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Abstract Deep machine learning methods have been stud-
ied for the software trigger of the future PANDA experi-
ment at FAIR, using Monte Carlo simulated data from the
GEANT-based detector simulation framework PandaRoot.
Ten physics channels that cover the main physics topics,
including electromagnetic, exotic, charmonium, open charm,
and baryonic reaction channels, have been investigated at
four different anti-proton beam momenta. Different classifi-
cation concepts and network architectures have been stud-
ied. Finally a residual convolutional neural network with
four residual blocks in a binary classification scheme has
been chosen due to its extendability, performance and sta-
bility. The presented study represents a feasibility study of
a completely software-based trigger system. Compared to
a conventional selection method, the deep machine learn-
ing approach achieved a significant efficiency gain of up to
200%, while keeping the background reduction factor at the
required level of 1/1000. Furthermore, it is shown that the
use of additional input variables can improve the data quality
for subsequent analysis. This study shows that the PANDA
software trigger can benefit greatly from the deep machine
learning methods.

1 Introduction

1.1 Motivation

The antiProton ANnihilation at DArmstadt experiment
(PANDA) at the Facility for Antiproton and Ion Research
(FAIR) [1] aims to explore hadron physics by means of

a e-mails: p.jiang@gsi.de ; jiangpeiyong@impcas.ac.cn (corresponding
author)

antiproton induced reactions [2,3]. A wide array of physics
topics and open questions are within the scope of PANDA,
including strangeness, charm and exotic physics, nucleon
structure, and hadrons in nuclei [4,5]. Some examples are
the investigation of the charmonium spectrum, hyperon spec-
troscopy, electromagnetic form factors as well as the search
for exotic states, e.g. hybrids, glueballs and hypernuclei. At
centre-of-mass energies between 2 and 5.5 GeV the total
p̄ p cross section ranges between 50 and 100 mb [6], while
the signals of interest have cross sections between a cou-
ple of microbarns and a few nanobarns or even picobarns.
Thus, with signal cross sections being many orders of mag-
nitude smaller than the total proton-antiproton cross section,
extracting the physics of interest is challenging in terms of
background suppression.

With an expected average reaction rate of about 20 MHz,
and with the average event size of 10–20 kB, the full data rate
will be roughly 200 GB/s or more. Because there is only a
tiny fraction of events containing physics processes of inter-
est, it would be inefficient to store all the data. In order to
identify the interesting events in an online environment, a
sophisticated trigger system is necessary. The PANDA trig-
gering system is foreseen to reduce the rate of events to be
stored by an approximate factor of 1000 to 20 kHz, reducing
the stored data to 200 MB/s, which still leads to about 1 PB
stored data per year.

Currently operating and upcoming experiments are embrac-
ing a new paradigm to trigger by online event selection in
various degrees. The high-level trigger of the ALICE exper-
iment performs the full event reconstruction, calibration and
high-level data quality assurance in almost real time [7]. The
LHCb collaboration is currently making efforts to implement
full online analysis chains for event filtering [8]. XENON1T
has been collecting data altogether with a software-trigger
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Fig. 1 Overview of the FAIR facility (top). The PANDA experimental
setup (bottom) with the initial detectors (in black) and staged upgrades
(in red) [3] (and references therein)

[9]. At the future FAIR Facility, the CBM [10] and PANDA
experiments will also employ fully software-based trigger
systems.

In PANDA, the kinematic similarity of signal and back-
ground reactions combined with a wide physics interest and
the high interaction rate puts the key challenge on the trig-
ger system and consequently the selections have to be made
on full event candidates with high-level information. To cope
with the challenges for proper signal-background separation,
deep machine learning methods with neural networks (NN)
are studied for the PANDA Software Trigger to improve per-
formance compared to a conventional cut-and-count method.

1.2 Experiment environment

FAIR is an international accelerator facility under construc-
tion in Darmstadt, Germany [1,3]. It expands the existing
accelerator complex in a large scale, shown in Fig. 1. An
antiproton beam will be prepared in a cascade of accelera-
tors, making use of almost the whole facility. The synchrotron
High-Energy Storage Ring (HESR) [11] will store, cool and

Fig. 2 Schematic overview of the complete PANDA online trigger sys-
tem

accelerate the antiprotons, which will have momenta in the
range between 1.5 GeV/c and 15 GeV/c, corresponding to
centre-of-mass energies in the antiproton-proton reactions at
PANDA between about 2 and 5.5 GeV. With a luminosity of
up to L = 2 × 1032 cm−2 s−1 in the “high luminosity mode”
and with a beam momentum resolution of dp/p < 2 × 10−5

in the “high resolution mode” HESR is an essential compo-
nent for PANDA that allows for precise measurements.

