations as a scalar test field. We suggest
that the extra-dimensional geometry can be stylised in the
QNM effective potential as a squared mass-like term rep-
resenting the Kaluza–Klein (KK) spectrum. We then com-
pute the corresponding QNM spectrum using three different
numerical methods, and determine a possible “detectability
bound” beyond which KK masses cannot be detected using
QNMs.

1 Introduction

Quasinormal modes (QNMs), the damped and discrete oscil-
lations in space-time that emanate from a perturbed body as it
returns to an equilibrium state [1,2], have served for several
decades as a theoretical means of studying d-dimensional
black hole space-times as well as a testing ground for the
development of numerical simulations and techniques. Quan-
tum gravity conjectures, modified theories of gravity, stabil-
ity analyses of naked singularities and novel space-times,
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the development of numerical relativity simulations, and the
explorations of the gauge-gravity duality are but a few of the
avenues of research made accessible by black hole QNMs
(see Refs. [3–7] for reviews).

From the astrophysical perspective, quasinormal frequen-
cies (QNFs) ω lead directly to insights about the nature
of their black hole source. Specifically, the oscillation fre-
quency Re{ω} and damping τ = −1/Im{ω} of the QNFs are
uniquely determined by the characteristic black hole prop-
erties of mass M , spin a, and charge Q [8], in accordance
with the no-hair conjecture applicable to final-state black
holes [9]. This has earned QNMs the epithet “black hole
fingerprints” [7]. As such, furthering our understanding of
black holes in turn allows us to explore gravity in the rela-
tively untested strong regime, complementing extant results
obtained from experiments in low-velocity linear regimes
[10–13].

Mathematically, QNMs can be structured as an eigenvalue
problem subjected to physically-motivated boundary condi-
tions and dependent strictly on the features of the black hole
space-time and the effective potential of the perturbing field.
If we consider a static black hole (in an asymptotically-flat
space-time) through the classical lens, radiation is purely in-
going at the event horizon and purely out-going at spatial
infinity; the black hole geometry is characterised solely by
its mass [14] while the effective potential depends on the spin
of the oscillating field and the multipolar (angular momen-
tum) number �. For each � there are infinitely many overtones
n labelling the QNF in increasing multiples of Im{ω}, with
the n = 0 fundamental mode representing the least-damped
and thus longest-lived QNM.

On the basis of spherical symmetry and time indepen-
dence, the QNM behaviour in static black hole space-times
can be shown to reduce to a simple radial wave equation,
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as first demonstrated in Refs. [15,16] for the Schwarzschild
case. A wide range of methods have been developed to deter-
mine QNM solutions from such wave equations, includ-
ing methods that are “exact”(e.g. direct integration methods
[17,18], the continued fraction method [19], pseudospectral
methods [20,21], etc.) and numerical (e.g. the asymptotic
iteration method [22,23], the Horowitz-Hubeny approach
[24], etc.). Of these, we highlight (i) inverse-potential meth-
ods that approximate the effective potential with an inverse
Pöschl–Teller potential [25] for which bound-state solutions
are known to determine the QNF spectrum [26]; (ii) WKB-
based methods that adapt the semi-classical technique to
the QNM problem to compute QNFs in the � ≥ n regime
[27–29] at sixth-order [30] and beyond (see Ref. [31]); (iii)
photon-orbit methods such as the inverse multipolar expan-
sion method [32] that harnesses the known link between
QNMs and unstable null geodesics [33] to construct an iter-
ative technique to solve the wave-like radial equation with
increasing accuracy for large values of � [34]. This is by no
means an exhaustive list; for further insights, we refer the
reader to Refs. [6,7,35,36].

Today, we find ourselves in the unprecedented position
wherein which we can observe this gravitational radiation. To
date, the LIGO-Virgo-KAGRA (LVK) collaboration has con-
firmed 90 gravitational-wave (GW) events with a probability
of astrophysical origin pastro > 0.5 [37–40], providing
us with the novel opportunity to scrutinise general relativ-
ity (GR) in the relativistic strong-field regime and placing us
firmly in the era of GW astronomy. While this has immediate
astrophysical [13] and cosmological [41] relevance, there is
a significant interest in the theoretical implications of GWs
[42] and the fundamental physics insights they might provide
[43].

This is in part due to their weakly-interacting nature: GWs
propagate unimpeded through the universe, piercing both the
cosmic microwave and cosmic neutrino backgrounds, pos-
sibly providing unique insights into the inflationary epoch
and beyond [44–46]. These high and ultra high frequency
stochastic GWs correspond to energies of the TeV range and
higher, towards the Planck scale; in this way, GWs serve
as a complementary laboratory to collider physics experi-
ments [47–49]. Searches for new physics focused on early-
universe dynamics are well-underway, with examples such
as Ref. [50] demonstrating that models based at scales of
Grand Unified Theories can be good candidates for detection
via next-generation GW detectors [51]. This has encouraged
new lines of inquiry into cosmic strings [52,53], leptogenesis
[54], dark matter [55], and other beyond the Standard Model
(BSM) challenges.

GWs are also being applied to searches for extra dimen-
sions (see Refs. [56–58]). Compact extra dimensions feature
a variety of different geometries (Ricci-flat [59–61], toroidal
[62], warped toroidal [63] extra dimensions, etc.). These, on

the other hand, have so far predicted GWs whose frequen-
cies are of the order of 1012 − 1014 Hz, far exceeding the
103 − 104 Hz upper limit of present and planned detectors
[46,47].

Here, however, we are guided by the capabilities of mod-
ern detectors, and investigate whether we can exploit present-
day GW observations to infer constraints on new physics.
In particular, we shall focus on binary black hole colli-
sions, where the post-merger ringdown phase is dominated
by quasinormal ringing [64]. For this reason, we can apply
known theoretical and numerical QNM techniques to exper-
imental observations. Logistically, we concentrate on black
holes because the dynamics of binary black hole collisions
have been studied extensively [5,64,65]; the success of the
LVK collaboration is a testament to the gravitational wave-
form modelling expertise, Bayesian statistical analysis tech-
niques, and experimental prowess carefully honed over sev-
eral decades (see Ref. [66] for the LVK collaboration’s guide
on data acquisition and processing).

Furthermore, since the signal-to-noise ratio of the post-
merger signal is usually fairly low and therefore not always
characterisable [67–69], the higher-mass and louder black
hole merger events are more likely to produce good candi-
dates for ringdown analyses. The first detected GW event
GW150914 [70,71] was sufficiently loud to accommodate a
QNM study, so we shall restrict our discussion to this event
within this work, unless otherwise stated.

Current searches for evidence of new physics from avail-
able GW observations are dominated by model-agnostic null
tests for deviations from GR predictions. These include: con-
sistency checks between data and GR-based models for the
evolution of a merger event; tests of the generation and propa-
gation of GWs, where the latter involves searching for modi-
fications to the dispersion relation and in turn constraining the
Compton wavelength associated with the graviton mass; tests
for additional polarisation modes beyond the tensor plus and
cross modes predicted by GR; analyses of the post-merger
properties for parametric deviations from GR [67–69,72],
etc. At present, there have been no statistically significant
deviation from GR reported.

However, this latter category of testing has been a subject
of growing fascination, and motivates investment in more
precise measurements of QNFs [73–75]. Furthermore, hopes
for the establishment of black hole spectroscopy [76] are
beginning to be realised: although the n = 0, � = 2 mode
is known to dominate the QNM spectrum, higher harmonics
[77,78] and overtones [79] are being investigated. Tests of
the no-hair conjecture are of particular interest [80–84], as a
violation thereof may be evidence of an exotic object or new
physics.

