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Abstract Extended metric-Palatini gravity, quadratic in the
antisymmetric part of the affine curvature, is known to lead
to the general relativity plus a geometric Proca field. The
geometric Proca, equivalent of the non-metricity vector in
the torsion-free affine connection, qualifies to be a distinc-
tive signature of the affine curvature. In the present work, we
explore how shadow and photon motion near black holes can
be used to probe the geometric Proca field. To this end, we
derive static spherically symmetric field equations of this
Einstein-geometric Proca theory, and show that it admits
black hole solutions in asymptotically AdS background. We
perform a detailed study of the optical properties and shadow
of this black hole and contrast them with the observational
data by considering black hole environments with and with-
out plasma. As a useful astrophysical application, we discuss
constraints on the Proca field parameters using the observed
angular size of the shadow of supermassive black holes M87∗
and Sgr A∗ in both vacuum and plasma cases. Overall, we
find that the geometric Proca can be probed via the black hole
observations.
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1 Introduction

In the present work, our goal is to probe a minimal form
of Weyl gravity by the use of existing observational data on
black holes. The work can be divided in two parts: The model
and its black hole candidates (Sects. 2, 3) and observational
implications of the candidate black holes (Sects. 4–6).

The question of if the general relativity (GR) is the sole
theory of the gravitation is at the heart of the ongoing
research in cosmology and astrophysics. In this regard, study-
ing testable extensions of the GR proves particularly use-
ful. One class of extensions concerns higher-order curvature
invariants as in, for example, the f (R) gravity [1]. One other
class involves extension of the metrical geometry of the GR to
non-Riemannian geometries based on metric-incompatible
connections [2–4]. Our framework is a special case of such
extensions.

The simplest non-Riemannian extension is the Palatini
formulation [5], which is characterized by metric gμν and
the Ricci curvature Rμν(Γ ) of a general symmetric affine
connection Γ λ

μν (a torsion-free connection independent of
the metric gμν and its Levi–Civita connection gΓ λ

μν). This
formulation gives the Einstein field equations with no need
to extrinsic curvature [6,7]. With general curvature invari-
ants, it leads to the GR along with geometrical scalars, vec-
tors and tensors [8]. The relevance of the Palatini gravity for
emergent gravity theories [9,10] is it’s another application
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area. It was shown that the extension of the Palatini gravity
with fundamental scalars like the Higgs field leads to natural
inflation [11,12]. Higher-curvature terms were also studied
in the Palatini formalism [4,13,22] and their certain effects
in astrophysics and cosmology were analysed in [14].

One step further from the Palatini formulation is the inclu-
sion of a term like R[μν](Γ )R[μν](Γ ), where R[μν](Γ ) is
the anti-symmetric part of the affine Ricci tensor Rμν(Γ ).
What is important about this inclusion is that it leads dynam-
ically to the GR plus a purely geometric massive vector field
Qμ [13,15]. This vector field, a geometric Proca field as we
will call it henceforth, is defined as Qμ ≡ 1

4 Q
ν

μν where
Qλμν ≡ −Γ ∇λgμν is the non-metricity tensor [13,15–18].
(We call non-metricity vector as geometric Proca to distin-
guish it from the generic Einstein–Proca system as well as the
generic Z ′ bosons in the literature.) With a symmetric affine
connection (torsion-free), one is left with a special case of
non-Riemannian geometries in which non-metricity Qλμν is
the only source of the deviations from the GR. This special
case is the Weyl gravity [19–22] (see also gauge invariance
analysis in [23]). The geometric Proca is a direct signature of
the Weyl gravity. More specifically, it is signature of metric-
incompatible symmetric connections (torsion-free). It is not
something put by hand. It is not something that comes from
gauge theories either. It is a geometrical massive vector field
that characterizes the Weyl nature of the geometry [20,21]. It
has been studied as vector dark matter in [13]. Its couplings
to fermions (quarks and leptons) were explored in [24] in
regard to the black hole horizon in the presence of the Proca
field [18].

One step further from the Palatini formalism with the
geometric Proca Qμ [13,15] is the inclusion of the met-
rical curvature Rμν(

gΓ ) in addition to the already-present
affine curvature Rμν(Γ ). Excepting the quadratic term
R[μν](Γ )R[μν](Γ ) leading to the geometric Proca field, this
combined metric-affine framework is the metric-Palatini
gravity [25–27]. This formalism, a direct combination of the
metrical and Weyl gravities, helps relaxing the constraints on
the Proca mass (as discussed in [24] in comparison to [13]).
The metric-Palatini gravity, excepting R[μν](Γ )R[μν](Γ )

term considered in the present work, has already been studied
in regard to dark matter [28], wormholes [29], and cosmology
[30].

The gravity theory we explore in the present work is the
metric-Palatini gravity extended with the R[μν](Γ )R[μν](Γ )

invariant and a negative cosmological constant (CC). Indeed,
as it was made clear in [24], in the presence of the geomet-
ric Proca Qμ, the CC is a necessity for having black hole
solutions. Our framework, which we call extended metric-
Palatini gravity (EMPG), possesses these four basic proper-
ties:

(i) It is linear in affine curvature scalar gμν
Rμν(Γ ),

(ii) It is torsion-free (Γ λ
μν = Γ λ

νμ),

(iii) It involves the invariant R[μν](Γ )R[μν](Γ ),

(iv) It contains a negative CC. (1)

Given these properties, the EMPG action takes the schematic
form (whose exact form will be discussed in Sect. 2)

S[g, Γ ] =
∫

d4x
√−g

{
“gμνRμν

(gΓ )′′ + “gμν
Rμν (Γ )′′

+“R[μν](Γ )R[μν](Γ )′′ + “CC′′
}

(2)

in which Rμν (gΓ ) and Rμν (Γ ) are, respectively, the met-
rical and affine Ricci curvatures. The EMPG is an Einstein-
geometric Proca–Anti de Sitter (AdS) system. We will con-
strain its parameters and dynamics by using the observational
data on black holes. In fact, in the literature, Einstein–Proca
system (not the geometric Proca in the present work) has been
analyzed for finding Reissner–Nordström type spherically-
symmetric vacuum solutions [31–34], for determining the
role of the Proca field [35–37], for obtaining spherically-
symmetric static solutions [38–40], and for revealing the
structure of the horizon radius [41–43]. In view of this rich lit-
erature, construction and analysis of the Einstein-geometric
Proca–AdS black holes in the present work can probe affine
curvature, with various applications in other astrophysical
and cosmological phenomena. In essence, in the present
work, we are probing, for the first time in the literature, non-
metricity tensor via the Einstein-geometric Proca–AdS black
holes.