The PANDA experiment, shown in Fig. 1, consists of two
spectrometers, one barrel-shaped surrounding the interaction
point, the other covering the forward direction, both provid-
ing measurements for precise charged particle tracking and
particle identification as well as electromagnetic calorimetry.

1.3 Software trigger in PANDA

The PANDA online trigger system will consist of online
reconstruction, event building, and the Software Trigger, as
illustrated in the schematic in Fig. 2. First, the online recon-
struction of neutral particles and charged particles will be
performed as completely as possible using fast algorithms
including electromagnetic calorimetry (EMC), and the Par-
ticle IDentification (PID) information will be assigned to the
corresponding tracks. This will be combined with the event
reconstruction process, possibly in an iterative manner, to
provide the online event candidate with reconstructed final
state particle information to the Software Trigger module.
The event candidate will then be processed in the Software
Trigger module by the selection algorithms. Then the event
candidates will be tagged if they are consistent with a signal
signature. Finally, an event candidate will be written to the
data storage if any of the trigger algorithms accepts it to be
a signal event. At the highest interaction rates event pile-up
in the order of 2–3 events into one event candidate will play
a role. Thus the software trigger will focus on finding pieces
of interesting signatures inclusively.
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Table 1 List of ten physics channels for the Software Trigger study
together with the corresponding codes used in this document and the
trigger signatures

Physics topic Reaction channel Code Trigger

Electromagnetic p̄ p → e+e− ee p̄ p → e+e−

Exotics p̄ p → φ(1)φ(2) Phi φ → K+K−

Charmonium p̄ p → ηcπ
+π− Etac ηc → K 0

S K
−π+

p̄ p → J/ψ π+π− J2e J/ψ → e+e−

p̄ p → J/ψ π+π− J2mu J/ψ → μ+μ−

Open charm p̄ p → D0 D̄0 D0 D0 → K−π+

p̄ p → D+D− Dch D+ → K−π+π+

p̄ p → D+
s D−

s Ds D+
s → K+K−π+

Baryons p̄ p → ��̄ Lam � → pπ−

p̄ p → �c�̄c Lamc �c → pK−π+

Background p̄ p generic DPM –

2 Physics channels

The PANDA experiment has a rich physics program, so that
the composition of active trigger signatures will be adapted
depending on the current physics aim [4,5]. Therefore, the
PANDA Software Trigger system needs to identify many
types of physics reactions and offer a highly flexible con-
figuration.

For this study a total of ten channels are considered to
verify the feasibility of the Software Trigger inspired by
the physics motivation given in the PANDA Physics Book
[4]. These ten physics channels have simple and clear decay
modes in their respective field, spanning a number of event
topologies which may occur in the experimental runs, while

covering the main physics topics, namely exotic hadrons,
charmonium, open charm, and baryon states, including the
resonances φ, ηc, J/ψ , D0, D+, D+

s , �, and �c.
The physics topics, the reaction physics channels together

with the corresponding codes and the trigger signatures are
listed in Table 1. Signal events are generated with EvtGen
[12] using a simple phase space decay model (PHSP) as
well as the VSS (decay of vector to two scalar particles) and
VLL (decay of vector to two charged leptons) models for the
decays of φ and J/ψ , respectively. More complex decay pat-
terns e.g. in the Dalitz decay channels are omitted in order to
populate the phase space more evenly for data quality stud-
ies. Generic inelastic background reactions are generated by
the Dual Parton Model (DPM) [13], which models the vari-
ous production cross sections in antiproton-proton reactions.
These background events have to be rejected effectively by
the triggering algorithm.

For each reaction type, a specific selection procedure, the
trigger line, is defined. To determine the performance, the
individual trigger lines are under investigation as well as the
complete trigger system for the ten reaction types to be tagged
simultaneously.

A trigger line includes the reconstruction of a certain
composite resonance/particle candidate and the classifica-
tion whether this composite candidate originates from signal
or background events. A comprehensive list of input quanti-
ties (Table 2) is computed based on reconstructed properties,
momenta, angles, particle identification probabilities of the
composite candidates as well as final state particles involved.