As such, we shall focus here on this use of parametric devi-
ations from GR in the QNF spectrum in an attempt to outline
a search for extra dimensions. In fact, there have already
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been considerations for extra dimensions using black hole
QNMs, concentrated for example on the five-dimensional
(5D) Randall–Sundrum II [85] model: through the formal-
ism of Shiromizu et al. [86] and Dadhich et al., a 4D effective
framework can be established from a 5D general relativity
construction, leading to a (neutral) black hole solution that
resembles the (charged) Reissner–Nordström metric. The so-
called tidal charge β = Q2/(4M2) is a manifestation of
the influence of the extra dimension. In Ref. [87], this is
the observable utilised to constrain extra dimensions, but is
found to disfavour extra dimensions.

It is not clear how to extend the Shiromizu et al. formal-
ism to a broader category of extra-dimensional models with
d > 5, nor is it obvious whether this tidal charge observ-
able can be probed for general cases. Moreover, it may
be that alternate geometries could lead to successful GW
detection. Bearing these points in mind, we shall consider
as an example a particularly simple partially-compactified
setup: a direct product space featuring a four-dimensional
Minkowski space-time and a three-dimensional negative
compact space M4 × N3. Within this space-time, we shall
embed a four-dimensional Schwarzschild black hole. The
higher-dimensional component will then be comprised of a
twisted torus – known as a nilmanifold – constructed from the
non-trivial fibrations of layered tori. The nilmanifold is one
of the few geometries that allows for analytic calculations of
mass spectra and Kaluza–Klein (KK) reductions [88], and
boasts a number of phenomen-ologically-interesting proper-
ties that we shall discuss in Sect. 2.1.

While the higher-dimensional manifold is highly specific,
we shall show that the variable-separable nature of our extra-
dimensional space-time in the absence of coupling between
components of M4 and N3 and the QNM problem we con-
sider, allows for a KK reduction that expresses the extra-
dimensional behaviour as a mass-like term that can be incor-
porated into the QNM effective potential. We shall demon-
strate how this enables the application of QNM literature on
massive oscillating fields, as well as studies on parametric
deviations from GR employed by the LVK collaboration. In
so doing, we lay the groundwork for an additional avenue
through which we may probe GW observations for model-
agnostic extra-dimensional signatures.

The structure of this paper is as follows. In Sect. 2, we
define the “Schwarzschild-nilmanifold” setup we investi-
gate: we outline the interesting features and the construction
of the nilmanifold, as well as the construction of the partially-
compactified seven-dimensional (7D) metric and the scalar
field1 we use to explore it. There, we shall derive a 4D effec-
tive potential in which the higher-dimensional character is
encoded in an effective mass term. In so doing, we recreate

1 It is standard practice in QNM studies to explore uncharted space-
times and/or novel techniques with scalar test fields to test for feasibility.

the problem of massive scalar QNMs: a scenario that has
been used as a case study for numerical development in the
QNM literature.

In Sect. 3, we compute the QNF spectrum using the
three numerical methods highlighted, viz. the inverse Pöschl–
Teller potential method, the WKB method, and the inverse-�
method. We include also a discussion on how the QNF spec-
trum is affected by the mass-like term. In this way, we shall
determine an upper bound under which detectable black hole
QNMs may serve as an appropriate probe for extra dimen-
sions in this construction. To constrain this mass-like param-
eter further, we introduce bounds from studies on the para-
metric deviation of GW data from GR predictions, using the
most stringent results published by the LVK collaboration
[69]. This step shall be carried out in Sect. 4. By comparing
the magnitude of the deviation from GR in the ringdown
phase with the deviations in a the QNF spectrum caused
by our introduction of the effective mass term, we are able
to place naïve constraints on detectable QNFs harbouring
extra-dimensional signatures. In other words, we demon-
strate a plausible detectability bound on the observation of
KK masses using QNFs. While our interest lies specifically
in the case of negative extra-dimensional components, this
result is agnostic to the extra-dimensional scalar curvature
and therefore applies to a wide variety of extra-dimensional
setups featuring compact spaces. We note, however, that our
objective here is not to supply a definitive constraint on extra
dimensions. Rather, we suggest a pragmatic method by which
QNFs can be repurposed for BSM searches through combin-
ing known techniques and available GW data.

2 A Schwarzschild-nilmanifold extra-dimensional setup

Compact negative-curvature spaces (i.e. spaces with negative
Ricci scalar curvature) have been interrogated extensively
within the mathematical literature [89,90]. Among members
of the string theory community, a burgeoning interest in such
spaces is developing in the wake of a recent observation that
negatively-curved manifolds are a requirement for classical
de Sitter solutions with orientifold planes [91–93]. In the
context of particle physics, extra-dimensional models char-
acterised by partial or total negative scalar curvature remain
comparatively under-explored.

Phenomenologically, studies on compact hyperbolic spaces
are promising for their capacity to include cosmological
observations such as homogeneity and flatness [94–96].
Moreover, these models could be used to address the hierar-
chy problem between the Planck and the electroweak scale
by virtue of their geometrical properties. Compact negative-
curvature spaces possess two characteristic length scales:
�c, associated with local properties like the curvature and
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fixed by the equations of motion, and �G, associated with
global properties like the volume and independent of the
equations of motion. Their volume grows exponentially with
�c/�G, leading to an exponential reduction of the Planck
length, which in turn yields a natural explanation for the
perceived discrepancy in energy scales [97]. Furthermore,
the KK mass spectra associated with such spaces are usu-
ally similar to those of Randall–Sundrum models [98] in that
they accommodate the electroweak-Planck scale hierarchy
without introducing light KK modes [97].

Motivated by these implications, a series of investigations
[88,99–102] have focused model-building efforts on a com-
pact, negatively-curved manifold whose tangent vectors form
a Lie algebra that is nilpotent viz. a nilmanifold N3 (see
Refs. [103,104]). In the sections that follow, we shall out-
line how the nilmanifold is constructed from the Heisenberg
algebra and demonstrate the KK expansion of a scalar field
in this context, as established in Ref. [88]. With these ele-
ments in place, we may proceed to the construction of our
Schwarzschild-nilmanifold setup, and the KK reduction that
allows us to treat the oscillations travelling through the 7D
product space-time as a massive 4D scalar field.

2.1 Algebra, geometry, and a 3D scalar field

Any Lie group of dimension d can be understood as a d-
dimensional differentiable manifold. Under certain condi-
tions (see Ref. [105] for a review), a solvable2 Lie group
G can be divided by a lattice �, a discrete subgroup of G,
to construct a compact solvmanifold (i.e. a twisted torus) by
means of discrete identifications [106].Nilpotent3 groups are
a special subclass of solvable groups. For them, the compact-
ness criterion requires the structure constants to be rational
in some basis [107]. We refer to their corresponding compact
manifolds as nilmanifolds.

Consider the d-dimensional Lie algebra g generated by
the vectors {Za, a = 1, ..., d} satisfying

[Zb, Zc] = f abc Za . (2.1)

Here, the structure constants satisfy f abc = − f acb . The
corresponding d-dimensional manifold admits a globally-
defined orthonormal frame {ea, a = 1, ..., d} (where this
basis defines the dual space of one-forms g�). This frame
obeys the Maurer-Cartan equation

dea = −1

2
f abc e

b ∧ ec = −
∑

b<c

f abc e
b ∧ ec, (2.2)

2 A Lie group G is solvable if its Lie algebra g terminates in the null
algebra i.e. the sequence g0 = g, gn+1 = [gn, gn] for n ≥ 0 reduces to
the null algebra after a finite number of steps.
3 A Lie group G is nilpotent if the sequence gn+1 = [g, gn] reduces to
the null algebra after a finite number of steps.

with the exterior derivative d. Since the dual space g� ≈
TeG�, {ea, a = 1, ..., d} provides – by left invariance – a
basis for the cotangent space TxG� at every point x ∈ G,
the one-forms are globally defined on the manifold. These
one-forms will have their non-trivial identification through
the “lattice action” when G is divided by �. Note that f abc
is related to the spin connection.