One of the main features of the metric theories of gravity
is that the electromagnetic wave propagation will be affected
by the spacetime curvature. The light deflection near the com-
pact object due to the strong gravity can be used to test the
corresponding metric theory. The first observational test of
the general relativity proposed by Einstein in 1915 was per-
formed using the gravitational lensing effect observed dur-
ing the solar eclipse in 1919 by Arthur Eddington [44]. Later
the gravitational lensing and electromagnetic wave propaga-
tion have been intensively studied by numerous authors in
Refs. [45–48]. Particularly, one may distinguish the gravita-
tional lensing in weak field [49,50] and strong field [51–58]
regimes, where the deflection of the light from the initial line
is not large and has large values, respectively.

One of the consequences of the light propagation in curved
spacetime is the appearance of the shadow of the black hole
(BH). If the BH is located between the light source and
the observer, then due to the capturing the part of the light
by the central object observer detect the black spot in the
bright background on the celestial plane. This black spot is
referred to as BH shadow and first theoretically predicted
by Synge [59] and further developed by Luminet [60] and
Bardeen [61]. Even before the first ever observation of the
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BH shadow in 2019 by the Event Horizon Telescope col-
laboration [62,63] various authors have studied the shadow
of the black hole/compact objects within general relativity
and modified/alternative theories of gravity (see, e.g. [64–
68,68–72,72–77,77–84,84–98]) and also the authors studied
the effect of plasma on the BH shadow in [99–105]. Obser-
vation data on the shadow of supermassive BHs at the center
of M87 [62] and Sgr A* [106] are used to get estimations
and/or constraints of BH parameters within different gravity
models [107].

In fact, despite large uncertainties of black hole shadow
size including the mass and distance measurements, astro-
physical observation related to black holes shadows in strong
and weak gravity regimes is helpful in testing gravity theo-
ries. The first black hole shadow has been observed by Event
Horizon Telescope observing at a wavelength of 1.3 mm, in
2019, the image of M87* (which has 6.5 ± 0.7 billion solar
masses, located at 16.8 kpc) with the angular size 42 ± 3 µas
with the observational resolution 20 µas [62]. Three years
later, in 2022, the image of the central part of the Milky Way
galaxy, known as Sgr A* (with 4+1.1

−0.6 million solar masses,
located at about 8 kpc), has also been observed with shadow
size 48.7 ± 7 µas together with the radiation ring with the
size 51.8 ± 2.3 µas [106]. The appearance of the radiation
ring may be due to the presence of a plasma medium around
Srg A*. Therefore, studies of the gravitational lensing effects
of black holes including plasma is important.

The present work is organized as follows: in Sect. 2, we
give a detailed analysis of the EMPG, starting with a ghost-
free Lagrangian in the AdS background. We show that the
EMGP gravity dynamically reduces to the GR plus a geo-
metric Proca field (the non-metricity vector from the rank-3
non-metricity tensor). In Sect. 3, we give static, spherically-
symmetric solutions of the EMGP and apply our results
to determine the Einstein-geometric Proca–AdS black hole
solutions. In Sect. 4, we study photon motion around a com-
pact object in the EMGP model to determine the optical prop-
erties of black holes and the black hole shadow. In Sect. 5,
we study plasma effects on the black hole shadow. In Sect. 6,
we determine constraints on the EMPG parameters using
the observational image size of the supermassive black holes
M87* and Sgr A*. Finally, we discuss our results in Sect. 7.
(Throughout the work we use a system of units in which
G = c = 1 and signature (−,+,+,+)) for the spacetime
metric.)

2 Einstein-geometric Proca model in AdS background

The EMPG model, defined schematically in (2), takes its
exact form [13,24]

S[g, Γ ] =
∫

d4x
√−g

{
M2

2
R (g) + M

2

2
R (g, Γ )

+ξRμν (Γ )R
μν

(Γ ) − V0 + Lm(gΓ,ψ)

}
, (3)

with an action based on the metric tensor gμν like the GR
and on a symmetric affine connection Γ λ

μν = Γ λ
νμ unlike the

GR. The affine connection is independent of the Levi–Civita
connection

gΓ λ
μν = 1

2
gλρ

(
∂μgνρ + ∂νgρμ − ∂ρgμν

)
(4)

generated by the metric gμν . This connection sets the covari-
ant derivative ∇μ such that ∇αgμν = 0. It also sets the Ricci
curvature Rμν (gΓ ), which contracts to give the scalar cur-
vature R(g) ≡ gμνRμν (gΓ ). The affine connection Γ λ