The same set of input observables is used for the direct
comparison of the various approaches. Eventually, this set
of observables is extended by additional event shape observ-

Table 2 Summarised list of the
standard input observables as
well as additional event shape
input observables. (lab:
laboratory frame, cms:
centre-of-mass frame)

Category Description

Candidate kinematics Momentum p of reconstructed candidate (lab/cms)

Transverse momentum pt of reconstructed candidate

Polar angle θ of reconstructed candidate (lab/cms)

Daughter kinematics Kinematic variables from each daughter of the candidate

Electron/Muon/Kaon/Pion/Proton PID probability of each daughter

Event info and multiplicities Maximum (transverse) particle momentum in event

Sum of (transverse) momenta of charged particles in event (cms)

Sum of cluster energies in EMC

Maximum of cluster energies in EMC

Particle multiplicities

Minimum/maximum/sum of momenta

Number of loose (PPID > 0.25) candidates

Event shape Aplanarity of the event

Sphericity of the event

Magnitude of the event thrust vector

Reduced Fox–Wolfram Moments 1–4
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ables to determine the optimal performance achievable using
all available quantities for the final design choice. These
event specific observables comprise minimum and maximum
momenta, momentum sums, event planarity and sphericity,
thrust magnitude, Fox–Wolfram moments [14] and multi-
plicities are deduced, to further support the trigger decision.

One trigger line consists of four parts:

– Reconstruction of composite candidates by final state
combinatorics

– Preselection with a broad cut on the invariant mass of the
candidate of ±10σ around its peak position

– Calculation of the necessary observables, Table 2
– Selection by algorithm (focus of this work)

The selection target is determined by achieving the
required background suppression factor. In this study, the
overall required suppression factor is s = 1/1000, i.e. the
number of background events is suppressed by 99.9% with
all active trigger lines acting simultaneously. Applying ntrig

trigger lines simultaneously, the background suppression for
each trigger line is required to satisfy si = s/ntrig. In turn, due
to the possibility of different trigger lines accepting the same
background event, the actual total background suppression
factor sall can be a little bit better, such that sall ≤ s = ∑

si.

3 Data preparation

The data for the physics channels and background are
obtained by Monte-Carlo simulations with the PandaRoot
software [15]. This simulation and reconstruction software
framework is based on the publicly available software pack-
age FairRoot [16] v18.2.0 and the the external package col-
lection FairSoft in version “jun19p1”.

EvtGen [12] provides the particles for propagation through
the detector volumes with the GEANT 3 transport modeler
[17], which is followed by detailed detector simulations, digi-
tisation and reconstruction. Per particle candidate, tracking,
calorimetry and PID information, such as particle energy
loss, time of flight, Cherenkov angle, EMC energy deposit,
is being provided. All events are self-contained and no event
time relevant effects, such as event mixing or incomplete
events, are considered. In Table 3, the number of simulated
events is shown for the chosen channels where the centre-
of-mass energy permits the reaction. Also the Monte-Carlo
truth information, matched to the reconstructed particle can-
didates, is provided to distinguish combinatorial background
from signal events for the training stage.

4 Methods

Our figure of merit for comparing different approaches to the
triggering process will be the triggering efficiency, defined as
the ratio of the number of triggered events (Ntrig) to the num-
ber of events passing the trigger line reconstruction (Nrec):

ε = Ntrig

Nrec

while achieving a fixed background reduction. Each trigger
line receives events that were passing the detector reconstruc-
tion, performs combinatorics to form resonance candidates
and applies a 10 σ mass window cut as preselection, with
σ being the width/resolution of the individual reconstructed
resonance.

The triggering efficiency can be defined for two cases.
Individually the efficiency focuses on the selection perfor-
mance of each trigger line, serving one particular physics
channel. This is a useful quantity to optimise the trigger-
ing algorithms in question. For the complete trigger setup,
the total efficiencies will be affected by cross-tagging. Here
events can be rejected by their intended trigger line, but are
accepted accidentally by one or more of the other trigger
lines. This is an unintentional but fortunate effect. The total
triggering efficiency is the practically relevant measure for
the experiment.

Since we require a fixed background reduction for each
neural network (trigger line) individually, the resultant sig-
nal trigger efficiencies already represent a comparable mea-
sure for network performance. As an additional quality mea-
sure we provide the integral (AUC = area-under-curve) of
the receiver-operator-characteristics (ROC), which is more
common in Machine Learning contexts. The ROCs differ
mainly in the upper corner where the background suppres-
sion is around 0.9. The signal efficiency drops quickly when
the background suppression is close to 1 and high signal effi-
ciencies at a background reduction factor of 1/(n×1000),
with n being the number of trigger lines, correlate with the
AUCs, but not always consistently.

