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Abstract New no-scale supergravity models with F-term
SUSY breaking are introduced, adopting Kähler potentials
parameterizing flat or curved (compact or non-compact)
Kähler manifolds. We systematically derive the form of the
superpotentials leading to Minkowski vacua. Combining two
types of these superpotentials we can also determine de Sit-
ter or anti-de Sitter vacua. The construction can be eas-
ily extended to multi-modular settings of mixed geometry.
The corresponding soft SUSY-breaking parameters are also
derived.
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1 Introduction

Within Supergravity (SUGRA) [1,2], breaking Supersymme-
try (SUSY) on a sufficiently flat background requires a huge
amount of fine tuning, already at the classical level – see
e.g. [3,4]. Besides remarkable exceptions presented recently
[5,6], the so-called no-scale models [7–15] provide an ele-
gant framework which alleviates the problem above since
SUSY is broken with naturally vanishing vacuum energy
along a flat direction. On the other hand, the discovery of the
accelerate expansion of the present universe [16] motivates
us to develop models with de Sitter (dS) – or even anti-dS
(AdS) – vacua which may explain this expansion – indepen-
dently of the controversy [17–22] surrounding this kind of
(meta) stable vacua within string theory.

In two recent papers [12,13], a systematic derivation of
dS/AdS vacua is presented in the context of the no-scale
SUGRA without invoking any external mechanism of vac-
uum uplifting such as through the addition of anti-D3 brane
contributions [23,24] or extra Fayet–Iliopoulos terms [25–
29]. Namely, these vacua are achieved by combining two
distinct Minkowski vacua taking as initial point the Kähler
potential parameterizing the non-compact SU (1, 1)/U (1)

Kähler manifold in half-plane coordinates, T and T ∗. Possi-
ble instabilities along the imaginary direction of the T field
can be cured by introducing mild deformations of the adopted
geometry. The analysis has been extended to incorporate
more than one superfields in conjunction with the imple-
mentation of observationally successful inflation [14,30].

In this paper we show that the method above has a much
wider applicability since it remains operational for flat spaces
or curved ones. This is possible since the no-scale “charac-
ter” of the models, as defined above, stems from the exis-
tence of a flat direction with SUSY broken along it, and
not from the adopted moduli geometry. We parameterize the
curved spaces of our models with the Poincaré disk coordi-
nates Zα and Z ∗̄

α which, although are widely adopted within
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the inflationary model building [31–33], they are not fre-
quently employed for establishing SUSY-breaking models
– cf. [5–7]. This parametrization gives us the opportunity
to go beyond the non-compact geometry [12,13] and estab-
lish SUSY-breaking scenaria with compact [34] or “mixed”
geometry. In total, we here establish three novel uni-modular
no-scale models and discuss their extensions to the multi-
modular level. In all cases, we show that a subdominant
quartic term [5,6,12] in the Kähler potential stabilizes the
sgoldstino field to a specific vacuum and provides mass for
its scalar component without disturbing, though, the con-
stant vacuum energy density. This can be identified with the
present cosmological constant by finely tuning one parame-
ter of the model whereas the others can be adjusted to per-
fectly natural values. If we connect, finally, our hidden sec-
tors with some sample observable ones, non-vanishing soft
SUSY-breaking (SSB) parameters [35], of the order of the
gravitino mass can be readily determined at the tree level.

We start our presentation with a simplified generic argu-
ment which outlines the transition from Minkowski to
dS/AdS vacua in Sect. 2. We then detail our models adopting
first – in Sect. 3 – flat moduli geometry and then – see Sect. 4 –
two versions of curved geometry. Generalization of our find-
ings displaying multi-modular models with mixed geometry
is presented in Sect. 5. We also study in Sect. 6 the communi-
cation of the SUSY breaking to the observable sector by com-
puting the SSB terms. We summarize our results in Sect. 7.
Some useful formulae related to derivation of mass spectra
in SUGRA with dS/AdS vacua is arranged in Appendix A.
In Appendix B we show the consistency of our results with
those in [12,13] translating the first ones in the language of
the T − T ∗ coordinates.

Unless otherwise stated, we use units where the reduced
Planck scale mP = 2.4 · 1018 GeV is taken to be unity and
the star (∗) denotes throughout complex conjugation. Also,
no summation convention is applied over the repeated Latin
indices �, i and j .

