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Abstract We study the semileptonic B → BB̄′L L̄ ′ decays
with BB̄′ (L L̄ ′) representing a baryon (lepton) pair. Using
the new determination of the B → BB̄′ transition form fac-
tors, we obtain B(B− → p p̄μ−ν̄μ) = (5.4 ± 2.0) × 10−6

agreeing with the current data. Besides, B(B− → � p̄νν̄) =
(3.5 ± 1.0) × 10−8 is calculated to be 20 times smaller than
the previous prediction. In particular, we predict B(B̄0

s →
p�̄e−ν̄e, p�̄μ−ν̄μ, p�̄τ−ν̄τ ) = (2.1±0.6, 2.1±0.6, 1.7±
1.0) × 10−6 and B(B̄0

s → ��̄νν̄) = (0.8 ± 0.2) × 10−8,
which can be accessible to the LHCb experiment.

1 introduction

In the non-leptonic baryonic B decays, the observation of
B → p p̄(π, K (∗), D(∗)) and B− → � p̄(J/ψ, γ ) suggests
the unique existence of the B → BB̄′ transition [1–3], with
which the CP asymmetries of B− → p p̄(π−, K (∗)−) [4,
5] and the branching fractions of B− → � p̄D(∗)0, B̄0 →
�0�̄D0 [6] have been predicted, and verified by the later
measurements [7].

The semileptonic B decays of B− → p p̄	−ν̄	 and
B− → � p̄ν	ν̄	 with 	 denoting e, μ or τ can provide
another evidence for the B → BB̄′ transition [8,9]. Like
the studies of the semileptonic B− → π+π−	−ν̄	 decays
[10,11], the full dibaryon invariant mass spectrum can be
used to test the possible co-existence of the resonant and
non-resonant contributions. Therefore, we have predicted
B(B− → p p̄e−ν̄e) = (1.04 ± 0.26 ± 0.12) × 10−4 [8] and
B(B− → � p̄νν̄) = (7.9±1.9)×10−7 [9]. We have also pre-
dicted Re/μ ≡ B(B− → p p̄e−ν̄e)/B(B− → p p̄μ−ν̄μ) �
1 [8]. By contrast, the pole model argument leads to the eval-
uation of B(B → BB̄′	ν̄	) = 10−5 − 10−6 [12].

Experimentally, it has been measured that [13–16]

Bex (B
− → p p̄e−ν̄e) = (5.8 ± 3.7 ± 3.6)
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×10−4 (< 1.2 × 10−3) [Cleo]
Bex (B

− → p p̄e−ν̄e) = (8.2+3.7
−3.2 ± 0.6)

×10−6 [Belle]
Bex (B

− → p p̄μ−ν̄μ) = (3.1+3.1
−2.4 ± 0.7)

×10−6 [Belle]
Bex (B

− → p p̄μ−ν̄μ) = (5.27+0.23
−0.24 ± 0.21 ± 0.15)

×10−6 [LHCb]
Bex (B

− → � p̄νν̄) = (0.4 ± 1.1 ± 0.6)

×10−5 (< 3.0 × 10−5) [Babar]. (1)

The threshold effect commonly observed in B → BB̄′M is
also observed in B− → p p̄μ−ν̄e [15], which is drawn as
a peak around the threshold area of mBB̄′ � mB + mB̄′ in
the BB̄′ invariant mass spectrum. There is no sign that the B
to BB̄′ transition receives a resonant contribution. Nonethe-
less, it is clearly seen that Bex (B− → p p̄μ−ν̄μ) is 20 times
smaller than the prediction [8]. This has been pointed out as
the theoretical challenge to alleviate the discrepancy [17].
On the other hand, the ratio Re/μ � 1 as a test of the
lepton universality is not conclusive, and the prediction of
B(B− → � p̄νν̄) is within the experimental upper bound.

In Ref. [6], the B → BB̄′ transition form factors (FBB̄′ ) are
extracted with the data from B → BB̄′M , which cause the
overestimation of B(B → p p̄	ν̄). With the same theoretical
inputs, B(B− → � p̄νν̄) might be overestimated as well [9].
A question is hence raised: whether there exist the universal
B → BB̄′ transition form factors to explain the nonleptonic
and semileptonic baryonic B decays.