4.1 Cut-and-count method

The conventional benchmark trigger scheme is following
a cut-and-count approach employing an optimised set of
trigger line specific one-dimensional cuts on the measured
observable distributions. This technique has been used pre-
viously to study trigger concepts for PANDA.

In order to identify this set of criteria all input observables
are evaluated individually for each trigger line. We integrate
the distributions of both signal and background events for
each of the n observables in both directions up to a thresh-
old value retaining 90% of the signal events. This threshold
defines the cut to be applied. From these 2n possible cuts, we
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Table 3 Numbers of simulated events of each physics channel at each energy, given in million events. The dashes mark the cases, where the reaction
is energetically not possible
√
s [GeV] ee Phi Etac J2e J2mu D0 Dch Ds Lam Lamc DPM

2.4 3.1 1.3 – – – – – – 2.4 – 20.0

3.8 2.4 1.2 6.0 2.7 1.2 1.2 1.4 – 1.3 – 20.0

4.5 2.2 1.2 6.6 2.3 1.2 1.2 1.3 1.6 1.2 – 20.0

5.5 2.2 1.2 7.7 2.1 1.2 1.2 1.2 1.3 1.2 1.7 20.0

select and apply the one leading to the largest suppression of
background events. This procedure is iterated until the total
background suppression matches the required factor. The last
criterion in the set is adapted in the way, that the background
requirement is exactly met, so that the corresponding signal
efficiency can be larger than 90%.

The complete trigger configuration is given by 30 sets of
one-dimensional selection criteria, one for each trigger line
at each accessible centre-of-mass energy.

4.2 Deep learning methods

The neural network forms its answer from the input data in
a single number or a set of numbers in case of a multiple
classification. Performing a selection cut on this output will
determine the rejection rate of background events as well as
the efficiency of signal event acceptance.

The PyTorch framework [18] is chosen to provide the
underlying functionality to build the neural networks, which
are trained and evaluated with the prepared simulation data.
The simulated data is divided into two parts, approximately
in an one-to-one ratio based on the event number. The first
part undergoes Monte-Carlo truth matching preprocessing
to ensure purity without undesired combinatorial effects and
serves as the training set. The second part is used in two
ways: one is preprocessed in the same way as the training
set and used as the validation set to monitor the neural net-
work’s loss, while the other is used directly as the testing set
to evaluate software trigger performance.

5 Neural network optimisation

Neural network setups are quite diverse and mostly tailored
for the problem at hand. For the Software Trigger, several
choices are made based on the performance, especially the
signal efficiency and background reduction. Individual net-
works are optimised by:

– Network depth [19]
– Width or conventional kernel size of each layer
– Choice of the optimiser, learning rate and related items,

e.g. momentum [20],

– Choice of the activation function [21–26],
– Weight decay generalisation [27]
– Weight initialisation [28].

During training the network models are stored and the best
training epoch is chosen, based on the highest signal effi-
ciency at the fixed background rejection rate for the testing
data set.

5.1 Multi-class and binary approaches

The first question investigated is if a single network serv-
ing all trigger lines simultaneously (multi-class classifica-
tion) performs better than a single network for each physics
channel (binary classification). Allowing multi-class classi-
fication would mean fewer but bigger networks to be trained.
Binary classification in contrast allows for easier adaption
and modification of the list of channels. The multi-class
approach reduces the number of required training experi-
ments for each trigger setup to find the optimal network size
at the cost of longer training times due to the increased com-
plexity.

A set of Dense NNs [19] (DNN) is used to study this issue
exemplarily for one setting at

√
s = 4.5 GeV by the means

of a Bayesian approach for the best triggering efficiency, by
optimising the networks parameters iteratively starting from
multiple parameter sets. In each iteration the next parame-
ter set is being predicted by Gaussian Processes to find the
optimum [29]. The input vector size is the largest number
of observables amongst the trigger channels. Zero padding
is used where the channel features fewer observables. Back-
ground and the 9 signal channels are labeled individually at
the output of the networks. The cut on the network output
is performed for each trigger line individually to achieve the
required background suppression. The results are shown in
Table 4, where the individual trigger efficiencies serve as
a figure of merit. Here, only signal candidates that match
the Monte-Carlo truth are under investigation, eliminating
combinatorial effects. In those channels where the trigger-
ing efficiency is not close to 100%, the binary classification
outperforms the multi-class approach by up to a factor of two.