In flat indices and for a unimodular Lie algebra, the Ricci
tensor is given by

Rcd = 1

2

(
− f bac f abd − δbgδah f

h
gc f abd

+1

2
δahδbjδciδdg f

i
a j f ghb

)
, (2.3)

with δab serving as a Euclidean metric. For the nilpotent alge-
bra, and thus for the nilmanifold case, the first term vanishes.
The Ricci tensor is thus nowhere-vanishing and the corre-
sponding Ricci scalar emerges as

R = −1

4
δadδ

beδcg f abc f deg . (2.4)

The Ricci scalar is strictly negative.
From Eq. (2.2), we can see that d = 3 is the lowest dimen-

sionality for which this expression is non-trivially satisfied.
For d = 3, there is the trivial Abelian algebra that leads to
a three-torus, as well as three different solvable algebras. Of
these, one is nilpotent: the Heisenberg algebra

[Z1, Z2] = −fZ3 , [Z1, Z3] = [Z2, Z3] = 0, (2.5)

with f = − f 3
12 �= 0 such that the Maurer-Cartan equation

becomes

de3 = fe1 ∧ e2 , de1 = 0 , de2 = 0. (2.6)

The only nonzero structure constant f = − f 3
12 ∈ R is the

geometric flux serving as the nilmanifold’s twist parameter.
The corresponding geometric properties of the nilmanifold
can be relayed through the Maurer–Cartan equation, from
which we define

e1 = r1dy1 , e2 = r2dy2 , e3 = r3(dy3+Ny1dy2) (2.7)

for the constant radii r1,2,3 > 0, angular coordinates ym ∈
[0, 1], and the integer N = r1r2f/r3 [88].

The discrete identifications that make the compactification
possible are

y1 ∼ y1 + n1 , y2 ∼ y2 + n2 , y3 ∼ y3 + n3 − n1Ny2,

(2.8)
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for nm=1,2,3 ∈ [0, 1]. In other words, these identifications
correspond to the lattice action responsible for establishing
N3 as a nilmanifold. Equation (2.8) leaves Eq. (2.7) invariant.

In this way, the compact manifold is fully characterised as
a twisted S1 fibration over layered tori T 2. The twist is along
the fibre coordinate y3, while the base is parameterised by the
coordinates (y1, y2). Physically, ym=1,2,3 are angles defined
on [0, 1]. The constant radii rm have units of length, the
coordinates ym are dimensionless, and f has units of inverse
length (i.e. energy).

The most general left-invariant metric for the nilmanifold
is given by

ds2 = δabE
aEb , Ea =

(
L−1

)a
b
eb, (2.9)

where we use Ea to denote the one-forms related to the
orthonormal basis ea through the constant GL(3,R) trans-
formation L .

To demonstrate the construction of the scalar mass spec-
trum, we shall consider the simplified special case in which
rm = 1 and f = 1. The nilmanifold metric then becomes

ds2
nil = δabe

aeb = (dy1)2+(dy2)2+(dy3+y1dy2)2. (2.10)

To understand the behaviour of a scalar field on this space,
we consider the massive Klein–Gordon equation. Let us
begin with the Laplacian

∇2	 = 1√
g
δm

(√
ggmnδn	

)
, (2.11)

where the determinant
√
g = r1r2r2 reduces to 1 in our

simplified metric. We may write

∇2u =
(

∂2
1 +

(
∂2 − y1∂3

)2 + ∂2
3

)
u, (2.12)

as we shall consider the expansion of u on the space of func-
tions invariant under Eq. (2.8), beginning with the functions
depending only on the base coordinates (y1, y2). In this case,
the Laplacian is easily diagonalised:

(
∇2 + μ2

β,γ

)
ṽβ,γ = 0, (2.13)

where we define

ṽβ,γ (y1, y2) = e2π iβy1
e2π iγ y2

, (2.14)

for β, γ ∈ Z, as invariant under Eq. (2.8), and the Klein–
Gordon masses as

μ2
β,γ = 4π2

(
β2 + γ 2

)
. (2.15)

We can present a more generalised expression using the
Weil-Brezin-Zak transforms [108] for a basis of invariant
functions uκ,λ,

uκ,λ(y
1, y2, y3) = e2πκi(y3+y1y2)e2πλiy1

×
∑

σ

e2πκσ iy1
f (y2 + σ), (2.16)

for κ, λ, σ ∈ Z. Since uκ,λ is invariant under Eq. (2.8) for all
values of f (x), the functions remain well-defined across our
nilmanifoldN3. Upon substituting Eq. (2.16) into Eq. (2.12),
we obtain

∇2uκ,λ = e2πκi(y3+y1y2)e2πλiy1 ∑

σ

e2πκσ iy1

×
[
∂2

2 − 4π2
(
κ2 + (κ(y2 + σ) + λ)2

)]
f (y2 + σ),

(2.17)

where we require that κ �= 0 to retain the y3-dependent terms.
If we introduce zσ = y2+σ+λ/κ and g(zσ ) = f (y2+σ),

we can rewrite the above Laplacian as

∇2uκ,λ = e2πκi(y3+y1y2)e2πλiy1 ∑

σ

e2πκσ iy1

×
[
∂2
zσ − (2πκ)2

(
z2
σ + 1

)]
g(zσ )

]
. (2.18)

From the normalised Hermite functions

Xν(z) = e−z2/2Hν(z) , ν ∈ N, (2.19)

where Hν represents the Hermite polynomials, we may define

Xρ
ν (z) = |ρ|1/4Xν(|ρ|1/2z) (2.20)

for ρ ∈ R
∗ [108]. By the properties of Hermite polynomials,

Eq. (2.20) satisfies the differential equation

(∂2
z − ρ2z2)Xρ

ν (z) = −(2ν + 1)|ρ|Xρ
ν (z). (2.21)

With the insertion of g(zσ ) = X2πκ
ν (zσ ) into Eq. (2.18),

we obtain the 3D Klein–Gordon equation

(
∇2 + M2

κ,λ,ν

)
ũκ,λ,ν = 0, (2.22)

where the masses and wavefunctions are, respectively,

M2
κ,λ,ν = (2πκ)2

(
1 + 2ν + 1

2π |κ|
)

, (2.23)

ũκ,λ,ν(y
1, y2, y3) = e2πκi(y3+y1y2)e2πλiy1 ∑

σ

e2πκσ iy1

×X2πκ
ν

(
y2 + σ + λ

κ

)
(2.24)
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for σ ∈ Z, ν ∈ N, κ ∈ Z
∗, and λ = 0, ..., |κ| − 1. The range

of λ is derived from the fact that λ itself is defined modulo
κ , which in turn is a consequence of the identity

ũκ,λ+κτ,ν(y
1, y2, y3) = ũκ,λ,ν(y

1, y2, y3) ∀ τ ∈ Z. (2.25)

By virtue of Eq. (2.23)’s independence of λ, there exists a
mass degeneracy. The wavefunctions are parameterised by a
finite number of inequivalent values of λ such that the level
of the degeneracy is |κ|. Note that only one zero-mode (i.e.
with vanishing mass) exists for this Klein–Gordon equation,
ṽ0,0, corresponding to the modes of the torus base.