In this paper, we propose to perform a new global fit, in
order to accommodate the current data of B → BB̄′L L̄ ′
with L L̄ ′ denoting a lepton pair and B → BB̄′M . With FBB̄′
determined from the new global fit, we will re-investigate
B− → � p̄νν̄. Since LHCb has been able to accumulate
more events for the B̄0

s decays, we will study B̄0
s → p�̄	−ν̄

and B̄0
s → ��̄νν̄ decays for future measurements.
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Fig. 1 Feynman diagrams for the B → BB̄′L L̄ ′ decays, where (a) depicts B− → p p̄	−ν̄	 and B̄0
s → p�̄	−ν̄	, while (b, c) B− → � p̄ν	ν̄	 and

B̄0
s → ��̄ν	ν̄	

2 Formalism

The semileptonic baryonic B decays come from the quark-
level b → u	ν̄	 and b → sν	ν̄	 processes. In Fig. 1a, b →
u	ν̄	 appear as the tree-level b → uW,W → 	ν̄	 decays.
Due to the loop contributions from the penguin-level b →
sZ , Z → ν	ν̄	 and box diagrams in Fig. 1b,c, respectively
[18], b → sν	ν̄	 can be rarer than b → u	ν̄	. The effective
Hamiltonians for the above semileptonic b decays are given
by [18,19]

H(b → u	ν̄	) = GFVub√
2

ūγμ(1 − γ5)b 	̄γ μ(1 − γ5)ν	

H(b → sν	ν̄	)

= GF√
2

αem

2πsin2θW
λt D(xt )s̄γμ(1 − γ5)bν̄	γ

μ(1 − γ5)ν	

(2)

where GF is the Fermi constant, Vub and λt ≡ V ∗
tsVtb are

the Cabibbo–Kobayashi–Maskawa (CKM) matrix elements,
and D(xt ) with xt ≡ m2

t /m
2
W is the top-quark loop function

[18–21]. According to H(b → u	ν̄	, sν	ν̄	), the amplitudes
of B → BB̄′L L̄ ′ with L L̄ ′ = (	ν̄	, ν	ν̄	) can be derived as
[8,9]

M(B → BB̄′	−ν̄	)

= GFVub√
2

〈BB̄′|ūγμ(1 − γ5)b|B〉 	̄γ μ(1 − γ5)ν	,

M(B → BB̄′ν	ν̄	)

= GF√
2

αem

2πsin2θW
λt D(xt )〈BB̄′|s̄γμ(1 − γ5)b|B〉

× ν̄	γ
μ(1 − γ5)ν	, (3)

with 〈BB̄′|(q̄b)|B〉 representing the matrix elements of the B
meson to BB̄′ transition. In Fig. 1a–c, B → BB̄′L L̄ ′ occur
as B− → p p̄	ν̄	,� p̄ν	ν̄	 and B̄0

s → p�̄	ν̄	,��̄ν	ν̄	 for
our study.

The amplitudes of the non-leptonic B → BB̄′M decays
have two forms [1,22,23]: MC ∝ 〈BB̄′|(q̄q ′)|0〉 ×〈M |(q̄b)
|B〉 and MT ∝ 〈M |(q̄q ′)|0〉〈BB̄′|(q̄b)|B〉, where MC

denotes the current amplitude with BB̄ ′ produced from the
quark current [22–26], andMT the transition amplitude with
BB̄ ′ from the B meson transition [1–3]. Clearly, MT (B →
BB̄′M) and B → BB̄′L L̄ ′ can be related by 〈BB̄′|(q̄b)|B〉
[8,9]. As seen in Fig. 2, B → p p̄M with M = (π, K ),
B → p p̄V with V = (ρ, K ∗), and B̄0 → p p̄D0(∗) involve
the transition amplitudes, given by [1,27–29]

M(B → p p̄M) = GF√
2

(M̂1 + M̂6)