2 Start-up considerations

The generation mechanism of dS/AdS vacua from a pair of
Minkowski ones can be roughly established, if we consider a
uni-modular model without specific geometry. In particular,
we adopt a Kähler potential K = K (Z , Z∗) and attempt to
determine an expression for the superpotential W = W (Z)

so as to construct a no-scale scenario.
The SUGRA potential V based on K andW from Eq. (A2)

is written as

V = eK
(
g−1
K |∂ZW + WKZ |2 − 3|W |2

)
, (1)

where g−1
K = K−1

Z Z∗ = K ZZ∗
. Suppose that there is an

expression W = W0(Z) which assures that the direction
Z = Z∗ is classically flat with V = 0, i.e., it provides a
continuum of Minkowski vacua. The determination of W0,
based on Eq. (1), entails

g−1
K

(
W ′

0 + W0KZ
)2 = 3W 2

0 ⇒ dW0

dZW0
= ±√

3gK − KZ

(2)

with Eq. (A3) being satisfied – the relevant conditions may
constrain the model parameters once K is specified. Here
prime stands for derivation with respect to (w.r.t) Z . Equa-
tion (2) admits obligatorily two solutions

W±
0 = m exp

(
±
∫

dZ
√

3gK −
∫

dZKZ

)
(3)

with m a mass parameter. For the K ’s considered below, it is
easy to verify that

∫
dZKZ = K/2 (4)

up to a constant of integration. E.g., if K = |Z |2, then KZ =
Z for Z∗ = Z and

∫
dZKZ = Z2/2 = K/2.

According to [12,13], the appearance of dS/AdS vacua is
attained, if we consider the following linear combination of
W±

0 in Eq. (3)

W� = C+W+
0 − C−W−

0 , (5)

where C− and C+ are non-zero constants. As can be easily
checked, W� does not consist solution of Eq. (2). It offers,
however, the achievement of a technically natural dS/AdS
vacuum since its substitution into Eq. (A2) yields

V� = eK
(
g−1
K

(
W ′

� + W�KZ
)2 − 3W 2

�

)

= 12eKC−C+W−
0 W+

0 = 12m2C−C+,

(6)

where we take into account Eqs. (3) and (4). Rigorous val-
idation and extension (to more superfields) of this method
can be accomplished via its application to specific working
models. This is done in the following sections.

Let us, finally, note that V� can be identified with the
present cosmological constant by demanding

V� = ��ρc0 = 7.2 · 10−121m4
P, (7)

where �� = 0.6889 and ρc0 = 2.4 · 10−120h2m4
P with

h = 0.6732 [16] is the density parameter of dark energy
and the current critical energy density of the universe.
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3 Flat moduli geometry

We focus first on the models with flat internal geometry and
describe below their version for one – see Sect. 3.1 – or more
– see Sect. 3.2 – moduli.

3.1 Uni-modular model

Our initial point is the Kähler potential

Kf = |Z |2 − k2Z4
v (8)

where we include the stabilization term

Zv = Z+ − √
2v with Z± = Z ± Z∗. (9)

Here k and v are two real free parameters. Small k values are
completely natural, according to the ’t Hooft argument [36],
since Kf enjoys an enhanced U (1) symmetry which is exact
for k = 0. It is evident that the Z space defined by Kf is flat
with metric 〈KZZ∗〉 = 1 along the stable configurations

Z = Z∗ for k = 0 (10a)

and 〈Z〉 = v/
√

2 for k �= 0. (10b)

Hereafter, the value of a quantity Q for both alternatives
above, – i.e. either along the flat direction of Eq. (10a) or at
the (stable) minimum of Eq. (10b) – is denoted by the same
symbol 〈Q〉.

Applying Eq. (A2) for K = Kf , and an unknown W = Wf

for Z = Z∗, we obtain

Vf = eZ
2
((

ZWf + W ′
f

)2 − 3W 2
f

)
. (11)

Following the strategy in Sect. 2, we first find the required
form of Wf , W0f , which assures the establishment of a Z -flat
direction with Minkowski vacua. I.e. we require 〈Vf 〉 = 0 for
any Z . Solving the resulting ordinary differential equation

Z + dW0f

dZW0f
= ±√

3 (12)

w.r.t W0f , we obtain two possible forms of W0f ,

W±
0f (Z) = mw f ±1 with w = e−Z2/2 and f = e

√
3Z . (13)

Note that a factor w appears already in the models of [13]
associated, though, with a matter field and not with the gold-
stino superfield as in our case.