We conclude this discussion on the nilmanifold space with
the physical spectrum associated with a scalar field propa-
gating on N3. This is achieved by reintroducing dimensional
parameters rm and f [88]. We may distinguish between torus
modes,

vβ,γ (y1, y2) = 1√
V
e2π iβy1

e2π iγ y2
, (2.26)

μ2
β,γ = β2

(
2π

r1

)2

+ γ 2
(

2π

r2

)
, (2.27)

and fibre modes,

uκ,λ,ν(y
1, y2, y3) =

√
r2

|N |V
1√

2νν!√π
e2πκi(y3+Ny1y2)

×e2πλiy1 ∑

σ

e2πκσ iy1
Xρ

ν (wσ ), (2.28)

M2
κ,λ,ν = κ2

(
2π

r3

)2

+ (2ν + 1)|κ|2πf

r3 ,

(2.29)

for which we define

ρ = 2πf

r3 κ, wσ = r2
(
y2 + σ

N
+ λ

Nκ

)
,

and the volume

V =
∫

d3y
√
g = r1r2r3. (2.30)

The scalar spectrum on the nilmanifold contains a com-
plete tower of modes on the torus that is independent of the
fibre coordinate and radius. The fibre modes, whose mass
spectrum is a function of the radial components and the
curvature-related energy scale f, have been shown to be tun-
able in Ref. [88] by varying parameters in the generalised
case; the fibre modes can be made lighter than their toroidal
counterparts and the energy gaps in the spectrum may be
enhanced. From the structure of Eq. (2.29) itself, we under-
stand that the fibre modes present with a unique mass spec-
trum: added to the typical 1/R Kaluza–Klein term is the novel
f-dependent term that enforces more finely-spaced modes,

which follow a linear Regge trajectory. From the character-
istic fibre-mode spectrum, we would expect a unique exper-
imental signature.

To see clearly the distinctive spectrum of the nilmanifold,
let us compare the fibre-mode masses of Eq. (2.29) to the KK
masses of a standard compactification Mst;κ,λ,ν on a three-
dimensional torus T3,

M2
st;κ,λ,ν = κ2

(
2π

r1

)2

+λ2
(

2π

r2

)2

+ ν2
(

2π

r3

)2

, (2.31)

where κ , λ, ν ∈ Z. For simplicity we shall take all internal
radii to be equal, r1 = r2 = r3. Moreover we shall consider
a nilmanifold N3 with minimal twist, N = 1. The ratio R of
excited KK masses to the lowest-lying one is then indepen-
dent of the size of the radii of the internal manifold. For N3,
R2
nil is given by

R2
nil = M2

κ,λ,ν

M2
1,0,0

= 2πκ2 + (2ν + 1)|κ|
1 + 2π

. (2.32)

In contrast, for the standard T
3, R2

st is given by

R2
st = M2

st;κ,λ,ν

M2
st;1,0,0

= κ2 + λ2 + ν2 . (2.33)

Since nilmanifolds allow for the possibility of analytically
calculating the spectrum of propagating fields, they can be
promising tools in the construction of effective BSM frame-
works. Such models may be embeddable in string theory
compactifications [88]. As mentioned in the introduction,
recent investigations into GW signatures of compact extra
dimensions predict observables at frequencies of the order
of 1012 −1014 Hz and higher [56–59,62,63] – several orders
of magnitude beyond the 104 Hz upper bound on modern
detectors (Tables 1, 2). However, these investigations sug-
gest also that the KK GW spectrum is sensitive to changes in
geometry. For example, introducing a non-trivial warp fac-
tor, as shown in Ref. [63], can lower the first KK mass by at
least 69% as compared against the standard KK spectrum on
a torus Td . This is promising for the high-frequency GWs in
extra-dimensional frameworks, as the relationship between
frequency and KK mass implies that lower KK mass corre-
sponds to GW frequencies closer to the sensitivity of modern
instruments.

In Figs. 1 and 2, we see a similarly encouraging behaviour
when we compare the fibre-mode spectrum with that of the
standard torus modes. While we centre this work on the fea-
sibility of detection with present-day data from the LVK col-
laboration, this effect motivates further investigation into the
GWs propagating in nilmanifold spaces.
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Table 1 The first few mass ratios Rnil for the 3D nilmanifold N 3, corresponding to Eq. (2.32) for κ = 1

ν 0 1 2 3 4 5 6 7 8 9 10

R2
nil 1.0 1.3 1.6 1.8 2.1 2.4 2.6 2.9 3.2 3.5 3.7

Table 2 The first few mass ratios R2
nil for the 3D nilmanifold N 3, corresponding to Eq. (2.32) for κ = 2

ν 0 1 2 3 4 5 6 7 8 9 10

R2
nil 3.7 4.3 4.8 5.4 5.9 6.5 7.0 7.6 8.1 8.7 9.2

Fig. 1 Plot of the mass ratios R2
nil ≤ 6 corresponding to Eq. (2.32) for

N3 for κ = 1 (blue) and κ = 2 (orange)

Table 3 The first few mass ratios R2
st for the standard 3D torus T

3,
corresponding to Eq. (2.33)

(κλν) (100) (110) (111) (200) (210) (211)

R2
st 1 2 3 4 5 6

Fig. 2 Plot of the ratios R2
st ≤ 6 corresponding to Eq. (2.33) and Table

3 for T3

2.2 A Schwarzschild black hole and its scalar QNM

GR remains our most complete theory of gravity to date. Its
underlying principle is the relationship it defines between

the geometry and matter content of a space-time, expressed
concisely through the Einstein field equations,

GMN + �gMN = κD TMN . (2.34)

Here, the Einstein tensor GMN expresses the local space-
time curvature, κD is the Einstein gravitational constant in D
dimensions, and TMN is the stress-energy tensor that defines
the energy, momentum, and stress for the matter and field
content within the local space-time [9]. We set G = c = 1,
unless otherwise stated. In asymptotically-flat space-times,
the cosmological constant � vanishes. To describe the evolu-
tion of the metric and the fields, we utilise the D-dimensional
Einstein-Hilbert gravitational action

S = 1

2κD

∫
dDx

√−g (R + Lm) , (2.35)

where we use Lm to refer to all matter fields � within the
space-time, and whose stress, energy, and momentum are
encompassed by TMN .

Within the context of GR, Birkhoff’s theorem stipulates
that the most general spherically-symmetric vacuum solution
of Eq. (2.34) is the Schwarzschild metric

ds2
BH = gBH

μν dxμdxν = − f (r) dt2 + f (r)−1 dr2

+r2(dθ2 + sin2 dφ2), (2.36)

where f (r) = 1 − rH/r and rH = 2M is the Schwarzschild
event horizon. For such a black hole, the length scale is
defined by M = mGc−2 for black hole mass mBH [109],
and is set to unity. The Schwarzschild coordinates (t, r, θ, φ)

are defined on the regions t ∈ (−∞,+∞), r ∈ (rH ,+∞),
θ ∈ (0, π), and φ ∈ (0, 2π); the tortoise coordinate dr∗ =
dr/ f (r) can be introduced to map the semi-infinite region of
(rH ,+∞) to (−∞,+∞).

Equation (2.36) describes an isolated, static, and neutral
4D black hole [9,110] that is fully characterised by its mass
M [14]. Mathematically, black holes are therefore simple
objects: they are pure geometry and do not require an equa-
tion of state to describe their evolution. Astrophysical black
holes, however, are perpetually in a perturbed state: even if
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somehow isolated from the fields and matter in their imme-
diate vicinity, they interact with the surrounding vacuum
through Hawking radiation [111].

Black hole perturbation theory therefore considers a lin-
earised approximation in which the black hole is described
using

g′
μν = gBH

μν + δμν, (2.37)

where the unperturbed black hole metric gBH
μν is referred to

as the “background” and the “perturbations” δμν are con-
sidered to be very small (δμν � gBH

μν ). Similarly, we may
consider a perturbed background field � ′ = �BG + ψ . We
may then substitute g′

μν and � ′ into Eq. (2.34), linearise the
system of equations with respect to δμν and ψ , and thereby
deduce the lineaised set of differential equations satisfied by
the perturbations.

As detailed in Chandrasekhar’s book [110], black hole
QNM behaviour within a classical GR context can be inferred
by substituting the perturbed metric, Eq. (2.37) and an ansatz
into the Einstein field equations, and then solving for the vac-
uum solution under the physically-motivated QNM bound-
ary conditions.4 The QNM ansatz and the number of ordinary
differential equations required to describe the QNM propa-
gation are derived from the symmetries of the background
space-time: in the Schwarzschild case (static, non-rotating,
and spherically-symmetric), the wave-function is written in
variable-separable form,

	s
n�m(x) =

∞∑

n

∞∑

�,m

ψsn�(r)

r
Y s
m�(θ, φ), (2.38)

and the angular behaviour is relayed through spherical har-
monics

∇2Y s
m�(θ, φ) = −�(� + 1)

r2 Y s
m�(θ, φ). (2.39)

Since the black hole is static, the corresponding ordinary
differential equations are time independent. Consequently,
the defining QNM behaviour is then fully encapsulated by
the radial component.