M̂1 = α
qq ′
1 〈M |q̄ ′γμ(1 − γ5)u|0〉〈p p̄|q̄γ μ(1 − γ5)b|B〉

M̂6 = α
qq ′
6 〈M |q̄ ′(1 + γ5)u|0〉〈p p̄|q̄(1 − γ5)b|B〉

M(B → p p̄V ) = GF√
2

α
qq ′
1 〈V |q̄ ′γμ(1 − γ5)u|0〉

×〈p p̄|q̄γ μ(1 − γ5)b|B〉
M(B̄0 → p p̄D0(∗)) = GF√

2
VcbV

∗
uda2〈D0(∗)|c̄γμ

×(1 − γ5)u|0〉〈p p̄|d̄γ μ(1 − γ5)b|B̄0〉 (4)

with (q, q ′) = (u, d) for B− → p p̄π− and B− → p p̄ρ−,
(q, q ′) = (u, s) for B− → p p̄K− and B− → p p̄K ∗−, and
(q, q ′) = (d, s) for B̄0 → p p̄K̄ 0 and B̄0 → p p̄K̄ ∗0. The
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Fig. 2 Feynman diagrams for the three-body baryonic B decays, where (a, b) and (c) depict B → p p̄M(V ) and B̄0 → p p̄D0(∗), respectively

parameters in Eq. (4) result from the factorization approach
[30], written as

α
uq ′
1 = VubV

∗
uq ′a1 − VtbV

∗
tq ′a4

αds
1 = −VtbV

∗
tsa4

α
uq ′
6 = α

dq ′
6 = VtbV

∗
tq ′2a6 (5)

with ai = ce f fi + ce f fi±1/Nc for i =odd (even), where ce f fi are
the effective Wilson coefficients, and Nc the color number
[30].

The matrix elements of the B → BB̄′ transition in Eqs. (3)
and (4) can be presented as [1,3,6,17,27–29]

〈BB̄′|V b
μ |B〉 = i ū[g1γμ+g2iσμν p

ν+g3 pμ

+g4(pB̄′+pB)μ+g5(pB̄′−pB)μ]γ5v

〈BB̄′|Ab
μ|B〉 = i ū[ f1γμ+ f2iσμν p

ν+ f3 pμ

+ f4(pB̄′+pB)μ+ f5(pB̄′−pB)μ]v
〈BB̄′|Sb|B〉 = i ū[ḡ1 /p+ḡ2(EB̄′+EB)+ḡ3(EB̄′−EB)]γ5v

〈BB̄′|Pb|B〉 = i ū[ f̄1 /p+ f̄2(EB̄′+EB)+ f̄3(EB̄′−EB)]v
(6)

with V b
μ(Ab

μ) ≡ q̄γμ(γ5)b, Sb(Pb) ≡ q̄b, and pμ ≡ (pB −
pB− pB̄′)μ. FBB̄′ ≡ (gi , fi , ḡ j , f̄ j ) with i = 1, 2, . . . , 5 and
j = 1, 2, 3 are the B → BB̄′ transition form factors.

FBB̄′ are momentum dependent. In terms of perturbative
QCD (pQCD) counting rules [1,3,6,28,31–33], one param-

eterizes that

fi = D fi

t3 gi = Dgi

t3

f̄ j =
D f̄ j

t3 ḡ j = Dḡ j

t3 (7)

with t ≡ (pB + pB̄′)2. For FBB̄′ ∝ 1/tn , n = 3 corre-
sponds to the three gluon propagators, which are drawn in
Figs. 1a–c and 2a–c. Since V b

μ and Ab
μ can be combined as

the right-handed chiral current Rμ = (V b
μ + Ab

μ)/2, and the
baryon decomposed of the right and left-handed states, that
is, |BR+L〉 = |BR〉 + |BL〉, it leads to [6,17]

〈BR+L B̄′
R+L |Rμ|B〉

= imbūγμ

[
1 + γ5

2
GR + 1 − γ5

2
GL

]
v

+i ūγμ � pb
[

1 + γ5

2
Gk

R + 1 − γ5

2
Gk

L

]
v (8)

where |Bq〉 ∼ b̄γ5q|0〉 has been used. As the chiral charge,
Q ≡ Rμ=0 annihilates the b quark, and creates a valence
quark in B, while the spectator quark in the B meson is trans-
formed as a valence quark (q̄i ) in B̄′. We hence obtain G(k)