The solutions in Eq. (13) above can be combined as fol-
lows – cf. Equation (5) –

W�f = C+W+
0f − C−W−

0f = mw f C−
f , (14)

where we introduce the symbols

C±
f := C+ ± C− f −2. (15)

Employing K = Kf and W = W�f from Eqs. (8) and (14),
we find the corresponding V via Eq. (A2)

Vf =
(
m2/(1 − 12k2Z2

v)
)

| f |2 exp
(
−Z2−/2 − k2Z4

v

)

·
(∣∣∣

√
3C+

f − Z−C−
f − 4k2Z3

vC
−
f

∣∣∣
2 − 3

∣∣∣C−
f

∣∣∣
2
)

,

(16)

which exhibits the dS/AdS vacua in Eqs. (10a) and (10b).
Indeed, we verify that 〈Vf 〉 = V�, given in Eqs. (6) and
(A3) for V = Vf and α = 1 is readily fulfilled. Indeed,
decomposing Zα (with α = 1 suppressed when we have just
one Z ) in real and imaginary parts, – z1 := z and z̄1 := z̄ –
i.e.,

Zα = (zα + i z̄α)/
√

2, (17)

we find that the eigenvalues of M2
0 in Eq. (A4) are

m̂2
zf = 144k2m2

3/2 f

〈
C+

f /C−
f

〉2
and m̂z̄f = 4m2

3/2 f , (18)

where m3/2 f is the G̃ mass along the configurations in
Eqs. (10a) and (10b). This is found by replacing K and W
from Eqs. (8) and (14) in Eq. (A7), with result

m3/2 f = m
〈
f C−

f

〉

= m

⎧
⎨
⎩
e
√

3Z
(
C+ − C−e−2

√
3Z
)

for k = 0

e
√

3/2v
(
C+ − C−e−√

6v
)

for k �= 0.
(19)

Note that, for k = 0 and unfixed Z , m3/2 f remains undeter-
mined validating thereby the no-scale character of our models
– cf. [9,14]. As a shown in Eq. (18), the real component z of
Z remains massless due to the flatness of Vf along the direc-
tion in Eq. (10a). However, the k-dependent term in Eq. (8)
not only stabilizes Z but also provides mass to z. On the other
hand, this term generates poles and so discontinuities in Vf

– see Eq. (6). We are obliged, therefore, to focus on a local
dS/AdS minimum as in Eq. (10b). Inserting Eqs. (18) and
(19) into Eq. (A5a) we find

STrM2
f = m̂2

zf + m̂2
z̄f − 4m2

3/2 f = m̂2
zf , (20)

which is consistent with Eq. (A12) given that R in Eq. (A13)
is found to be 〈Rf 〉 = 24k2.

Our analytic findings above can be further confirmed by
Fig. 1, where the dimensionless quantity 102Vf/m2m2

P is
plotted as a function of z and z̄ in Eq. (17). We employ the
values of the parameters listed in column A of Table 1 –
obviously k1 there is identified with k in Eq. (8). We see that
the dS vacuum in Eq. (10b) – indicated by the black thick
point – is placed at (z, z̄) = (1, 0) and is stabilized w.r.t both
directions. In the same column of Table 1 displayed are also
the various masses of G̃ and the scalar (̂z) and pseudoscalar
(̂z̄) components of the sgoldstino Z given in GeV for con-
venience. For N = 1, the spectrum does not comprise any
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Fig. 1 The (dimensionless) SUGRA potential 102Vf/m2m2
P in

Eq. (16) as a function of z and z̄ in Eq. (17) for the inputs shown in
column A of Table 1. The location of the dS vacuum in Eq. (10b) is also
depicted by a thick black point

goldstino (̂z̃) as explained in Appendix A. It is worth men-
tioning that the aforementioned masses may acquire quite
natural values (of the order of 10−15) for logical values of
the relevant parameters despite the fact that the fulfilment of
Eq. (7) via Eq. (6) requires a tinyC−. E.g., for the parameters
given in Table 1 we need C− = 1.4 · 10−90.

Let us, finally, note that performing a Kähler transforma-
tion

K → K + �K + �∗
K and W → We−�K , (21)

with K = Kf and W = W�f in Eqs. (8) and (14) respectively
and �K = −Z2/2, the present model is equivalent with that
described by the following K and W

K̃f = −1

2
Z2− − k2Z4

v and W̃�f = m f C−
f . (22)

From the form above we can easily infer that, for k → 0, K̃f

enjoys the enhanced symmetries

Z → Z + c and Z → −Z , (23)

where c is a real number. These are more structured than the
simple U (1) mentioned below Eq. (8) and underline, once
more, the naturality of the possible small k values. In this
limit, a similar model arises in the context of the α-scale
SUGRA introduced in [11].