As a simple example that retains the physical implications,
we can consider Eq. (2.38) to be a scalar test field evolving
on a fixed background in vacuum that contributes negligibly
to the energy-density of the system. Explicitly, we may focus
on the second term of Eq. (2.35), which becomes

Lm = − (
∂μ�

)†
∂μ� (2.40)

4 As stipulated in Ref. [7], at sufficiently late times, the QNMs obtained
through this linear approximation remain in good agreement with those
calculated via the full nonlinear integration of the Einstein equations
[112,113].

for a minimally-coupled massless scalar field. The equations
of motion satisfied by the fields gμν and � are then the mass-
less Klein–Gordon equation for a curved space-time,

∇μ∇μ� = 1√−g
∂μ

(√−ggμν∂ν�
) = 0 (2.41)

and Eq. (2.34), with Tμν quadratic in �. In this context, the
linearised equations of motion for ψ and δμν decouple when
�BG = 0, allowing for the metric fluctuations δμν to be set
to zero. With the substitution of Eq. (2.38) into the above
equation and the application of the tortoise coordinate, we
obtain the radial wave-like equation sufficient to convey the
QNM behaviour

d2ψ

dr2∗
+

(
ω2 − V (r)

)
ψ = 0, (2.42)

where

V (r) = f (r)

(
�(� + 1)

r2 + f ′(r)
r

)
. (2.43)

2.3 The effective 4D QNM problem

In combining Eqs. (2.36) and (2.10), we can construct our
extra-dimensional manifold ds2

7D = ds2
BH + ds2

nil. In the
absence of mixing terms, we consider a 7D scalar field prop-
agating on this direct product space to be expressible as

�s
n�m(z) =

∞∑

n=0

∞∑

�,m

ψsn�(r)

r
Y s
m�(θ, φ) Z(y1, y2, y3) e−iωt .

(2.44)

To determine the QNM behaviour, we have shown that we
may use the Klein–Gordon equation. Recall that the Lapla-
cian of a product space is the sum of its parts, such that

∇2�(z) =
(
∇2

BH + ∇2
nil

)
	s

n�m(x)Z(y). (2.45)

However, if we choose to impose a KK reduction, we may
encode the higher-dimensional behaviour through an effec-
tive mass term representing a KK tower of states. This allows
us to formulate the 7D scalar field evolution as a 4D “mas-
sive” Klein–Gordon equation,

1√−g
∂μ

(√−ggμν∂ν�
) − μ2� = 0, (2.46)

where

∇2
nilZ(y) = −μ2Z(y1, y2, y3). (2.47)
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Using the derivative of the tortoise coordinate dr∗ =
dr/ f (r), we extract the radial component of the QNM to
produce a characteristic wave-like equation containing the
QNF and the effective scalar potential,

d2ψ

dr2∗
+

(
ω2 − V (r)

)
ψ = 0, (2.48)

where

V (r) =
(

1 − 2M

r

) (
�(� + 1)

r2 + 2M

r3 + μ2
)

. (2.49)

Within the QNM literature, a Klein–Gordon equation
with a non-vanishing mass5 has been used to describe the
behaviour of massive 4D scalar QNMs in a black hole space-
time [31,114–119]. The reduction of our Schwarzschild-
nilmanifold QNM equation to Eq. (2.48) allows us to draw
upon known computational techniques and behaviours to
constrain μ. In the next section, we shall discuss the meth-
ods we employ here to compute the QNF spectrum from Eq.
(2.48), after which we shall comment on the effect of μ on
the QNFs and the implication thereof.

3 The QNF spectrum for the Schwarzschild-nilmanifold
setup

3.1 Computing the QNFs

There are several techniques established within the QNM lit-
erature that generate exact solutions for QNFs. These must
contend with the technical challenges introduced by the
inherently dissipative nature of the QNM problem. Since
radiation is irrevocably lost at spatial infinity and at the event
horizon, the system is not time-symmetric; the eigenvalue
problem is consequentially non-Hermitian and the eigenval-
ues are complex. In general, the corresponding eigenfunc-
tions are then not normalisable and do not form a complete
set (see reviews [3,6,7] for further discussion). To circumvent
this problem, a method was developed in Refs. [26,120,121]
that exploits the relationship between the QNMs of a poten-
tial barrier and the bound states of the inverted potential
[26], as explained in the introduction. The procedure involves
fitting the effective QNM potential featured in Eq. (2.48)
to a well-understood substitute (characterised by exponen-
tial decay and other key common features) for which ana-
lytic solutions are known. In the case of several black hole
space-times6, the Pöschl–Teller potential [25] can serve as

5 It is worth noting that the origin and nature of this mass is rarely
discussed in the context of QNMs.
6 While the use of the inverted Pöschl–Teller potential leads to the pro-
duction of QNFs with errors > 1% for Schwarzschild black holes with

the inverted effective potential and the QNF spectrum is
extracted from the bound-state solutions.

However, physically-motivated numerical methods remain
a popular alternative. For a spherically-symmetric black hole,
QNMs can be treated as waves trapped on the photon sphere,7

albeit gradually “leaking out” [33]. In Refs. [27–29], this
scenario was interpreted as a scattering problem, where the
effective QNM potential serves as a potential barrier that
tends to constant values in the opposing asymptotic limits.
From this framing, a modified WKB method was developed
that exploited the Bohr–Sommerfeld quantisation condition
of quantum mechanics to establish a semi-analytical tech-
nique to compute black hole QNFs.

The WKB formula involves the matching of asymptotic
solutions across two turning points that are the roots of the
effective QNM potential. With the aid of a Taylor expansion
about the peak of the potential barrier x = r0, it becomes
possible to relate the ingoing and outgoing solutions of the
wave-like Eq. (2.48) and thereby obtain an expression for
the QNFs and their wave-function. At lowest order [27], this
WKB method yields

ω2(�, n) ≈ V (r0) − i(n + 1/2)
√−2V ′′(r0), (3.51)

where derivatives with respect to r are denoted by primes
and r0 represents the peak of the potential. From this simple
expression alone, the dominant QNMs for a s = 2 perturbing
field may be computed with an accuracy of 6% [28]; at third-
order [29], the accuracy improves to fractions of a percent
[31]. While the WKB method is far more successful than
we would expect [122], it is understood that this method
produces more accurate results for QNFs when � � 2 at
lower orders [123]. However, even at higher orders (i.e. see
the 12th-order WKB method established in Refs. [124,125]),
the method still works best for � > n, with further accuracy
found at higher multipolar values. For low values of n, Eq.
(3.51) demonstrates that the QNF can be closely determined
by the height of its associated potential barrier, as well as its
second derivative.

There are, however, known limitations to the use of this
modified WKB method: as reviewed in Ref. [31], care must
be taken when applying the technique to instability analyses
and contexts with large overtones, effective potentials with
non-constant asymptotics, space-times with higher dimen-
sions, QNMs of massive perturbing fields, etc. Specifically,

� > 2, greater accuracy can be found for Schwarzschild-de Sitter and
Reissner–Nordström-de Sitter black hole space-times, against which
the Pöschl–Teller potential exactly matches.
7 The photon sphere of a non-rotating, spherically-symmetric black
hole is comprised of circular null geodesics of fixed radius rc. QNM
behaviour can be compared with the photons orbiting this sphere:Re{ω}
serves as the angular velocity while Im{ω} refers to the instability
timescale of the photon orbit.
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in the case of massive scalar fields – the QNM context which
aligns most closely with our setup here – the μ2 term in
the effective potential produces an additional turning point
beyond the two over which the WKB matching is tradition-
ally applied. This becomes significant for large values of μ,
as the local minimum is lost [115]. Physically, at a sufficiently
large mass, the fields approach the quasiresonance regime,
at which point the the amplitudes in the asymptotic regions
approach zero and the application of the WKB method is
no longer feasible; damping becomes minimal, such that the
modes become purely real and arbitrarily long-lived.