R,L

as the B → BB̄′ transition form factors in the chiral represen-
tation. When the chirality states of a spinor (R, L) are taken
as the helicity states (↑,↓), one can see q̄i with the helicity
to be (anti-)parallel [||(||)] to the helicity of B̄′, such that the
chiral charge acting on q̄i can be more explicitly defined as
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Q||(||)(i) (i = 1, 2, 3). We thus derive that

GR(L) ∝ eR(L)
|| G|| + eR(L)

|| G||
Gk

R(L) ∝ ēR(L)
|| Gk|| + ēR(L)

|| Gk
|| (9)

where eR(L)
|| and eR(L)

|| sum over the weight factors of

BR(L)B̄′
R(L), and ēR(L)

|| and ēR(L)

|| those of BL(R)B̄′
R(L). By

defining G(k)
||(||) ≡ D(k)

||(||)/t
3 (k = 2, 3, . . . , 5), we relate the

two sorts of the form factors as [1,3,28]

Dg1 = 5

3
D|| − 1

3
D||D f1 = 5

3
D|| + 1

3
D||Dgk

= 4

3
Dk|| = −D fk

Dg1 = 1

3
D|| − 2

3
D||D f1 = 1

3
D|| + 2

3
D||Dgk

= −1

3
Dk|| = −D fk

Dg1 = D f1 = −
√

3

2
D||Dgk = −D fk = −

√
3

2
Dk||

Dg1 = D f1 =
√

3

2
D||Dgk = −D fk =

√
3

2
Dk||

Dg1 = D f1 = D|| Dgk = −D fk = −Dk|| (10)

for 〈p p̄|(ūb)|B−〉, 〈p p̄|(d̄b)|B̄0〉, 〈� p̄|(s̄b)|B−〉,
〈p�̄|(ūb)|B̄0

s 〉, and 〈��̄|(s̄b)|B̄0
s 〉, respectively. Likewise,

we perform a derivation for ḡ j ( f̄ j ) through the (pseudo-
)scalar current, which leads to [28,29]

Dḡ1 = 5

3
D̄|| − 1

3
D̄|| D f̄1 = 5

3
D̄|| + 1

3
D̄|| Dḡ2,3

= 4

3
D̄2,3

|| = −D f̄2,3

Dḡ1 = 1

3
D̄|| − 2

3
D̄|| D f̄1 = 1

3
D̄|| + 2

3
D̄|| Dḡ2,3

= −1

3
D̄2,3

|| = −D f̄2,3
(11)

for 〈p p̄|(ūb)|B−〉 and 〈p p̄|(d̄b)|B̄0〉, respectively. Note that
R(L) ∼↑ (↓) is based on the approximation with the large
energy transfer, which is conveniently presented as t → ∞.
It is also derived that the correction term is of order mq/

√
t

[31–33]. In fact,
√
t of a few GeV has been large enough to

suppress the correction term [33]. Consequently, the relations
with the chirality (helicity) symmetry are shown to be able
to describe the scattering processes [33]. For the baryonic B
decays,

√
t > 2 GeV is also sufficient for the holding of the

relations in Eqs. (10) and (11).
The four-body B(pB) → B(pB)B̄′(pB̄′)L(pL)L̄ ′(pL̄ ′)

decay involves five kinematic variables in the phase space,
that is, s ≡ (pL + pL̄ ′)2 ≡ m2

L L̄ ′ , t , and (θB, θL, φ) [34–36].
As depicted in Fig. 3, the angle θB(L) is between �pB ( �pL ) in
the BB̄ ′ (L L̄ ′) rest frame and the line of flight of the BB̄ ′

Fig. 3 The angular variables θB, θL and φ depicted for the four-body
B → BB̄′L L̄ ′ decays

(L L̄ ′) system in the B meson rest frame. The angle φ is from
the BB̄ ′ plane to the L L̄ ′ plane defined by the momenta of
the BB̄ ′ pair and L L̄ ′ pair in the B meson rest frame, respec-
tively. The partial decay width then reads [8,9]

d� = |M̄|2
4(4π)6m3

B

XαBαL ds dt dcos θB dcos θL dφ (12)

where X = [(m2
B−s−t)2/4−st]1/2,αB = λ1/2(t,m2

B,m2
B̄′)/t ,

and αL = λ1/2(s,m2
L ,m2

L̄ ′)/s, with λ(a, b, c) = a2 + b2 +
c2 − 2ab − 2bc − 2ca. For integration, the allowed ranges
of the five variables are (mL + mL̄ ′)2 ≤ s ≤ (mB − √