3.2 Multi-modular model

The model above can be extended to incorporate more than
one modulus. In this case, the corresponding K is written as

KN f =
Nf∑

�=1

(
|Z�|2 − k2

� Z
4
v�

)
(24)

where for any modulus Zα we include a stabilization term

Zvα = Zα+ − √
2vα with Zα± = Zα ± Z∗

α, (25)

with α = � in the domain of the values shown in Eq. (24).
As we verify below, for the same α values, we can obtain the
stable configurations

Zα− = 0 for kα = 0 (26a)

and 〈Zα〉 = vα/
√

2 for kα �= 0. (26b)

Along them the Kähler metric is represented by a Nf × Nf

diagonal matrix
〈
Kαβ̄

〉
= diag(1, . . . , 1). (27)

Setting Z� = Z∗
� , K = KN f from Eq. (24) and W =

WN f(Z�) in Eq. (A2), V takes the form

VN f = e
∑

� Z
2
�

(∑
�

(Z�WN f + ∂�WN f)
2 − 3W 2

N f

)
. (28)

Setting VN f = 0 and assuming the following form for the
corresponding WN f

W0N f(Z1, . . . , ZNf ) =
∏
�

Wf�(Z�)

⇒ ∂�W0N f = dWf�

dZ�

W0N f

Wf�
, (29)

we obtain the separated differential equations

∑
�

(
Z� + dWf�

dZ�Wf�

)2

= 3.

(30)

These can be solved w.r.t Wf�, if we set

Z� + dWf�

dZ�Wf�
= |a�| with

∑
�

a2
� = 3, (31)

i.e., the a�’s satisfy the equation of the hypersphere S
Nf−1

with radius
√

3. The resulting solutions take the form

W±
f� = w� f

±a�/
√

3
� with w� = e−Z2

� /2 and f� = e
√

3Z� .

(32)

The total expression for W0N f is found substituting the find-
ings above into Eq. (29). Namely,

W±
0N f = m

∏
�

W±
f� = mWF±1, (33)
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Table 1 A case study overview

Case A B C D E F
Input settings

K Kf K2f K+ K− K+− Kf−
W W�f W�2f W�+ W�− W�+− W�f−

Case A B C D E F
Input parameters
vα = mP, C+ = 0.01 and m = 5 TeV

k1 0.3 0.3 0.3 0.3 0.3 0.3

k2 − 0.2 − − 0.2 0.2

a1 − 1 − − 1 1

n1 − − 1 4 1 4

n2 − − − − 4 −
Particle masses in GeV

G̃ 170 276 145 180 263 288

ẑ1 612 572 960 530 744 599
̂̄z1 340 551 581 180 1005 577

ẑ2 − 540 − − 422 528
̂̄z2 − 551 − − 372 466
̂̃z1 − 276 − − 263 288

where we define the functions

W = e−∑
� Z

2
� /2 and F = e

∑
� a�Z� . (34)

As in the case with Nf = 1, we combine both solutions
above as follows

W�N f = C+W+
0N f − C−W−

0N f = mWFC−
F , (35)

where we introduce the “generalized” C symbols – cf. Equa-
tion (15)

C±
F := C+ ± C−F−2. (36)

Substituting Eqs. (24) and (35) into Eq. (A2) we find that V
takes the form

VN f = m2|F |2 exp

(
−
∑

�

(
Z2

�−/2+k2
� Z

4
v�

))

·
(∑

�

∣∣a�C
+
F −Z�−C−

F −4k2
� Z

3
v�C

−
F

∣∣2
1−12k2

� Z
2
v�

−3
∣∣C−

F

∣∣2
)

.

(37)

We can confirm that VN f admits the dS/AdS vacua in
Eqs. (26a) and (26b) for α = �, since 〈VN f 〉 = V�, given in
Eq. (6). In addition, Eq. (A3) for V = VN f and α = � is sat-
isfied, since the 2Nf masses squared of the relevant matrix
in Eq. (A4) are positive. Indeed, analyzing Z� in real and
imaginary parts as in Eq. (17), we find

m̂2
zf� = 48k2

�a
2
�m

2
3/2F

〈
C+
F /C−

F

〉2 ; (38a)

m̂2
z̄f� = 4m2

3/2F

(
1 + (3 − a2

� )V�/6m2
3/2F

)
, (38b)

where m3/2 for the present case is computed inserting
Eqs. (24) and (35) into Eq. (A7) with result

m3/2F = m
〈
FC−

F

〉

= m ·
⎧
⎨
⎩
e
∑

� a�Z�

(
C+ − C−e−2

∑
� a�Z�

)
for k� = 0

e
∑

� a�
v�√

2

(
C+ − C−e−√

2
∑

� a�v�

)
for k� �= 0.