Therefore, we choose the binary classification approach
with one neural network per trigger line and energy point.
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Table 4 The comparison on the individual trigger efficiencies of truth
matched events between multi-class classification and binary classifi-
cation based on a DNN for an overall background rejection of 1/1000
over all trigger lines

Channels Multi-class [%] Binary [%]

ee 100.0 –

Phi 87.9 –

Etac 48.1 76.2

J2e 98.6 –

J2mu 99.9 –

D0 69.9 93.4

Dch 48.4 78.6

Ds 32.7 73.7

Lam 48.1 94.7

5.2 NN type selection

In order to identify the optimal network architecture and
meta-configuration, seven different types of networks are
studied, listed in Table 5: A dense neural network, a con-
volutional neural network (CNN) [30], both with and with-
out residual blocks [31–33], a CNN with bottleneck resid-
ual blocks [34] as well as 1D and a 2D Long-Short-Term-
Memory network [35].

Some of the trigger lines perform reasonably well and
show stable results under all kinds of network configurations
due to particularities of the decay kinematics. For example,
a J/ψ decaying into two leptons will leave two strongly cor-
related high-momentum tracks in the detector, which is sig-
nificantly different from the average multi-pion background
event and in consequence always leads to high selection qual-
ity.

For meaningful optimisation, these “simple” cases are
ignored, and the networks are optimised in depth and layer
size for a high triggering efficiency for the three more chal-
lenging channels Etac, Dch and Lamc. For instance, the
depth is optimised by obtaining the trigger performance as a
function of used layers/blocks, and ten runs are carried out for
each NN framework of a certain depth. The performance is
evaluated by the individual efficiencies as well as a combined
efficiency (“normalised trigger performance” ε̂), defined as
the geometric mean

ε̂ = (εEtac · εDch · εLamc)
1/3

of the efficiencies of the channels Etac, Dch and Lamc.
The absolute value of ε̂ is the primary measure of how well

a network type performs. The standard deviation of the indi-
vidual efficiencies from a series of training runs with varying
random initialisation of the internal weights is considered as
a measure for the training stability. Furthermore the networks
are investigated for their robustness under changing the net-

Table 5 The list and the description of the NNs investigated for the
PANDA Software Trigger in this note

Abbreviation Description

DNN Dense NN

DNNRes Dense NN with residual blocks

CNN Convolutional NN

CNNRes CNN with residual blocks

CNNResBN CNN with Bottleneck residual blocks

LSTM1D Long-Short-Term Memory with 1D input

LSTM2D Long-Short-Term Memory with 2D input

work size, in terms of the number of layers or blocks. This
may be required in a future scenario for more complex trig-
gering setups, e.g. with more measured particles, hence an
increased number of input observables.

In Fig. 3, we present exemplarily four network types
(DNN, CNN, CNNRes and LSTM1D) and their individual
efficiencies for just the channel Dch. For each network size,
ten networks have been trained and evaluated, providing a
median and standard deviation from the individual results.
The straight forward approach would be a DNN (Fig. 3, top
left), however, the triggering efficiency and stability for train-
ing are inferior as they are visible from the large spread of the
results. For a NN with increasing depth, in general significant
degradation of performance is expected because of shattered
gradients [33] as well as the risk of overtraining. This can
be most clearly seen in the case of the CNN with decreas-
ing performance using a larger number of layers (Fig. 3, top
right). Using a CNN with residual blocks (Fig. 3, bottom left)
mitigates this behaviour. The LSTM model also looks stable
but shows a worse generalisation than CNNRes, with regard
to the different physics channels (Fig. 3, bottom right)

For the selection of the best architecture the combined effi-
ciencies ε̂, shown in Fig. 4, are compared. Here all considered
network types are presented, which contains the information
of a total of ≈ 2200 network training and evaluation runs,
three channels times ten networks per marker. We identify
the CNNRes type network (orange) as optimal for the given
purpose based on its performance in triggering efficiency as
well as training stability and robustness concerning the vary-
ing sizes.

5.3 Chosen network architecture

The final choice to evaluate the performance of a neural
network approach for the PANDA Software Trigger is the
CNNRes, a Convolutional Neural Network with four resid-
ual blocks. It is “deep” enough to ensure that the NN has
enough capacity, while performing relatively stable when
adding more blocks, which may be considered within a pro-
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Fig. 3 Individual trigger efficiencies (blue dots) for the channel Dch at 5.5 GeV/c for four of the seven NN types with varying depth parameters
as well as the median with standard deviation (red makers and bars) from varying the weight seeds

Fig. 4 Normalised triggering
performance ε̂ as function of the
used layers/blocks in the seven
network types, combined for the
three channels Etac, Dch and
Lamc at 5.5 GeV/c
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Fig. 5 Schematic view of the chosen network architecture

duction triggering environment, e.g. featuring many more
trigger lines.