t)2,
(mB + mB̄′)2 ≤ t ≤ (mB − mL − mL̄ ′)2, 0 ≤ θB,L ≤ π ,
and 0 ≤ φ ≤ 2π . The partial decay width of B(pB) →
B(pB)B̄′(pB̄′)M(pM ) involves two variables in the phase
space, given by [3,28]

d� = β
1/2
B β

1/2
t

(8πmB)3 |M̄|2 dt dcosθ (13)

where βB = [1 − (mB + mB̄′)2/t][1 − (mB − mB̄′)2/t],
βt = [(mB + mM )2 − t][(mB − mM )2 − t], and θ is the
angle between the meson and baryon moving directions in
the BB̄ ′ rest frame. The allowed regions of the variables are
−1 < cos θ < 1 and (mB +mB̄′)2 < t < (mB −mM )2. For
the global fit in the next section, we define theCP asymmetry
[4,37], and angular asymmetries of B → BB̄′M [3,26,28]
and B → BB̄′L L̄ ′ [8,9], written as

ACP ≡ �(B → BB̄′M) − �(B̄ → BB̄′M̄)

�(B → BB̄′M) + �(B̄ → BB̄′M̄)

AFB,θi ≡ �(cos θi > 0) − �(cos θi < 0)

�(cos θi > 0) + �(cos θi < 0)
(14)

where B̄ → BB̄′M̄ represents the anti-particle decay.

3 Numerical results and discussions

In the numerical analysis, the CKM matrix elements in the
Wolfenstein parameterization read [7]

Vub = Aλ3(ρ − iη), Vud = 1 − λ2/2, Vus = λ,

Vcb = Aλ2, Vtb = 1, Vtd = Aλ3, Vts = −Aλ2 (15)

123
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Table 1 The effective Wilson
coefficients cef fi
(i = 1, 2, . . . , 6) for b and b̄
decays

cef fi b → d (b̄ → d̄) b → s (b̄ → s̄)

cef f1 1.168 (1.168) 1.168 (1.168)

cef f2 −0.365 (−0.365) −0.365 (−0.365)

104ce f f3 238.0 + 12.7i (257.4 + 46.1i) 243.3 + 31.2i (240.9 + 32.3i)

104ce f f4 −497.0 − 38.0i (−555.2 − 138.3i) −512.8 − 93.7i (−505.7 − 96.8i)

104ce f f5 145.5 + 12.7i (164.7 + 46.1i) 150.7 + 31.2i (148.4 + 32.3i)

104ce f f6 −633.8 − 38.0i (−692.0 − 138.3i) −649.6 − 93.7i (−642.6 − 96.8i)

with (λ, A, ρ, η) = (0.225, 0.826, 0.163 ± 0.010, 0.357 ±
0.010).

From Refs. [18–21], we adopt D(x) as

D(x) = D0(x) + αs

4π
D1(x),

D0(x) = x

8

[
− 2 + x

1 − x
+ 3x − 6

(1 − x)2 ln(x)

]
,

D1(x) = −23x + 5x2 − 4x3

3(1 − x)2 + x − 11x2 + x3 + x4

(1 − x)3 ln(x)

+8x + 4x2 + x3 − x4

2(1 − x)3 ln2(x)

− 4x − x3

(1 − x)2 L2(1 − x) + 8x
∂D0(x)

∂x
ln(μ2/m2

W ),

(16)

where L2(1 − x) ≡ ∫ x
1 ln(t)/(1 − t)dt and μ = mb. For

B → p p̄M(V ) and B̄0 → p p̄D0(∗), we present ce f fi in
Table 1, where b and b̄ decays are both considered, together
with the decay constants ( fπ , fK , fρ, fK ∗) = (130.2 ±
1.2, 155.7 ± 0.3, 210.6 ± 0.4, 204.7 ± 6.1) MeV [7,38] and
( fD, fD∗) = (208.9±6.5, 252.2±22.7) MeV [28,39]. In the
generalized edition of the factorization [30,37], Nc is taken as
the effective color number with N (e f f )

c = (2, 3,∞), in order
that the non-factorizable QCD corrections can be estimated.