μν ,
on the other hand, is independent of the metrical connec-
tion gΓ λ

μν , defines the covariant derivative Γ ∇μ, and sets the
Riemann curvature

R
μ
ανβ (Γ ) = ∂νΓ

μ
βα − ∂βΓ μ

να + Γ
μ
νλΓ

λ
βα − Γ

μ
βλΓ

λ
να (5)

with R
μ
ανβ (Γ ) = −R

μ
αβν (Γ ). Its contractions lead to two

distinct Ricci curvatures Rμν (Γ ) = R
λ
μλν (Γ ) and R (Γ ) =

R
λ
λμν (Γ ). The latter is actually the antisymmetric part of the

former

Rμν (Γ ) = R[μν] (Γ ) = ∂μΓ ρ
ρν − ∂νΓ

ρ
ρμ (6)

and does necessarily vanish when the affine connection Γ λ
μν

is replaced with the metrical one gΓ λ
μν . The total affine Ricci

curvature leads to the affine scalar curvature R(g, Γ ) ≡
gμν

Rμν (Γ ) [8,11].
The action (3) is composed of physically distinct parts

[24]. The first part proportional to M2 would be the usual
Einstein–Hilbert action if M were equal to the Planck mass

MPl . The second term proportional to M
2

is the standard
Palatini action [5], which leads to the Einstein field equations
with no need for extrinsic curvature [6,7]. The third term
proportional to ζ was considered in both [13,15]. The fourth
term V0 is the vacuum energy not considered in [24] (It is
proportional to the CC in (2) in Introduction). The matter
Lagrangian Lm(gΓ,ψ) governs the dynamics of the matter
fields ψ (matter sectors involving Γ λ

μν (not gΓ λ
μν) have been

analyzed in [13]). Our setup differs from the so-called metric-
Palatini setup [25–27] by the third term proportional to ζ (and
dropping of the higher powers of Rμν (gΓ ) and Rμν (Γ ) in
view of gravitational ghosts).

In non-Riemannian geometries with symmetric connec-
tions (Γ λ

μν = Γ λ
νμ) the torsion vanishes identically. Then, the

difference between such geometries and the metrical geom-
etry of the GR [15,17,18]

Γ λ
μν − gΓ λ

μν = 1

2
gλρ(Qμνρ + Qνμρ − Qρμν) (7)
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is sourced by the non-metricity tensor

Qλμν = −Γ ∇λgμν (8)

as a measure of the metric-incompatibility of the affine con-
nection Γ λ

μν . In fact, non-metricity is the main feature of the
Weyl geometry [20,21,23]. The use of the affine connection
in (7) in the action (3) and the use also of the equation of
motion for the non-metricity tensor in (8) leads one to the
reduced action [13,15,24]

S[g,Y, ψ] =
∫

d4x
√−g

{
1

16πGN
R(g) − V0

−1

4
YμνY

μν − 1

2
M2

Y YμY
μ + Lm(g, gΓ,ψ)

}

(9)

in which Qμ = Qν
μν/4 is the non-metricity vector, Yμ =

2
√

ξQμ is the canonical geometric vector field, GN =
8π/(M2 + M

2
) is Newton’s gravitational constant, and

M2
Y = 3M

2

2ξ
(10)

is the squared-mass of the Yμ (the geometric Proca field). We
now bring the EMPG action (9) into a more compact form

S[g,Y ] =
∫

d4x
√−g

1

2κ

{
R(g) − 2Λ − M2

Y ŶμŶ
μ

−1

2
Ŷμν Ŷ

μν

}
(11)

in which κ = 8πGN , Λ = κV0 is the CC in (2), and Ŷμ ≡√
κYμ is the canonical dimensionless Proca field.
The actions (9) and (11) are readily recognized to belong

to the Weyl geometry with Weyl vector Yμ [20,21,23]. It
should nevertheless be kept in mind that neither the schematic
action (2) nor the exact action (3) nor the reduced Weyl action
(9) are conformal-invariant. The reason is that the EMPG,
beginning from (2), is based on the Ricci curvatures and the
CC not the Weyl tensor W λ

μνρ whose quadratic is conformal-
invariant. (Conformal transformations in Weyl gravity have
been discussed in [8,108].)

Variation of the action (11) with respect to the metric gμν

leads to the Einstein field equations

Rμν − Λgμν − ŶαμŶ
α
ν + 1

4
Ŷαβ Ŷ

αβgμν − M2
Y ŶμŶν = 0,

(12)

and its variation with respect to Ŷμ gives the Proca equation

∇μŶ
μν − M2

Y Ŷ
ν = 0, (13)

describing Ŷμ as a free dimensionless massive vector field.

3 Static black hole solutions of the Einstein-geometric
Proca model

In an attempt to find spherically-symmetric static solutions
of the field equations in space coordinates (r, θ, φ), we put
forth the ansatz

gμν = diag

(
−h(r),

1

f (r)
, r2, r2 sin2 θ

)
. (14)

Having done with the metric, the geometric Proca field Yμ

obeying the equation of motion (13) can be taken as a purely
time-like field

Ŷμ = φ̂(r)δ0
μ, (15)

in agreement with a spherically-symmetric background. With
this time-like vector, the gravitational and geometric-Proca
parts of the EMPG model are described by three real func-
tions h(r), f (r) and φ(r).

In order to have a dimensionless equation’s system, we
define the following dimensionless quantities:

r̂ := κ−1/2r, M̂2
Y := κM2

Y (16)

So that along with Ŷμ the entire system gets expressed in
terms of the dimensionless quantities.

The subtraction of the (μν = 00) and (μν = 11) com-
ponents of the Einstein equations accordingly leads to the
following equation

φ̂2 = 1

M̂2
Y r̂

( f h′ − f ′h). (17)

The (μν = 22) component of the Einstein field equations
reads as

1 − f − r̂(h f )′

2h
− Λr̂2 − f r̂2

2h
φ̂′2 = 0. (18)

The Proca equation of motion (13) becomes

√
h f

r̂2

(
r̂2

√
f

h
φ̂′)′ − M̂2

Y φ̂ = 0. (19)

In order to have an idea of what solution to expect we
first solve the Proca equation (19) in the flat spacetime limit
( f (r̂) = h(r̂) = 1). In this particular limit we find that

φ̂( f lat)(r̂) = c1
e−M̂Y r̂

r̂
+ c2

eM̂Y r̂

r̂
(20)
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which is what is expected of a Yukawa potential (massive
vector field) in the flat spacetime.