To compute highly massive QNMs most accurately, one
would have to take into account the minimum emergent on the
right side of the peak and the consequent backscattering from
that barrier. However, this is not strictly necessary provided
the peak lies above the value to which the effective potential
asymptotes i.e. μ2 ≤ V (r0) (see section VI B of Ref. [31]
for explicit comparisons).

Recently, a numerical method was put forth in Ref. [32]
that returns to the intuitive picture proposed by Goebel [33].
Using a novel ansatz for Eq. (2.48) derived from the equa-
tions of motion for a test particle following the null geodesic
of a spherically-symmetric black hole, Dolan and Ottewill
iteratively construct a series expansion in inverse powers of
L = � + 1/2 for the QNF,

ω =
∞∑

k=−1

ωk L
−k . (3.52)

We have studied this technique extensively within the
eikonal limit in Ref. [34]; here, we find that the QNF emerges
as a function of both L and μ when the method of Ref. [32]
is directly applied to Eq. (2.48):

ω(L , μ) = +1

3
L − i

6
L0 +

[
3μ2

2
+ 7

648

]
L−1

+
[

5iμ2

4
− 137i

23328

]
L−2 +

[
9μ4

8
− 379μ2

432
+ 2615

3779136

]
L−3

+
[

27iμ4

16
− 2677iμ2

5184
+ 590983i

1088391168

]
L−4

+
[

63μ6

16
− 427μ4

576
+ 362587μ2

1259712
− 42573661

117546246144

]
L−5

+
[

333iμ6

32
+ 6563iμ4

6912
+ 100404965iμ2

725594112

+ 11084613257i

25389989167104

]
L−6.

Our results are summarised in Table 4, for which we set
� = 2 and n = 0 to correspond to the least-damped/longest-
lived “fundamental mode” that dominates the QNM signal
[6,7,77]. We consider backscattering to be negligible. We
find that the sixth-order WKB and the Dolan-Ottewill meth-
ods are in close agreement. We can ascribe the deviations in
the Pöschl–Teller results to the method’s stronger reliance
on the potential shape, where the Pöschl–Teller potential is
known to match closest to the inverted potential correspond-
ing to a Schwarzschild black hole space-time with a positive
cosmological constant [126].

3.2 The effect of a mass-like term on the QNF spectrum

From the radial wave equation Eq. (2.48), the characteris-
tic nature of the field is enclosed in the potential; from Eq.
(3.51), we observe that the QNF value is strongly influenced
by the potential. As such, it is useful to study the QNF spec-
trum in conjunction with Fig. 3 to understand the effect of
the mass-like term. We observe that μ elevates the poten-
tial: as r∗ increases, the potential no longer asymptotes to
zero but instead approaches μ2. Beyond μ ≈ 0.6, the peak is
smoothed out, suppressing the potential barrier and removing
the local maximum.

From Table 4 demonstrating the fundamental QNM mode,
we observe that Re{ω} increases steadily with μ whereas
Im{ω} decreases. As μ approaches 0.7, there is a discernible
change in the QNF behaviour: a large jump in both the real
and imaginary parts is observed for all three methods, with
a pronounced difference in the WKB result for μ = 0.7: a
sudden drop in Re{ω} and shift from negative to positive in
Im{ω}. This represents a breakdown in the method: while
there is a known increase in the relative error for μ = 0.7

Table 4 Spin-0 QNFs for n = 0
and � = 2 for 0.0 ≤ μ ≤ 0.7
using the WKB at O(V 6), the
Pöschl–Teller (PT) method, and
the Dolan–Ottewill (DO)
expansion at O(L−6)

μ ω (DO) ω (WK B) ω (PT )

0.0 0.4836–0.0968i 0.4836–0.0968i 0.4874–0.0979i

0.1 0.4868–0.0957i 0.4868–0.0957i 0.4909–0.0968i

0.2 0.4963–0.0924i 0.4963–0.0924i 0.5015–0.0936i

0.3 0.5124–0.0868i 0.5123–0.0868i 0.5192–0.0881i

0.4 0.5352–0.0787i 0.5351–0.0787i 0.5443–0.0800i

0.5 0.5653–0.0676i 0.5649–0.0676i 0.5770–0.0690i

0.6 0.6032–0.0532i 0.6022–0.0528i 0.6181–0.0541i

0.7 0.6500–0.0343i 0.1396+0.2763i 0.6695–0.0312i
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Fig. 3 The (n, �) = (0, 2) mode of the scalar potential of Eq. (2.48)
for increasing values of the parameter μ. Note that for μ = 0, V → 0
as r∗ → ∞ and the effective potential has a distinct peak. For μ �= 0,
V → μ2 as r∗ → +∞. When μ2 � V (r0), the peak is smoothed and
the potential barrier is transformed into a potential step

[31], we observe explicitly from Fig. 3 that μ2 > V (r0) when
μ = 0.8, which means the use of the WKB method is no
longer appropriate.

However, there is also the physical interpretation to con-
sider. In the geodesic picture, we understand that the flat-
tening of the potential forbids the quantum tunnelling that
allows the waves to “leak out” from the system. In Ref. [123],
massive QNMs for whichRe{ω2} > μ2 are defined as “prop-
agative”and behave similarly to their massless counterparts,
whereasRe{ω2} < μ2 are “evanescent” and contribute negli-
gibly to the QNM spectrum for a perturbed black hole. This
shift from propagative to evanescent is characterised by a
change in sign in the imaginary part, as observed in Fig. 4.
As μ increases, the QNMs transition from propagative to
evanescent; as the imaginary part goes to zero, the QNMs
enter the quasiresonance regime [115], where the QNMs are
arbitrarily long-lived. In this regime, the ingoing wave ampli-
tude at the event horizon of the black hole is considered much
smaller than the amplitude far from the black hole; since
energy no longer “leaks” from the system at spatial infinity,
the QNMs behave as standing waves [116].

While we focus on the � = 2 mode that dominates the
observed QNF spectrum [76,77], we can see in Fig. 4 that
the oscillation timescale increases with the angular momen-
tum number. This corresponds well to classical and quantum
systems with which we are familiar, where the frequency of
an oscillating wave increases with energy. Note, however,
that as � increases, the influence of μ wanes: the range of the
QNF values converge to their massless counterpart for larger
multipolar numbers.

In our extra-dimensional setup, the μ parameter serves
as a manifestation of the extra dimensions, representing the
KK tower of states. The analysis of the QNM potential and
corresponding QNF spectrum conducted here demonstrates
that only the “propagative” QNMs can be used as a probe
in extra-dimensional searches. This places an upper bound

Fig. 4 The QNF spectrum of the extra-dimensional scalar field whose
higher-dimensional contribution emerges as a mass-like term. We use
the Dolan–Ottewill method to plot the imaginary components against
the real for μ ∈ {0, 1}. Note that even for these small multipolar num-
bers, the range of the QNF decreases for increasing �

on μ, such that Re{ω2} > μ2. For a scalar test field in the
Schwarzschild black hole space-time, we therefore consider
the bound from the numerical analysis to be μ � 0.6.

3.3 An interpretation of μ in the QNM context

Within the QNM literature, potentials of the form provided
in Eq. (2.48) have been approached primarily as a numerical
problem (see e.g. Refs. [114–116]). However, a study of the
μ parameter can also offer insights into the QNM problem
at hand. To illustrate the role played by μ in QNM studies,
and for a sense of the scales probed by QNFs influenced by
this term, we discuss some examples from the literature.