Using the minimum χ2-fit of

χ2 =
∑ (Oi

th − Oi
ex

σ i
ex

)2

+
( |Vub|th − |Vub|ex

σ|Vub|ex

)2

(17)

we test if the observables of non-leptonic and semilep-
tonic baryonic B decays can both be interpreted, where Oi

th
stand for the theoretical calculations of B, ACP and AFB ,
while Oi

ex the experimental inputs in Table 2, together with
σ i
ex the experimental errors. Since the Vub in Eq. (3) is

for the exclusive baryonic B(s) decays, which can be dif-
ferent from that in the inclusive ones [40–42], we choose
|Vub|ex = (3.43±0.32)×10−3 determined from the B̄0

s and
baryonic �b decays [7] as our experimental input in Eq. (17).

With 16 experimental inputs from Table 2 and |Vub|ex , we
fit (D||, D||, D2,3,4,5) and (D̄||, D̄||, D̄2,3) in Eqs. (10) and
(11), respectively, and |Vub|th , which amount to 11 parame-

Table 2 Experimental data for the B− → p p̄	−ν	 and B → p p̄M(c)
decays, where the notation † for AFB denotes the contribution from
mpp̄ < 2.85 GeV, and B(B− → p p̄μ−ν̄μ) has combined the Belle
and LHCb data in Eq. (1)

Decay modes Data

106B(B− → p p̄e−ν̄e) 8.2 ± 3.8 [14]

106B(B− → p p̄μ−ν̄μ) 5.2 ± 0.4 [14,15]

106B(B− → p p̄π−) 1.62 ± 0.20 [7]

106B(B− → p p̄K−) 5.9 ± 0.5 [7]

106B(B̄0 → p p̄K̄ 0) 2.66 ± 0.32 [7]

102ACP (B− → p p̄π−) 0 ± 4 [7]

102ACP (B− → p p̄K−) 0 ± 4 [7]

102AFB(B− → p p̄π−) (−40.9 ± 3.4)† [43]

102AFB(B− → p p̄K−) (49.5 ± 1.4)† [43]

106B(B− → p p̄ρ−) 4.6 ± 1.3 [7]

106B(B− → p p̄K ∗−) 3.4 ± 0.8 [45]

106B(B̄0 → p p̄K̄ ∗0) 1.2 ± 0.3 [45]

102ACP (B− → p p̄K ∗−) 21 ± 16 [7]

104B(B̄0 → p p̄D0) 1.04 ± 0.07 [7]

104B(B̄0 → p p̄D∗0) 0.99 ± 0.11 [7]

ters, such that the number of degrees of freedom denoted by
d.n. f is counted as d.n. f = 16 − 11 = 5. As a result, we
obtain χ2/n.d. f = 1.86 as a measure of the global fit, and
extract that

(D||, D||) = (11.2 ± 43.5, 332.3 ± 17.2) GeV5

(D2||, D3||, D4||, D5||) = (47.7 ± 10.1, 442.2 ± 103.4,−38.7

±9.6, 80.7 ± 27.2) GeV4

(D̄||, D̄||, D̄
2||, D̄3||)

= (−59.9 ± 12.9, 23.8 ± 6.8, 90.9 ± 11.1, 131.7

±330.7) GeV4 (18)

with Nef f
c = 2 and ∞ for B → p p̄M(V ) and B →

p p̄D0(∗), respectively. Using the parameters in Eq. (18),
we calculate the branching fractions and angular asymme-
tries of B− → p p̄	ν̄,� p̄νν̄ and B̄0

s → p�̄	ν̄,��̄νν̄, of
which the results are compared with the experimental data
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Table 3 Our calculations for the semileptonic B → BB̄′L L̄ ′ decays.
For B(B → BB̄′	ν̄	), the values in the parentheses correspond to
	 = (e, μ, τ), where the first and second errors come from |Vub| and

the form factors in Eq. (18), respectively. For B(B → BB̄′νν̄) =
�	B(B → BB̄′ν	ν̄	) and AFB(B → BB̄′L L̄ ′), the errors take into
account the uncertainties of the form factors in Eq. (18)