Now, we turn to curved geometry in the weak field limit.
In this limit, we take the metric functions in the form

h(r̂) = f (r̂) = 1 + r̂2

l2
, (21)

after letting Λ = − 3
l2

in (11) in which l stands for the AdS
radius. In this case, the Proca equation (19) takes the form

1

r̂2

(
1 + r̂2

l2

)
(r̂2φ′)′ = M̂2

Y φ̂, (22)

with the exact solution

φ̂(r̂) = l

r̂
c1 2F1

(−1 − σ

4
,
−1 + σ

4
,

1

2
,− r̂2

l2

)

+ c2 2F1

(
1 − σ

4
,

1 + σ

4
,

3

2
,− r̂2

l2

)
, (23)

where

σ =
√

1 + 4M̂2
Y l

2. (24)

The Breitenlohner–Freedman window of non-tachyonic neg-
ative mass-squared values lies in the following range

m2
BF ≤ M̂2

Y < 0, (25)

where

m2
BF = − 1

4l2
(26)

is the Breitenlohner-Freedman mass bound which is required
to avoid tachyonic run-away instabilities in the AdS back-
ground. The range of parameter σ accordingly is

0 ≤ σ < 1. (27)

Expanding φ̂(r̂) around infinity the Proca field takes the
following form

φ̂(r̂) = q1

r̂
1−σ

2

+ q2

r̂
1+σ

2

. (28)

It is clear that in the Maxwell limit (σ → 1) this Proca field
behaves as φ̂(r̂) → q1+ q2

r̂ and it means that q2 has the mean-
ing of an electromagnetic-like charge while q1 represents a
uniform potential.

Corresponding to the Proca field in (28), the metric poten-
tials are expected to get modified as follows

f (r̂) = r̂2l−2 + 1 + n1

r̂1−σ
+ n2

r̂
,

h(r̂) = r̂2l−2 + 1 + m1

r̂1−σ
+ m2

r̂
, (29)

in which the higher inverse powers of r̂ have been ignored.
En passant, one notices that the AdS geometry makes the
Proca field to have the Coulombic form in (28) in place of the
Yukawa form in (20) of the flat spacetime. The parameters n1,
n2 andm1 are found in terms of q1, q2 andm2 by substituting
(28) and (29) into the equations of motion

n1 = (1 − σ)

4
q2

1 ,

n2 = m2 − (1 − σ)(1 + σ)

6
q1q2 ,

m1 = (1 − σ)

3 − σ
q2

1 , (30)

where q1, q2 and m2 are free parameters.
The ADM mass for this solution can be expressed as

MADM = 1

2

{
−m2 + q1q2

[
γ σ + 1

3
(1 − σ)(σ + 4)

]}
(31)

in which γ is the coefficient of the surface term for the geo-
metric Proca. Now, for simplicity, we take

m2 = q1q2

(
γ σ + 1

3
(1 − σ)(4 + σ)

)
− 2 (32)

after normalizing m2 and q1,2 in terms of the ADM mass
MADM (MADM = 1).

For small r̂ namely when r̂ 	 l, the metric functions in
(29) take the form

f (r̂) = 1 + (1 − σ)q2
1

4r̂1−σ

+−12 + q1q2
(
7 + 6(γ − 1)σ − σ 2

)
6r̂

h(r̂) = 1 + (1 − σ)q2
1

(3 − σ)r̂1−σ

+q1q2
(
γ σ + 1

3 (1 − σ)(4 + σ)
) − 2

r̂
(33)

after using the relations in (30) and (32). Here, one recalls
that r̂ = κ−1/2r is the dimensionless radius.

In order to study the horizon structure, first we need to
find the allowed range of parameters. (To simplify the nota-
tion, here on we drop hats on parameters namely we use
r , MY and φ to mean r̂ , M̂Y and φ̂. We also set γ = 1.)
We find it by setting the condition 0 < h(r) < 1. Figure 1
shows this region for σ = 0.8. The blue region shows where
h(r) > 0 and on the blue borders h(r) = 0. In the orange
region h(r) < 1 and on its borders h(r) = 1. The intersection
of these two regions is where 0 < h(r) < 1, and we chose the
value of q1 and q2 from this region. Figure 2 shows how the
horizon radius varies according to the parameters q1 and q2.
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Fig. 1 The allowed region for choosing the values of the parameters
q1 and q2. The blue region is where h(r) > 0 and the orange region is
where h(r) < 1. The values of q1 and q2 should be chosen from the
intersection of these two regions. The values of γ and σ have been set
to 1 and 0.8, respectively

When q1 and q2 both increase or decrease, the horizon radius
decreases, but when one of q1 or q2 increases and the other
one decreases, the horizon radius increases. We see in both
plots when q1 = 0, the horizon radius equals 2, which cor-
responds to the Schwarzschild case as we expected. It is also
visible by setting q1 = 0 in Eq. (33). In Fig. 3, we can see how
the horizon radius varies with respect to σ . In all cases, hori-
zon radius increases as σ increases except the case of q1 = 0,
which represents the horizon radius for Schwarzschild black
holes. Figure 4 shows that horizon radius decreases asq1 orq2

increases for selected values of σ . The lines intersect where
q1 = 0 in the right plot, but they descend and spread as q1

grows.
The Kretschmann scalar (KS) RμνσρRμνσρ and the Ricci-

squared (RS) scalar RμνRμν possess lengthy expressions as
invariant functions of r , σ , q1 and q2. It is clear from (33)
that, for q1 = 0, the geometry reduces to Schwarzschild
geometry namely f (r) = h(r) = 1 − 2/r with a horizon
at r = 2. In this sense, to reveal the geometry of the EMPG
black hole near the Schwarzschild limit we expand the KS
and RS scalars around q1 = 0 up to quadratic order to find