Physically, we understand μ to be of dimensions of inverse
length, such that m = μh̄ (under units of G = c = 1). The
corresponding Compton wavelength λC = h/(mc) can then
be related to the mass in eV using

λC × m = 1.24 × 10−9. (3.53)

For Compton wavelengths corresponding to astrophysical
black holes mBH ∼ 10M�, μ will correspond to very light
particles of mass m ∼ 10−10 eV/c2 [127,128].

Motivated by the long-lived nature of massive scalar
QNFs, an investigation into the gravitational perturba-
tions coupled to the massive Klein–Gordon equation within
a Schwarzschild space-time found similar masses,
m ∼ 10−11 − 10−12 eV/c2 [129].

Of particular importance is the role played by the dimen-
sionless parameter Mμ, where M is the black hole Arnowitt-
Deser-Misner (ADM) mass and m = μh̄ as before is the
bosonic field mass. In the case of spinning black holes, this
dimensionless parameter acts as a scaling for the suppression
of the instability timescale: when the Compton wavelength of
the perturbing field is of the order of the black hole’s radius,
the dimensionless parameter scales as Mμ ∼ 1, leading to
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Fig. 5 For a sense of the scales probed by QNFs for Mμ ∼ 1, we
illustrate the magnitudes of m and χ of Eqs. (3.55) and (3.56) discussed
in the text. We include the upper bounds for the photon mass [123] and
the graviton [69], as well as the lower mass bound for massive primordial
black holes [130]. We note that particles of these magnitudes correspond
to those of the “string axiverse”scenarios [131]

the strongest super-radiant instabilities for the Kerr black
hole [6,7]. This scenario is applicable also to light primor-
dial black holes [130].

In a study of Proca field QNMs in the Kerr space-time
[123], Dolan and Percival found Mμ to be exceedingly large
in the case of SM vector bosons, and extremely small for
the photon with μ � 10−27 eV/c2. Furthermore, they found
that in the SM case, only evanescent modes for QNFs with
�+1/2 � O(Mμ) were predicted. For these extremely light
photons, the QNF spectrum was anticipated to replicate that
of the electromagnetic field, albeit with one extra longitudinal
polarisation matching the QNF spectrum of a scalar field with
mass μ > 0.

Since a number of BSM conjectures depend on the exis-
tence of light or even ultralight particles (e.g. light scalars
of mass 10−32 ≤ m ≤ 10−10 eV as in the “string axiverse”
scenarios [131], dark or hidden photons, and other candi-
dates [132]), massive QNMs may be useful in complemen-
tary searches for a variety of exotic signatures (Fig. 5).

In our framework, we have positioned the μ parameter as
an artefact of the extra-dimensional submanifold, represent-
ing the KK tower of states on the compact space. To obtain a
sense of scale, we revert back to SI units such that the mass
of the black hole and the μ parameter become

M = GmBH

c2 and μ = mc

h̄
. (3.54)

From dimensional analysis, we can show that M and μ have
dimensions of length and inverse-length, respectively, such
that Mμ is indeed dimensionless. It is straightforward then
that

Mμ = GmBHm

h̄c

⇒ m = 1

mBH

h̄c

G
Mμ. (3.55)

With the values h̄c/G ∼ 10−16 kg2, 1M� ∼ 1030 kg,
and Mμ ∼ O(1), we can scale the black hole mass as
mBH = 10χ M� and thereby express the extra-dimensional
contribution through

m ∼ 10−χ 10−46kg ∼ 10−(χ+10)eV/c2. (3.56)

We may use this expression to explore possible mass lim-
its. From the well-known mass limit for non-
evaporating primordial black holes mPBH � 1015 g [130],
m � 10−28eV/c2 such that χ � 18. On the other hand,
χ ∼ −8 corresponds to a micro black hole of the same
mass as the moon. For the 62 ± 4 M� black hole remnant
corresponding to the GW150914 event [70], χ ∼ 2.

We can also contrast this against the dynamical lower
bound on the graviton Compton wavelength λg ≥ 1013 km,
as determined by the LVK collaboration at a 90% confidence
(using null tests against the modified dispersion relation of
massive-graviton theory introduced in Ref. [133]). This in
turn corresponds to the upper bound on the graviton mass
mg � 10−22 eV/c2 [72], which leads to the bound χ � 12.

4 Constraints from GWs using QNMs

In analogy to the electromagnetic waves produced by accel-
erating charges, GWs are generated by any massive body
undergoing acceleration. This is a direct consequence of
the relationship between mass and space-time curvature pre-
dicted by GR, where changes in the geometry occur corre-
sponding to the movements of the massive body. Since grav-
ity is weakly-interacting, the resultant ripples in space-time
propagate throughout the universe unscreened. This property
unlocks unique opportunities for studies into early-universe
cosmology, since GWs decouple almost immediately after
being produced and then propagate undisturbed throughout
the universe; they may be the only way we can probe the time
directly after the big bang [47]. However, a consequence of
this feeble nature of gravity is a severely limited collection
of astrophysical events whose corresponding GW signatures
lie within the sensitivity range of detectors. These can be
classified into four possible GW sources: coalescing com-
pact bodies, pulsars, supernovae (all of which are sources
of deterministic GWs), and a cosmic GW background com-
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prised of the stochastic GWs emergent in the wake of the big
bang [46,49].

The 90 GW events detected by the LVK collaboration
[37–40] originate from the mergers of compact coalescing
binaries, with binary black hole collisions remaining the most
common. This is in part due to the energy output during a
black hole collision (considered in Ref. [5] as second only to
the big bang), as well as the comprehensive understanding
of the modelling of these two-body systems [134]. Three
distinct phases make up the gravitational waveform (where
parentheses indicate the technique through which each phase
is modelled),

(i) inspiral: long, adiabatic stage as orbit shrinks and GW
emission increases (post-Newtonian expansion);

(ii) merger: violent merger into a single black hole and GW
emission peaks (numerical relativity simulations);

(iii) ringdown: final black hole emits damped GWs as it
relaxes into a stationary state (black hole perturbation
theory).

Due to the weakly-interacting nature of GWs and the noise
in which the signal is saturated, inferring the physical param-
eters of a GW source is a delicate process dependent on prior
knowledge of the expected signal shape and the implemen-
tation of several a priori assumptions (this is a highly non-
trivial exercise, and we refer the interested reader to Ref. [66]
for details). However, the observations of GWs from these
merger events allow for unique tests of GR within regimes
previously beyond reach.

In light of these regular GW detections and the promise
of future GW observatories [135–137], interest in using GW
data to constrain BSM models is building (see Ref. [47,49]).
However, it is known that GW phenomenology is still in
its infancy, unlike collider searches, where we have yet to
obtain precise final state signatures for which we can search
[56]. This makes it difficult to constrain particle physics mod-
els with precision. Methods of searching for new physics
predominantly rely on calculating the frequencies associated
with symmetry breaking mechanisms to determine whether
such signals lie within the sensitivity range of present or
future GW detectors – a strategy that long predates the detec-
tion of GWs [138–140]. Attempts to place bounds on the size
and number of extra dimensions focus on the yet-undetected
stochastic GW background rather than those emitted by com-
pact coalescing bodies (see Ref. [56]).

Within the GW community, searches for modified theories
of gravity consider how GW signals may differ from those of
GR in terms of their generation, propagation, and polarisation
[67–69]. In the case of massive gravity theories, for example,
it is well understood that additional polarisation states must
be considered to describe the extra degrees of freedom. While
GR has only two tensor modes (i.e. plus and cross modes),

a generalised metric theory of gravity can accommodate up
to six polarisation modes: two tensor, two vector, and two
scalar modes [141,142]. Similar effects can be seen in extra-
dimensional setups e.g. Ref. [59]; in such cases, however,
these can often lie far beyond detectable range [56,57]. The
situation is complicated further by the known difficulty in
relating these null tests to one another [143].