Decay modes This work Data

106B(B− → p p̄	−ν̄	) (5.3 ± 1.1 ± 1.7, 5.4 ± 1.1 ± 1.7, 7.6 ± 1.5 ± 3.9) (8.2 ± 3.8 [14], 5.2 ± 0.4 [14,15],–)

102AFB,θB (B− → p p̄	−ν̄	) (1.4 ± 12.6, 1.4 ± 12.6, 1.4 ± 12.6) –

102AFB,θL (B− → p p̄	−ν̄	) (−41.7 ± 21.4,−41.2 ± 20.4,−2.1 ± 5.0) –

106B(B̄0
s → p�̄	−ν̄	) (2.1 ± 0.4 ± 0.5, 2.1 ± 0.4 ± 0.5, 1.7 ± 0.3 ± 0.9) –

102AFB,θB (B̄0
s → p�̄	−ν̄	) (25.7 ± 11.4, 25.0 ± 11.3,−3.5 ± 2.7) –

102AFB,θL (B̄0
s → p�̄	−ν̄	) (−44.1 ± 10.8,−43.7 ± 10.3, 0.4 ± 5.5) –

B(B− → � p̄νν̄) (3.5 ± 1.0) × 10−8 (0.4 ± 1.3) × 10−5 (< 3 × 10−5) [16]

102AFB,θB (B− → � p̄νν̄) 22.8 ± 11.2 –

102AFB,θL (B− → � p̄νν̄) −40.9 ± 8.3 –

B(B̄0
s → ��̄νν̄) (0.8 ± 0.2) × 10−8 –

102AFB,θB (B̄0
s → ��̄νν̄) 24.4 ± 11.8 –

102AFB,θL (B̄0
s → ��̄νν̄) −40.1 ± 8.0 –

in Table 3. We also draw the p p̄ invariant mass spectrum for
B− → p p̄μ−ν̄μ in Fig. 4.

4 Discussions and conclusions

Since χ2/n.d. f = 1.86 presents a reasonable fit, it indi-
cates that the most recent data in Table 2 can be explained.
It is interesting to note that B(B− → p p̄π−, p p̄ρ−)

[3,4] were once overestimated [7,43,44], and the relation of
AFB(B− → p p̄π−) � AFB(B− → p p̄K−) [3] was not
verified by the measurements [43,44]. This is due to FBB̄′
determined by the B → p p̄K data [3], while B → p p̄K
are in fact the penguin dominated decays with M̂6 ∝
〈p p̄|(S− P)b|B〉 to give the main contribution. To avoid the
inconsistency unable to be solved at that time, one performed
the extraction of Ref. [6] that excluded B(B− → p p̄K−),
B(B̄0 → p p̄K̄ 0), andAFB(B− → p p̄K−), in order that the
more associated tree dominated decays of B → p p̄(π, ρ),
B̄0 → p p̄D0(∗), and B → BB̄L L̄ ′ can be studied. However,
it resulted in an unsatisfactory global fit not to accommodate
the all data.

As FBB̄′ determined in this work can be universal for
the non-leptonic and semileptonic decay channels, we cal-
culate B(B− → p p̄e−ν̄e) = (5.3 ± 2.0) × 10−6 and
B(B− → p p̄μ−ν̄μ) = (5.4 ± 2.0) × 10−6 agreeing with
the experimental values. Moreover, we revisit B− → � p̄νν̄,
and obtain B(B− → � p̄νν̄) = (3.5 ± 1.0) × 10−8 20 times
smaller than the number of Ref. [9].

Like the theoretical illustration in B → BB̄′ and B →
BB̄′M [29,46], the gluon propagators of Fig. 1a–c play the
key role in the BB̄′ formation of B → BB̄′L L̄ ′, where two
of them provide the valence quarks in BB̄ ′, while the another

Fig. 4 The p p̄ invariant mass spectrum of B− → p p̄μ−ν̄μ, where
the data points are from LHCb [15]

one speeds up the spectator quark in B. Accordingly, the
approach of pQCD counting rules derives that FBB̄′ ∝ 1/t3.