RμνσρR
μνσρ = 48

r6

+ q1

36r6(r − 2)4

(
− 1

σ − 3

[
72q1r

σ (r − 2)2(σ − 1) (72

− 98σ + 22σ 2 + r2(σ − 3)(5σ − 7)

Fig. 2 The dependence of horizon radius on q1 and q2 for two values
of σ = 0.5 and σ = 0.9

+ r(σ (94 − 21σ)σ − 77))] + q1q
2
2

[
192(σ 2 − 7)2

+ 6r4(5σ 4 − 46σ 2 + 113) − 16r̂3(8σ 4 − 103σ 2 + 311)

+ r2(241σ 4 − 4130σ 2 + 14257)

− 16r(19σ 4 − 326σ 2 + 1171)
]

+ 48q2(r − 2)2

×
[
r(9r(σ 2 − 5) − 29σ 2 + 173) + 24(σ 2 − 7)

] )
(34)

and

RμνR
μν = q2

1q
2
2 (9 + r(3r − 10))(σ 2 − 1)2

72(r − 2)4r4 . (35)

These invariants exemplify the KS and RS scalars near the
physically-interesting domain of the Schwarzschild black
hole. The KS scalar, as revealed by (34), fully agrees with
the Schwarzschild limit at the zeroth order in q1. The RS
scalar, on the other hand, vanishes up to the quadratic order
q1, in accordance with the Schwarzschild limit. In general,
KS and RS behave differently in different geometries. In
Schwarzschild solution, for instance, the spacetime is Ricci-
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Fig. 3 Variation of horizon radius with increase of the parameter σ for selected values of q1 and q2. In the left plot q1 is fixed and q2 takes three
different values while in the right plot, q2 is fixed and q1 takes three different values. If q1 → 0, the radius of horizon is the same as the horizon of
Schwarzschild BH

Fig. 4 The dependence of horizon radius on q1 and q2 for three values of σ . The solid black lines, dashed red lines and dotted green lines correspond
to σ = 0.5, σ = 0.7 and σ = 0.9, respectively. In the left plot q1 is fixed and in the right plot q2 is fixed

flat and KS remains as the indicator of the black hole singu-
larity. In the EMPG this picture changes as a funtion of q1

(and other parameters).
From hereon, we want to dwell on the singularity struc-

ture of the black hole by analyzing the KS in detail. The
EMPG black hole develops two true singularities, one at
the origin r = 0 and the other at the horizon r = rH .
We call them primary and secondary singularities, respec-
tively. (In the literature singularities at different r values have
already been discussed for the KS for the five-dimensional
Schwarzschild-AdS spacetimes [109], for the brane solutions

of supergravity theory [110] and for spherically-symmetric
solutions of general relativity with scalar fields [111].) Near
the Schwarzschild limit q1 = 0, the KS expression in (34)
shows explicitly that the secondary singularity occurs at
r = 2, which is the event horizon of the Schwarzschild
black hole. The primary singularity remains just as in the
Schwarzschild case. The secondary singularity, however,
changes with changing parameters. Indeed, as we illustrate
in Fig. 5, the secondary singularity varies with different sets
of q1 and q2. (Setting σ = 0 and γ = 1).
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Fig. 5 Variation of the Kretschmann scalar (KS) of the EMPG black
hole with the radial distance r for q2 = 1 and different values of q1
with σ = 0 and γ = 1. The KS is seen to develop two singularities,
one at the origin r = 0 (independent of parameters) and the other at the
horizon r = rH (dependent of the parameters)

It is worth nothing that the secondary singularity is a
signature of the Proca field. Indeed, as σ → 1 (for which
MY → 0) it is found that the KS reduces to (KS)EMPG =
(KS)Sch + (12q1q2(q1q2 − 4))/r6 having a sole singular-
ity at the origin just like Schwarzschild case (with a q1 and
q2 dependent residues, though). In this limit one recovers
the electromagnetism-like geometric vector field. It is in this
sense that the secondary singularity at the horizon r = rH is
a direct signature of the Proca field. In fact, the plots in Fig. 5
illustrate σ = 0, a point far from the electromagnetism-like
limit of σ = 1. Basically, sensitivity of the EMPG black hole
on the parameters σ , q1 and q2 introduce a certain form of
“hair”. It turns out the EMPG black hole possesses structures
beyond the Schwarzschild case.

The stability of the EMPG black hole is another point to
dwell on. In the literature, stability conditions for the spher-
ically symmetric solutions of the extended gravity theories
have been discussed in [112,113]. The EMPG black hole
admits the solution

h(r) = f (r) = 1 − 2MBH

r
− Λr2

3
(36)

as follows from the metric potentials in (29) and (30) after
ignoring the matter contribution by taking σ = 1 and after
setting m2 = −2MBH . As was shown in [112,113], near the
extremal limit one is led to the Nariai black hole metric

ds2 = e2ρ(−dτ 2 + dx2) + e−2φdΩ2 (37)

in which

e2ρ = − 1

Λ cos2 τ
, e−2φ = 1

Λ
(38)

where τ = arccos(cosh t)−1. Clearly, −∞ < t < ∞ cor-
responds to −π/2 < τ < π/2 in the Nariai solution. It
is necessary to study especially the perturbations δφ about
the Nariai solution to determine stability of its spherically-
symmetric structure:

φ = ln
√

Λ + δφ (39)

For δφ, the perturbed Einstein field equations give the motion
equation

d2δφ

dt2 + tanh t
dδφ

dt
− m2δφ = 0 (40)

in terms of the cosmological time t and the mass parameter

m2 = 2(2α − 1)

3α
(41)

where the parameter α is set by the curvature sector. It is clear
that perturbations remain stable for 0 < α < 1/2 for which
2α − 1 < 0. For f (R) gravity is given by [112,113]