In Fig. 5, the details of the network are presented. In the
first stage the 127 input channels are mapped to a 11×11
matrix with a fully connected 121 large linear layer in
between. Here, the network has the possibility to sort any lin-
ear combination of observables next to each other, which will
enhance the performance of the image recognition type archi-
tecture to follow. Then two convolutional layers extend the
dimensionality to 16×11×11, allowing for a detailed feature
extraction performed by four residual blocks - pairs of convo-
lutional layers with a residual path. Three convolutional and
two linear layers then reduce the dimensions and perform
the classification for the output. Between each layer batch
normalisation [36] is being performed.

6 Results and discussion

6.1 Individual trigger performance

Measuring the performance of the neural network approach
is done by the individual trigger efficiency determined per
channel with that corresponding single trigger line active.
The cuts on the network output are tuned to achieve a back-
ground suppression of 1/1000 in total, with an equal frac-
tion of background contribution by each trigger channel for

a certain centre-of-mass energy. For example at the energy
of

√
s = 4.5 GeV with nine of the ten channels being ener-

getically accessible, the targeted background suppression per
channel is 1/9000. In the real experiment the balance of back-
ground suppression between various channels might be opti-
mised. Here we choose equal sharing. Another commonly
established measure of the network capabilities is the ROC
curves and, more condensed, the corresponding AUCs. Both,
the individual triggering efficiencies and the network AUCs
are summarised in Table 6.

In all cases the triggering with the aid of the neural net-
works improves the efficiencies compared to the cut-and-
count approach. This improvement is of course expected,
mainly because possible correlations between observables
are exploited by the new algorithm. Figure 6 shows the rela-
tive efficiency gain, where the bars in light colours represent
the increase based on the same set of input variables, the dark
coloured bars the performance gain using the extended set of
observables listed in Table 2. It reaches almost up to 200%
for some of the channels, corresponding to about a factor
of three in performance. The actual benefit strongly depends
on the channel in question. For example the channel ee has
already a very good triggering efficiency from the cut-and-
count approach, leaving no room for improvements. In the
case of the two J/ψ channels J2e and J2mu, the triggering
efficiency is dropping with increasing beam momentum (see
Table 6). This effect can be explained by the stronger back-
ground suppression requirements as more channels are being
triggered, which is almost completely recovered by the new
approach. For the open charm and Etac and Lamc channels
the triggering efficiency has about doubled.

Adding more observables, describing the overall event
topology, leads in many cases to a substantial gain in trig-
gering efficiency. Hence, in a future software trigger setup it
would be desirable to provide these event shape observables,
even if computationally expensive in an online environment.
Based on the AUC values all networks show good (0.8–0.9)
to excellent (> 0.9) classification performance.

6.2 Simultaneous trigger performance

In a realistic setup, all active trigger lines have the ability
to trigger events simultaneously. Therefore it can happen,
that a signal event of a certain type missed by the dedicated
trigger line is accidentally tagged by another one. This cross
tagging by simultaneous triggering has the potential to further
improve the triggering efficiency. Nevertheless, at the same
time the background level will not exceed the requirements.

Figure 7 quantifies this effect in the current scenario,
showing the increase in the triggering efficiencies, also pre-
sented in Table 6, which are calculated as the fraction of trig-
gered events from events that passed the reconstruction in the
trigger line designed for the channel. The light, medium and
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Table 6 Collection of individual trigger efficiency results for a target 1/1000 background suppression, the AUC values of the ROC curves as well
as the simultaneous trigger efficiency gains for all accessible channels

eff [%] ee Phi Etac J2e J2mu D0 Dch Ds Lam Lamc

Individual trigger efficiencies [%]