(39)

The expressions above conserve the basic features of the no-
scale models as explained below Eq. (19). We consider the
stabilized version of these models (with kα �= 0) as more
complete since it offers the determination of m3/2 and avoids
the presence of a massless mode which may be problematic.

We should note that the relevant 2Nf × 2Nf matrix M2
0

of Eq. (A4) turns out to be diagonal up to some tiny mixings
appearing in the z̄�−z̄�̄ positions. These contributions though
can be safely neglected since these are proportional toV�. We
also obtain Nf − 1 Weyl fermions with masses m̂z̃�̃ = m3/2

where �̃ = 1, . . . , Nf −1. Note that Eqs. (39), (38a) and (38b)
reduce to the ones obtained for Nf = 1, i.e. Equations (19)
and (18), if we replace a� = √

3. Inserting the mass spectrum
above into Eq. (A5a), we find

STrM2
N f = 2(Nf − 1)

(
m2

3/2F + V�

)
+
∑

�

m̂2
zf�. (40)
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Fig. 2 The (dimensionless) SUGRA potential V2f/m2m2
P in Eq. (37)

as a function of z1 and z2 in Eq. (17) for z̄1 = z̄2 = 0 and the inputs
shown in column B of Table 1. The location of the dS vacuum in
Eq. (26b) is also depicted by a thick black point

This result is consistent with Eq. (A5b) given that its last term
turns out to be equal to the last term of Eq. (40).

To highlight further the conclusions above we depict in
Fig. 2 the dimensionless VN f for N = 2, i.e. V2f , as a function
of z1 and z2 for z̄1 = z̄2 = 0 and the other parameters
displayed in column B of Table 1. We observe that the dS
vacuum in Eq. (26b) – indicated by a black thick point in
the plot – is well stabilized against both directions. In the
same column of Table 1 we also arrange some suggestive
values of the particle masses for N = 2. Note that, due to
the smallness of V�, the m̂z̄f� values are practically equal
between each other.

4 Curved moduli geometry

We proceed now to the models with curved internal geometry
and describe below their version for one – see Sect. 4.1 – or
more – see Sect. 4.2 – moduli.

4.1 Uni-modular model

The curved moduli geometry is described mainly by the Käh-
ler potentials

K± = ±n ln �± with �± = 1 ± |Z |2 − k2Z4
v

n
(41)

and Zv given in Eq. (9). Also n > 0 and k are real, free
parameters. The positivity of the argument of logarithm in
Eq. (41) implies

1 ± |Z |2/n � 0 ⇒
{

|Z |2 � −n for K = K+,

|Z | � √
n for K = K−.

(42)

The restriction for K = K+ is trivially satisfied, whereas
this for K = K− defines the allowed domain of Z values
which lie in a disc with radius

√
n and thus, the name disk

coordinates. If we set k = 0 in Eq. (41), K− parameter-
izes [8,14,34] the coset space SU (1, 1)/U (1) whereas K+
is associated [34] with SU (2)/U (1). Thanks to these symme-
tries, low k values are totally natural as we explained below
Eq. (23). The Kähler metric and (the constant)R in Eq. (A13)
are respectively

KZZ∗ = �−2
± and R± = ±2/n for K = K±. (43)

The last quantity reveals that the Kähler manifold is compact
(spherical) or non-compact (hyperbolic) if K = K+ or K =
K− respectively. For this reason, the bold subscripts + or
− associated with various quantities below are referred to
K = K+ or K = K− respectively.

Repeating the procedure described in Sect. 2, we find the
form of V in Eq. (A2), V±, as a function of K = K± in
Eq. (41) and W = W± for Z = Z∗. This is

V± = v±n
± W 2±

((
Z + v±

W ′±
W±

)2

− 3

)
with v± = 1 ± Z2

n
.