α = Λ fRR(R0)

f ′(R0)
(42)

at constant curvature R = R0 = 4Λ. In this expression fR
denotes derivative of f with respect to R and f ′ denotes
derivative with respect to the radial coordinate r . At large
times t → ∞ tanh t → 1 and the perturbation in (40) behave
as

δφ = φ0 eλgt (43)

with the initial value φ0 and the Lyapunov exponent λg =
(−1 ± √

1 + 4m2)/2.
The EMPG model is an f (R) = R−2Λ theory. It is linear

and it has therefore

α = 0 (44)

as follows from (42). This α value is at the edge of the stability
interval. It requiresm2 → −∞ and this corresponds to a fully
stable perturbation as follows from (40). The corresponding
Lyapunov exponent implies periodic time-dependence for δφ

and this dependence ensures stability.
This stable solution of the perturbation shows that there

arise no metric instabilities in the EMPG black hole (in the
absence of matter). The perturbation does not diverge. It is
in this regard that the EMPG model is devoid of any metric
instabilities.

It is known that the critical impact parameter bC and the
critical photon-trajectory are determined by the time-varying
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horizon radius which depends on the Lyapunov exponent as
[112]

bC � √
3rph = √

3(3/2)rH (t) = √
3(3/2)rH (0)eλgt (45)

so that for the EMPG model one expects no instability in
the photon trajectory. Indeed, as expected from the imagi-
nary value of λg for α = 0, the photon radius shows small
variations about the EMPG horizon radius rH (0).

The black holes can be destabilized also by non-minimal
couplings of the Proca field [114]. This has been shown
explicitly for the Schwarzschild solution in the presence
of the non-minimally coupled Proca fields. But the EMPG
model is a minimal Proca model (with no higher-order cou-
plings to the self and to the curvature), and no instability is
expected in this sense.

4 Photon motion around the BH

4.1 Photon motion

In this part we explore photon motion around BH in the
EMPG model. We will use the Hamiltonian approach to
investigate the photon motion. The Hamiltonian of the pho-
tons reads as

H = 1

2

[
gαβ pα pβ

]
, (46)

where pα is the 4-momentum of the photons. The compo-
nents of the four velocity for the photons in the equatorial
plane (θ = π/2, pθ = 0) are given by

ṫ ≡ dt

dλ
= −pt

h(r)
, (47)

ṙ ≡ dr

dλ
= pr f (r), (48)

φ̇ ≡ dφ

dλ
= pφ

r2 , (49)

where we used the relationship ẋα = ∂H/∂pα . From Eqs.
(48) and (49), we obtain a governing equation for the phase
trajectory of light.

dr

dφ
= r2 pr f (r)

pφ

. (50)

Using the constraint H = 0, one can rewrite the above equa-
tion as [99]

dr

dφ
=

√
r2 f (r)

√√√√γ 2(r)
p2
t

p2
φ

− 1, (51)

where we defined

γ 2(r) = r2

h(r)
. (52)

The radius of a circular orbit of light, particularly the one
which forms the photon sphere of radius rph , is determined
by solving the following equation [97]

d(γ 2(r))

dr

∣∣∣∣
r=rph

= 0. (53)

The solution of this equation is depicted in Figs. 6 and 7.
The plots for photon sphere radius exhibit exactly the same
pattern as the horizon radius, as shown in Figs. 3 and 4. One
may see that photon sphere enlarges as σ increases except
the case of q1 = 0, for which the photon sphere radius is
rph = 3 and represents Schwarzschild black holes.

4.2 Black hole shadow

In this subsection we study the shadow of the BH described
by the EMPG spacetime. For the angular radius of the BH
shadow we explore [97,115]

sin2 αsh = γ (rph)2

γ (robs)2 , (54)

with

γ (r)2 = g22

g00
= r2

h(r)
, (55)

αsh is the angular radius of the BH shadow, robs is observer
distance and rph is already introduced in the previous sub-
section. The Observer distance is very large but finite, and it
has the value robs = D = 8.3 kpc for the Sgr A* [106] or
robs = D = 16.8 Mpc for the M87* [62].

Now we combine Eqs. (54) and (55), and for an observer
the Eq. (54) takes the following form

sin2 αsh = r2
ph

h(rph)

h(robs)

r2
obs

. (56)

One can find the radius of BH shadow for an observer at
large distance using Eq. (56) as [115]

Rsh � robs sin αsh � rph√
h(rph)

√
h(robs). (57)

Figure 8 shows how the shadow radius changes with
respect to σ for different values of q1 and q2. Increasing
the value of q1 or q2, when one of them held fixed, decreases
the shadow size. It is also worth mentioning that if we reverse
the signs of q1 and q2 at the same time in Figs. 3, 6 and 8, we
get exactly the same plots. This is because in the equation
(33), in the lapse function, we have q2

1 in the second term
and the product q1q2 in the third term. Then, when q1 and q2
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Fig. 6 Variation of photon sphere radius with increase of the param-
eter σ , for selected values of q1 and q2. In the left plot q1 is fixed and
q2 takes three different values while in the right plot, q2 is fixed and q1

takes three different values. If q1 → 0, the radius of photon orbit is the
same as with Schwarzschild BH’s orbit

Fig. 7 The dependence of photon sphere radius on q1 and q2 for three values of σ . The solid black lines, dashed red lines and dotted green lines
correspond to σ = 0.5, σ = 0.7 and σ = 0.9, respectively. In the left plot q1 is fixed and in the right plot q2 is fixed

are both positive or negative, we get the same result. When
they have opposite signs, negative q1 and positive q2 give
the same result as a positive q1 and negative q2 provided that
|q1| and |q2| remain unchanged. Figure 9 shows the change
of shadow size according to q1 and q2. Again, in the right
plot, we see the shadow size of Schwarzschild black holes
where the lines intersect at q1 = 0.