Conventional trigger

2.4 GeV 94.79 38.09 – – – – – – 21.50 –

3.8 GeV 88.80 54.64 9.71 91.34 92.52 39.50 12.50 – 40.25 –

4.5 GeV 98.88 56.24 11.92 85.85 84.62 31.42 10.19 6.38 49.21 –

5.5 GeV 95.94 61.47 17.87 76.31 75.09 36.79 17.71 11.87 56.27 6.59

NN trigger

2.4 GeV 99.98 63.67 – – – – – – 29.14 –

3.8 GeV 99.98 78.34 22.45 99.53 99.75 39.54 23.89 – 56.67 –

4.5 GeV 99.99 78.71 21.77 98.46 99.40 54.77 24.77 15.78 63.81 –

5.5 GeV 99.99 80.94 28.53 96.44 98.35 62.74 35.43 22.74 70.55 11.85

NN trigger with additional event shape observables

2.4 GeV 100.00 73.72 – – – – – – 30.33 –

3.8 GeV 100.00 85.05 26.56 99.76 99.88 69.30 30.48 – 68.52 –

4.5 GeV 100.00 84.13 25.21 99.21 99.64 58.01 27.32 18.92 73.47 –

5.5 GeV 100.00 84.95 38.10 98.86 98.90 65.02 40.16 27.26 78.19 14.75

Individual NN performance

AUC values for the NN trigger

2.4 GeV 1.000 0.948 – – – – – – 0.978 –

3.8 GeV 1.000 0.987 0.869 0.999 0.999 0.960 0.854 – 0.987 –

4.5 GeV 1.000 0.988 0.912 0.998 0.999 0.951 0.866 0.865 0.990 –

5.5 GeV 1.000 0.986 0.929 0.996 0.998 0.936 0.890 0.852 0.992 0.821

AUC values for the NN trigger with the additional event shape observables

2.4 GeV 1.000 0.959 – – – – – – 0.977 –

3.8 GeV 1.000 0.988 0.887 0.999 1.000 0.963 0.838 – 0.990 –

4.5 GeV 1.000 0.990 0.913 0.998 0.999 0.956 0.877 0.890 0.994 –

5.5 GeV 1.000 0.989 0.941 0.999 0.998 0.955 0.900 0.873 0.994 0.834

Cross-tagging efficiency gains as effect of simultaneous triggering [%]

Conventional trigger

2.4 GeV 0.01 0.43 – – – – – – 1.96 –

3.8 GeV 22.74 4.52 21.93 0.83 1.45 4.12 5.36 – 3.74 –

4.5 GeV 25.53 5.68 48.65 3.68 1.00 6.94 31.82 18.51 4.12 –

5.5 GeV 19.68 19.37 93.05 5.01 3.53 12.05 50.72 40.75 2.18 15.50

NN trigger

2.4 GeV 0.00 0.00 – – – – – – 1.26 –

3.8 GeV 26.39 4.75 12.17 2.28 0.47 9.36 5.02 – 3.57 –

4.5 GeV 34.92 6.51 42.59 3.42 1.75 6.12 18.13 16.22 4.58 –

5.5 GeV 26.37 15.80 132.98 6.22 5.11 9.08 27.23 30.85 4.71 10.99

NN trigger with additional event shape observables

2.4 GeV 0.01 0.00 – – – – – – 0.98 –

3.8 GeV 26.93 6.72 14.57 3.92 1.23 4.13 6.48 – 4.10 –

4.5 GeV 35.89 7.22 61.43 4.71 3.22 6.54 22.28 16.78 4.08 –

5.5 GeV 29.18 21.76 118.00 12.93 8.09 10.37 31.27 32.09 4.15 11.46
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Fig. 6 Individual triggering
efficiency gains of the neural
networks compared to the
conventional approach, based on
the same set of input
observables (light colours), and
on the extended set of
observables (dark colours)

Fig. 7 Cross-tagging efficiency
gain as effect of simultaneous
triggering of multiple reactions,
for the conventional benchmark
approach (light colours), the NN
approach with the same set of
observables (medium colours),
and the NN approach with the
extended set of observables
(dark colours)

dark coloured bars correspond to the conventional cut-and-
count benchmark algorithm, the neural network approach
and the neural network approach based on the extended vari-
able set, respectively. In some cases this adds a substantial
increase in triggering efficiency. For example the channel
Etac at 5.5 GeV gains a factor of two in total triggering effi-
ciency by cross tagging in this particular setup. It is important
to note that these “accidental” gains are highly dependent on
the actual composition of trigger lines, the centre-of-mass
energy, and the actual trained networks.

6.3 Computing performance

The bulk of training processes goes into finding the optimal
solution for each network architecture, which is time con-
suming and requires the intensive usage of GPU and CPU
resources. A dedicated server with one Intel® Xeon® W-
2135 CPU with 3.70 GHz and one NVIDIA® 3090 GPU is

used, equivalent in performance to 171 cores of the AMD®

EPYC® 7551 32-Core Processors on the computing cluster
at GSI. Processing times are in the order of two days for a
single trigger line on 12 cores of the computing cluster. The
model inference is able to run in the order of 1.4 M candidates
per second on the GPU server with six trigger lines in paral-
lel. The main bottleneck is the CPU based data reading and
preparation. Since the training can be performed in parallel
for the trigger lines this is quite promising that no dedicated
GPU hardware is strictly necessary to train new trigger lines.
On the other hand the processing speed in the inference on
GPUs makes this option interesting for an online use scenario
before the data stream reaches the main computing cluster.