For these reasons, we suggest a new avenue of pursuit
by which to probe extra dimensions within extant GW data,
that exploits the connection between QNM and GW studies.
Inspired by tests for deviations from GR within the post-
merger phase [68,69], we make use of one of the few tools
dedicated to QNM analyses of GW data: the Python package
PyRing [77,82]. The package was recently developed to per-
form Bayesian parameter estimation, tests of GR, and other
QNM analyses through a combination of observed GW data
with simulation and numerically-generated waveform tem-
plates, following the Bayesian framework detailed in Ref.
[66]. Treating GR as the null hypothesis, PyRing tests for
deviations from the QNF oscillation frequency (Re{ω} = ω)
and decay timescale (1/Im{ω} = τ ):

δω = ωGR(1 + δω),

δτ = τGR(1 + δτ). (4.57)

As a first exploratory step, we run this agnostic test of GR
deviation in GW data from the GW150914 black hole merger
event [70] using the provided Kerr220 waveform template cor-
responding to the � = m = 2, n = 0 mode (see Fig. 6). The
analysis through PyRing is conducted in the time domain
using publicly available data from the LVK collaboration
[144]. To reduce computational cost, we employ medium-
resolution data, simplified noise estimation, and simplified
sampler settings, as well as tight priors. Specifically, we fol-
low Ref. [77] in sampling 4096 s of data from the Hanford
and the Livingston LIGO detectors, sampled at 4096 Hz with
the raw strain band-passed over f ∈ [20, 2028] Hz before
being split into 2-s noise chunks. We set the trigtime in H1
to t = 126259462.423227 s. We run the analysis over the
prior bounds for final mass M f ∈ [50.0, 90.0] M�, spin
a f ∈ [0.6, 0.9], amplitude A220 ∈ [0.0, 5.0 × 10−20], and
phase φ220 ∈ [0, 2π ]. In testing for deviations from GR, we
sample over δω, δτ ∈ [−1, 1].

To carry out its Bayesian inference, PyRing exploits the
nested sampling algorithm of cpnest [145,146]. The pack-
age’s implementation is based on an ensemble Markov chain
Monte Carlo (MCMC) sampler, for which we only need to
input the specifics of the analysis. We use 2048 live points
and set the maximum MCMC steps to 2048, with the default
1234 seeds; at the end of the analysis, we are left with ∼ 8000
independent samples. We visualise these results in Fig. 6.

Higher resolution data diminishes the impact of the time
discretisation [79], while increased sampler settings lead to
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Fig. 6 As a proof-of-concept, we perform a rudimentary parameter
estimation of the GR deviations using PyRing for event GW150914
(GW data sampled at 4096 Hz). We narrow priors to reduce computation
cost. WithCorner, we plot the 2D posteriors and 1D histograms on (δω,
δτ ), where (0, 0) is the GR-predicted value. Dashed lines and contours
demarcate the 90% credible region; the blue line indicates the mean

Table 5 To correspond to the search for parametric deviations in GR,
we structure our results for ω = Re{ω} and the damping time τ =
1/Im{ω} as ω = ωμ=0 (1 + δω) and τ = τμ=0 (1 + δτ), respectively.
We use QNF results provided in column 2 of Table 4

μ ω (�, μ) δ ω δ τ

0.0 0.4836–0.0968i 0.0000 0.0000

0.1 0.4868–0.0968i 0.0065 0.0113

0.2 0.4963–0.0924i 0.0262 0.0473

0.3 0.5124–0.0868i 0.0594 0.1149

0.4 0.5352–0.0787i 0.1066 0.2302

0.5 0.5653–0.0676i 0.1687 0.4306

0.6 0.6032–0.0532i 0.2472 0.8206

0.7 0.6500–0.0343i 0.3440 1.8181

more precise results [145,146]. For improved accuracy, we
therefore make use of the hierarchical combination of LVK’s
strongest bounds on GR deviations to date [69]:

δω220 = 0.02+0.07
−0.07,

δτ220 = 0.13+0.21
−0.22. (4.58)

To compare QNF computation with GW data, we consider
our μ = 0 results to be equivalent to the GR prediction
(δω, δτ ) = (0, 0) i.e. ωGR = ωμ=0. From the Dolan-
Ottewill results of Table 4, we extract the parametric devia-

tions to Table 5. We observe that the parametric deviations
match the bounds predicted in Eq. (4.58) for μ ∼ 0.2. If we
exploit the QNF series expansion provided in Eq. (3.53), we
can solve for μ explicitly. In doing so (for the real part and
using the dominant � = 2, n = 0 mode), we find that we can
impose the upper bound

μ � 0.3681. (4.59)

This serves as an upper bound on the sensitivity of QNFs
to extra-dimensional KK resonances, as construct-ed in this
framework. Using Eq. (2.29), we can explore the physical
insights that can be extracted from this limit.

Since we have set M = 1, we can interpret this as
a bound on the dimensionless parameter Mμ. As such,
Mμ ∼ O(0.1). Then for the final M ∼ 62M� black hole
remnant of GW150914, χ ∼ 3. This leads to the upper bound
on the QNF probe,

m � 10−13eV/c2. (4.60)

In other words, we observe that applying static black hole
QNFs as a direct probe into an agnostic extra-dimensional
model demonstrates that QNFs cannot detect KK masses
beyond roughly m ∼ 10−13eV/c2. We note that particles of
this mass correspond to light scalar hypotheses rather than
the TeV-scale KK masses of typical extra-dimensional con-
jectures [132].

5 Conclusions

In this work, we have considered a novel extra-dimen- sional
setup comprised of a Schwarzschild black hole embedded
in a 7D product space-time whose extra dimensions form
a negative compact space – specifically, a nilmanifold built
from Heisenberg algebra. We have pursued a strategy for
an extra-dimensional search using QNFs. By positioning the
extra-dimensional contribution as an effective mass-like μ2

term in the QNM potential, we have demonstrated through
a numerical study a possible upper bound on this μ. For the
scalar test-field and Schwarzschild space-time background
considered here, μ � 0.6.

Then, by using searches for parametric deviations from
GR, we further constrain this probe to μ � 0.3681.
Via Eq. (3.55), we demonstrate that this corresponds to
mKK � 10−13eV/c2. The limit provided in Eq. (4.59) can
therefore be interpreted as a detectability bound on the QNM
probe into extra dimensions. In other words, with currently
available signals, we find that KK masses higher than roughly
mKK ∼ 10−13eV/c2 cannot be detected with QNMs.

However, there are a number of improvements that could
be made to this preliminary study that may lead to more strin-
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gent bounds, particularly in the application to other BSM
scenarios. For example, we would expect minor corrections
from the use of the more astro- physically-relevant Kerr black
hole space-time and gravitational QNFs; this would be neces-
sary for greater precision than the order-of-magnitude study
conducted in this work. More significantly, we recognise
that this investigation was limited by the need to adopt an
agnostic approach to our pursuit of evidence of extra dimen-
sions. As the LVK collaboration develops more sophisticated
and model-specific ringdown templates to test for parametric
deviations in GR, it would be interesting to observe how theo-
retical frameworks can be adapted to the question of searches
for extra-dimensional signatures in GWs.

A further open question is to what extent can we apply such
constraints to place bounds on the size and number of extra
dimensions. For example, a next step for this study could be
to subject the mass spectrum of the toy dark matter model
studied in Ref. [88] to this result in order to extract tangible
bounds on the radius of the nilmanifold extra dimensions
herein constructed. Moreover, a detailed investigation of the
propagation of GWs in nilmanifold spaces is reserved for a
future work.

As acknowledged in Ref. [69], there has been substantial
progress in GW research from the analytical, numerical, and
experimental fronts. GW phenomenology and our ability to
perform precision-level testing of GR, however, are still in
their infancy. It is our hope that the simple setup we have
provided here may be refined as our understanding of the
applicability of GW detection in fundamental physics grows,
bringing these tests to a new level of accuracy.
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