One can test the momentum dependence of B− →
p p̄μ−ν̄μ, which is by scanning the partial branching fraction
as a function of

√
t = mpp̄. In Fig. 4, as we draw the line to

agree with the five data points [15]; particularly, those around
the area of

√
t ∼ mB+mB̄′ for the threshold effect, it is shown

that FBB̄′ as a function of 1/t can describe B → BB̄′L L̄ ′.
By normalizing the prediction of the pQCD model [8],

LHCb draws the mpp̄ spectrum of B− → p p̄μν̄ in Fig. 4
of Ref. [15], where the line is higher and narrower than our
result. The difference is caused by the fact that the line of of
Ref. [15] is chosen to more agree with the two data points
aroundmpp̄ ∼ 2.5 GeV. Subsequently, the peak should reach
17×10−6 to be above the data point aroundmpp̄ ∼ 2 GeV for
integrating over the partial branching fraction as large asB �
5 × 10−6. In comparison, our result prefers to agree with the
threshold data points; however, requiring some broadening
to give a sufficient branching fraction.
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The decay channel B̄0
s → � p̄K+(�̄pK−) is the first

observation of a baryonic B̄0
s decay [47], whose branching

fraction B(B̄0
s → � p̄K+ + �̄pK−) = 5.46 × 10−6 is as

large as those of the three-body baryonic B− (B̄0) decays.
Hence, the semileptonic baryonic B̄0

s decay is supposed to be
compatible with B− → p p̄	ν̄	. In our prediction, we present

B(B̄0
s →p�̄e−ν̄e, p�̄μ−ν̄μ) = (2.1±0.6, 2.1±0.6)×10−6

(19)

which are accessible to the LHCb experiment, whereas
B(B̄0

s → ��̄νν̄) = (0.8 ± 0.2) × 10−8 is relatively small.
Because of mτ � me,μ that strongly shrinks the phase

space, it is anticipated that B(B → BB̄′τ ν̄) � B(B →
BB̄′eν̄,BB̄′μν̄). Nonetheless, the amplitude of Eq. (3) and
the matrix elements of Eq. (6) result in

i ū(g3γ5 − f3)v m	ū	γμ(1 + γ5)vν̄ (20)

in M(B → BB̄′	ν̄), where mτ is able to enhance the decay.
We thus obtain

B(B− → p p̄τ−ν̄τ ) = (7.6 ± 4.2) × 10−6

B(B̄0
s → p�̄τ−ν̄τ ) = (1.7 ± 1.0) × 10−6 (21)

as large as their counterparts. Likewise, the mass effect can
be found in M(B → τ ν̄) ∝ mτ ūτ (1 + γ5)vν̄ [48,49] and
M(B → BcB̄′) ∝ mc〈BcB̄′|c̄(1 + γ5)q|0〉 [50], where mτ

and mc alleviate the decays from helicity suppression.
We study the angular asymmetries of the semileptonic

B → BB̄′L L̄ ′ decays. While AFB,θB(B− → p p̄	−ν̄	) are
around several percents,AFB,θB(B̄0

s → p�̄e−ν̄e, p�̄μ−ν̄μ)

and AFB,θB(B̄0
s → ��̄νν̄) can be around 25%. Like the

three-body baryonic B decays [3,26,28], this implies a the-
oretical sensitivity for FBB̄′ to be confirmed by future mea-
surements.

In summary, we have investigated the semiletonic B−(B̄0
s )

→ BB̄′L L̄ ′ decays with L L̄ ′ = (	ν̄	, νν̄). We have newly
extracted the B → BB̄′ transition form factors with the
global fit that includes the data of B → p p̄M(V ), B̄0 →
p p̄D0(∗) and B → p p̄e−ν̄e, p p̄μ−ν̄μ decays. In our demon-
stration, B(B− → p p̄e−ν̄e, p p̄μ−ν̄μ) once overestimated
to be as large as 10−4 has been reduced to be around
5 × 10−6, in agreement with the current data. We have also
presented B(B− → � p̄νν̄) = (3.5 ± 1.0) × 10−8. It has
been found that B(B̄0

s → p�̄e−ν̄e, p�̄μ−ν̄μ, p�̄τ−ν̄τ ) =
(2.1 ± 0.6, 2.1 ± 0.6, 1.7 ± 1.0) × 10−6 and B(B̄0

s →
��̄νν̄) = (0.8 ± 0.2) × 10−8 can be promising for future
measurements.
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