6.4 Data quality and choice of observables

The input features and observables have varying impacts on
the trigger decision. Some features are correlated, some are
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Fig. 8 Candidate mass distributions of accepted and rejected signal
(red and green, respectively) and background (blue and black, respec-
tively) for the channel Dch at 4.5 GeV/c. Left, all kinematic input

observables, right without the energy of the candidate and the invari-
ant mass of the recoiling system. The histograms are normalised to the
same integral

not relevant to the classification problem at hand, which dif-
fers between the channels and even between the data sets of
the same channel at different beam energies. The ranking of
the observable importance can guide the observable choice
and thus may reduce the required computations in the online
processing before.

Furthermore, it is important to maintain a certain quality of
the data during the selection process, which in turn means that
the underlying physics constrains the choice of observables.

The Dch channel (D+ → K−π+π+) for example has a
significant enhancement in the invariant mass distribution of
background events around the signal peak position (blue his-
togram in Fig. 8, left) when using both the energy of the D+
candidate and the invariant mass of the recoil system at the
same time as input for the NN. This effect originates from the
specific kinematics of the two body reaction p̄ p → D+D−
considered here. However, it is the goal to trigger D+ par-
ticles from many different reactions inclusively. Dropping
these observables from the NN input removes the undesir-
able peaking background (Fig. 8, right) at the cost of some
signal efficiency. We observed now a smooth distribution
(blue histogram) in the signal region similar to the rejected
background (black histogram).

When analysing complex decay patterns and mixtures of
resonances, it is important to cover the phase space with-
out steep drops or holes in the triggering efficiency distribu-
tions introduced by the triggering algorithm. Complex fitting
algorithms, such as a partial-wave analysis [37], benefit most
from a flat triggering efficiency distribution if possible, but
they require at least a smooth dependency on any kinematic
observable.

For example a three-body-decay, such as the channel
ηc → KsK−π+, could be studied in the Dalitz plot [38]
representation. We find that the relative efficiency of the neu-
ral network trigger introduces a cut-off in one corner of the
Dalitz plot (Fig. 9, left) with the observables that are used
in the cut-and-count approach. It could be that the network
identified this corner to be particularly occupied with back-
ground. Introducing the event shape observables (Table 2) as
additional input, the training is able to produce a significantly
more flat triggering efficiency (Fig. 9, right), being beneficial
for later Dalitz plot analysis.

7 Summary and outlook

Based on a set of ten channels with typical event topologies
in the reach of PANDA physics investigated at four anti-
proton beam energies, it is demonstrated, that PANDA will
greatly benefit from a neural network supported software
trigger system.

As one result the use of single networks per trigger channel
outperforms an approach with multi-class classification. As
an additional advantage, it will make the setup much easier
to extend the system with a larger set of simultaneous trigger
lines and improves the computational scalability. From seven
network architectures, the convolutional network with four
residual blocks showed the best results for the three channels
with the lowest triggering efficiency, while producing stable
results under different training attempts and size changes.

In all cases the network approach performs better than the
cut-and-count method, which further improves when adding
more observables. In the comparison the triggering efficien-
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Fig. 9 Trigger efficiency deviation from the mean value in Dalitz coordinates for the channel Etac at 3.8 GeV/c, without (left) and with (right)
the additional observables

cies show gains of up to 200% and all networks show good
up to excellent performance.

Data quality is an important topic that deserves to be stud-
ied in more detail. It would be desirable to give feedback
about e.g. the triggering efficiency flatness in the Dalitz plot
coordinates to the neural networks during the training pro-
cess. This also holds for the background flatness in critical
distributions, such as the candidate invariant mass in order
to avoid peaking structures.

For the study presented here, the background suppression
requirement is set equally among the physics channels. How-
ever, this approach neglects the differences in reconstruc-
tion and varying background levels in the different channels.
Finding an approach to achieve the best background sup-
pression requirements for each trigger line, while maintain-
ing the desired overall background reduction, is a complex
challenge. Enhancing the triggering efficiency of one chan-
nel will reduce the triggering efficiency of another channel,
which has to be carefully balanced in the future PANDA
experiment.
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