5 Photon motion around the black hole in the presence
of plasma

5.1 Photon motion in the presence of plasma

In this subsection we investigate the effect of a plasma envi-
ronment on the photon motion around the BH. The Hamil-
tonian in the presence of a plasma environment is written as
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Fig. 8 Variation of shadow radius with increase of the parameter σ , for selected values of q1 and q2. In the left plot q1 is fixed and q2 takes three
different values while in the right plot, q2 is fixed and q1 takes three different values. If q1 → 0, the radius of BH shadow is the same as with
Schwarzschild BH

Fig. 9 The dependence of shadow radius on q1 and q2 for three values of σ . The solid black lines, dashed red lines and dotted green lines correspond
to σ = 0.5, σ = 0.7 and σ = 0.9, respectively. In the left plot q1 is fixed and in the right plot q2 is fixed

[59,99,102,104]

H = 1

2

[
gαβ pα pβ + ω2

p

]
, (58)

where ωp = 4πe2

me
Ne(x) is the plasma frequency [99]. Ne is

the number density of electrons, e and me are the charge and
mass of electron, respectively.

The components of the four velocity for the photons and
the governing equation for the phase trajectory of light are
the same as Eqs. (47)–(51) with the new γ 2(r) modified as
[99,102]

γ 2(r) = r2

(
1

h(r)
− ω2

p

ω2
0

)
, (59)

where ω0 = −pt . Then photon sphere is defined as a solution
of the following equation

d

dr
[γ 2(r)]

∣∣∣∣
r=rph

= 0. (60)

Here we consider two cases: uniform plasma and non-
uniform plasma. Uniform plasma is defined as ω2

p/ω
2
0 =

constant. For the non-uniform plasma, for the simplicity, we

choose the following radial dependence of plasma frequency
[102,116]:

ω2
p(r) = z0

r
. (61)

z0 is a free constant parameter [102,116]. Figure 10 shows
the photon sphere size for uniform and non-uniform plasma.
In both cases (left panels) photon sphere grows as ω2

p/ω
2
0 or

z0/ω
2
0 grow but the effect of ω2

p/ω
2
0 on increasing the size

of photon sphere in uniform case is stronger than the effect
of z0/ω

2
0 in non-uniform case. The right panels show the

effect of q1 on the photon sphere size in the plasma environ-
ment. In contrast to the vacuum case, photon sphere enlarges
as q1 grows and becomes bigger than photon sphere of the
Schwarzschild black holes.

5.2 Black hole shadow in plasma

Now we investigate the radius of the shadow of the BH with
the EMPG model in a plasma medium. The radius of the BH
shadow in plasma can be written as [99,102]
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Fig. 10 The dependence of photon sphere radius on σ for selected
values of q1 and q2 in uniform (upper panels) and non-uniform (lower
panels) plasma. In the left panels q1 and q2 are fixed while plasma fre-

quency is changing. In the right panels, plasma frequency and q2 are
fixed but q1 is changing. If q1 → 0, the radius of photon orbit is the
same as with Schwarzschild BH case

Rsh �
√
r2

ph

[
1

h(rph)
− ω2

p(rph)

ω2
0

]
h(robs). (62)

In the vacuum case ωp(r) ≡ 0, we recover the radius of the
shadow of the BH in the EMPG model without the plasma
medium.

Figure 11 shows the shadow size for uniform and non-
uniform plasma. In the left panels, we see the shadow size
decreases as the plasma frequency increases, but we have
seen that, for the same values of parameters, the photon
sphere grows as plasma frequency grows in Fig. 10. In other
words, plasma brings photon sphere and shadow close to

each other. Again one can see the effect of q1 on the shadow
radius in the right panels and compare our result with the
Schwarzschild case, which is shown in the figure corespond-
ing to the case of q1 = 0. It is also worth mentioning that for
all the cases we studied till now, photon sphere and shadow
had the same behaviour with respect to σ , for the same param-
eter choices.

Figure 12 compares photon sphere and shadow for three
cases: vacuum, uniform plasma, and non-uniform plasma.
Here we can clearly see that plasma increases the photon
sphere radius but decreases the shadow radius.
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Fig. 11 The dependence of shadow radius on σ for selected values of
q1 and q2 in uniform (upper panels) and non-uniform (lower panels)
plasma. In the left panels q1 and q2 are fixed while plasma frequency

is changing. In the right panels, plasma frequency and q2 are fixed but
q1 is changing. If q1 → 0, the radius of BH shadow is the same as with
Schwarzschild BH case

Fig. 12 Comparing photon sphere and shadow radius for vacuum, uniform plasma, and non-uniform plasma. The solid black lines, dashed red
lines and dotted blue lines correspond to vacuum, uniform plasma, and non-uniform plasma cases, respectively

6 Astrophysical constraints from the EHT observations

In general, a BH shadow has two observable parameters: (i)
shadow radius, and (ii) its distortion from the circle shape.
Observations of the supermassive black holes (SMBHs)
M87* and Sgr A* have revealed that their shadow shape
are almost circular with a very small distortion parameter
(with about 1–5% variation). Also revealed is that shadows
of both SMBHs have some common features like for exam-
ple shadow’s center has some brightness depression and both

are nearly-circular rings. As a result, the EHT collaboration
has determined sizes of these BHs by assuming ring-shaped
structures. Here, in this section, we will explore potential
constraints on the Proca field parameters using the Hioki&
Maeda method and the EHT observations of the shadows cast
by SMBHs M87* and Sgr A*. Throughout our analysis will
be based on the Einstein-geometric Proca BH solution.

In Figs. 13 and 14, depicted are the constraints on possible
values of the parameters q1 and q2 (between red-dashed and
blue solid curves) using the observational angular size of

123



318 Page 14 of 18 Eur. Phys. J. C (2023) 83 :318

Fig. 13 Constraints on possible values of the parameters q1 and q2 for σ = 0.5. Here, we used the observational angular size of SMBHs M87*
and SgrA* as θsh = 42 ± 3µas and θsh = 48.7 ± 7µas, respectively

SMBHs M87* and Sgr A* for σ = 0.5 and σ → 1. It
is seen from the figure that the constrained range increases
slightly with the increase in the angular size. The ranges of q1

and q2 considerably increase in the presence of a uniformly
distributed plasma with the frequency ratio ωp/ω0 = √

0.3
(corresponding to a plasma frequency of about 127 GHz). In
the limit σ → 0, constrained values of q1 and q2 obey power-
law behavior: q1q2 = const, where the constant depends on
the plasma frequency and the angular size. It is seen from
both figures that the value of the constant decreases as the
plasma frequency and the angular size increase. However,
in σ = 0.5 case, q1 and q2 parameters have a complicated
relationship depending on the size and plasma frequency.
Moreover, in this case, the constrained ranges of q1 and q2

parameters for M87* are bigger than that which for Sgr A*,
due to its large mass.

7 Discussions and conclusion

In this paper, we have performed a systematic study of the
EMPG model [24] in the AdS background in the linear
ghost-free limit in which quadratic and higher-order curva-
ture terms are all dropped. The model is in the class of linear,
torsion-free, metric-Palatini gravity theories [25–27], with
the extensions that a term quadratic in the antisymmetric part
of the affine curvature [4,13,22,24] exists. We performed a
detailed investigation of shadow and photon motion around
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Fig. 14 The same as Fig. 13 but for σ → 1

this black hole for the main purposes of probing the prop-
erties of the geometric Proca field. (As mentioned before,
we use “geometric Proca” to distinguish the massive non-
metricity vector of the metric-Palatini gravity from generic
Einstein–Proca systems as well as the Z ′ gauge boson liter-
ature.)

The results obtained in this report can be summarized and
discussed as follows:

– We have shown that the metric-Palatini gravity theory in
the AdS background reduces to the GR plus a geometrical
massive vector theory, which we call the EMPG model
[13,24].

– The EMPG system provides a novel geometro-dynamical
framework. It can set the stage for diversely different

physical phenomena. It would certainly have effects in
various astrophysical media such as neutron stars, BHs,
magnetars, and other compact objects. In the present
work, we study BHs with asymptotically AdS solutions
which are determined by solving the EMPG field equa-
tions (12) and (13).

– Using the horizon structure of a gravitational compact
object, the range of EMPG gravity parameters are also
obtained in detail. It is shown that orbits enlarge or shrink
depending on the value of the EMPG parameter σ . How-
ever, the effects of parameter q1 and q2 are opposite to
each other.

– We study the singularity structure of the EMPG black
hole by analyzing the Kretschamann scalar (34) and the
Ricci-squared scalar (35). Since q1 → 0 leads to the
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Schwarzschild solution, we simplify KS and RS expres-
sions by expanding q1 around zero up to the second
order. The physical properties of the KS is studied and its
behaviour is shown in Fig. 5 for various parameter values
q1 at fixed values of q2 and σ . We show that there are
basically two singularities of the KS at r = 0 and at the
horizon r = rH . One can see from Fig. 5 that the place
of the singularity at the horizon depends on the model
parameters and changes accordingly. Near q1 = 0, as
expected, the singularities in (34) occur at r = 0 and
r = rH = 2, corresponding to the event horizon for the
Schwarzschild black hole. It is exactly seen from the KS
(34) that the Proca field causes the KS to deviate from the
Schwarzschild limit by its charge (q1 �= 0 and q2 �= 0 ).
The KS in the EMPG for q1 = q2 �= 0 with σ namely
0 ≤ σ < 1 (ensuring M2

Y �= 0) implies a Proca ‘hair” of
the black hole. Given the singularity at the horizon the
black hole is expected to have a “hair”, and that hair is
provided by the Proca field.

– We show that the EMPG model is devoid of any met-
ric instabilities since for our model the stability related
parameter is zero which makes the Lyapunov exponent
imaginary. The imaginary Lyapunov exponent accord-
ingly prevents the perturbation of the metric to diverge.
The critical impact parameter bc and the critical photon-
trajectory depend on the time varying horizon radius
which is dependent on the imaginary Lyapunov exponent
so that for the EMPG model one expects no instability
in the photon trajectory. The photon radius shows small
variations about the EMPG horizon radius rH (0). More-
over, since in the EMPG model the Proca field couples
minimally, one expects no instabilities arising normally
from non-minimal couplings of the Proca field.

– Additionally, we have analyzed photon orbits and the
influence of parameter σ . Photon sphere radius increases
with σ when q1 or q2 is fixed. Moreover, plasma effects
on photon orbits have been studied for uniform and non-
uniform cases. In both cases, the photon sphere grows as
the plasma frequency grows, but this effect is stronger in
the uniform case.

– We have discussed the observable quantity which is the
shadow of a black hole studied by the EMPG space-
time metric in vacuum and plasma. In the vacuum case,
increasing the value of q1 or q2, when one of them
held fixed, decreases the shadow size. In the presence
of plasma, the shadow size decreases as the plasma fre-
quency increases, but we have seen that, for the same
values of parameters, the photon sphere grows as plasma
frequency grows. In other words, plasma brings photon
sphere and shadow close to each other.

– All the results (photon orbits, BH shadow) obtained
above are compared to the case of usual Schwarzschild
black hole spacetime, which corresponds to case q1 → 0,

parametrically. It has been shown that under the effects
of the parameter q1 the size of BH shadow gets smaller.

– Finally, we have determined the constraints on possible
values of the parameters q1 and q2 using the observed
shadow sizes of M87* and Sgr A* for σ = 0.5 and
σ → 1. It is shown that the constraining ranges of the
parameters increase with the increase of shadow size and
plasma frequency.
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