(44)

Setting V± = 0 we see that the corresponding W± = W0±
obeys the differential equation

dW0±
W0±

= ±√
3 − Z

v±
dZ . (45)

This can be resolved yielding two possible forms of W0±,

W±
0± = mv

∓n/2
± u±1

± for K = K±, (46)

which assure the establishment of Minkowski minima – cf.
Equation (3). The corresponding functions u± can be speci-
fied as follows

u+ = e
√

3natn(Z/n) and u− = e
√

3natnh(Z/n), (47)

where atn and atnh stand for the functions arctan and arctanh
respectively. The superscript ± in Eq. (46) correspond to the
exponents of u± and should not be confused with the bold
subscripts ± with reference to K±.

Combining both Minkowski solutions, W±
0± in Eq. (46)

and introducing the shorthand notation – cf. Equation (15) –

C±
u± := C+ ± C−u−2

± for K = K±, (48)

we can obtain the superpotential

W�± = C+W+
0± − C−W−

0±
= mv

∓n/2
± u±C−

u± for K = K±
(49)

which allows for dS/AdS vacua. To verify it, we insert K =
K± and W = W�± from Eqs. (41) and (49) in Eq. (A2) with
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result

V± = m2�±n
± |v±|∓n|u±|2

(
− 3|C−

u±|2 + n�2±

·
∣∣∣(

√
3C+

u± − ZC−
u±)v−1

± ± (Z∗ − 4k2Z3
v)C−

u±�−1
±
∣∣∣
2

·
(
∓|4k2Z3

v − Z |2 + n�±(1 − 12k2Z2
v)
)−1 )

. (50)

Given that for Z− = 0 we get �± = v±, we may infer that
〈V±〉 = V� shown in Eq. (6) for the directions in Eqs. (10a)
and (10b). Equation (A3) for V = V± and Z1 := Z is also
valid without restrictions for K = K+ but only for n > 3
for K = K−. In fact, employing the decomposition of Z in
Eq. (17) for α = 1, we can obtain the scalar spectrum of
our models which includes the sgoldstino components with
masses squared

m̂2
z± = 144k2m2

3/2±
〈
v

3/2
±

∣∣C+
u±/C−

u±
∣∣〉2 ; (51a)

m̂2
z̄± = 4m2

3/2±
(

1 ± (3/n)
〈
C+
u±/C−

u±
〉2)

(51b)

for K = K± respectively. The correspondingm3/2 according
to Eq. (A7) – with K and W given in Eqs. (41) and (49) – is

m3/2± = m
〈
u±C−

u±
〉

for K = K±, (52)

which may be explicitly written if we use Eqs. (47) and (48) –
cf. Equation (19). The stability of configurations in Eqs. (10a)
and (10b) is protected for m̂2

z̄− > 0 and m̂2
z̄− > 0 provided

that

Z <
√
n and n > 3 for K = K−. (53)

Since we expect that Z ≤ 1, the latter restriction is capable
to circumvent both requirements – see column D in Table 1.
Inserting the mass spectrum above into the definition of
Eq. (A5a), we can find

STrM2± = 12m2
3/2±

〈
C+
u±/C−

u±
〉2 (

12nk2 〈v±〉3 ± 1
)

. (54)

It can be easily verified that the result above is consistent
with the expression of Eq. (A12) given that R in Eq. (A13)
is

〈R±〉 = 2
(

12k2n 〈v±〉3 ± 1
)

. (55)

Our analytic results are exemplified in Fig. 3, where we
depict V+ (dot-dashed line) V− (dashed line) together with
Vf (solid line) versus z for z̄ = 0, k = k1 = 0.3 and the
other parameters shown in columns A, C and D of Table 1.
Note that the selected n = n1 = 4 for K = K− protects
the stability of the vacuum in Eq. (10b) as dictated above. In
columns C and D of Table 1 we display some explicit values
of the particle masses encountered for K = K− and K+
respectively. As a consequence of the employed n value in
column D we accidentally obtain m3/2− = m̂z̄1 = m̂z̄−; k1

and n1 obviously coincide with k and n in Eq. (41).

Fig. 3 The (dimensionless) SUGRA potential V/m2m2
P as a function

of z for z̄ = 0 and the settings in columns A (solid line), C (dot-dashed
line) and D (dashed line) of Table 1. The value 〈z〉 = mP is also indicated

4.2 Multi-modular model

The generalization of the model above to incorporate more
than one modulus can be performed following the steps of
Sect. 3.2. This generalization, however, is accompanied by
a possible mixing of the two types of the curved geometry
analyzed in Sect. 4.1. More specifically, the considered here
K , includes two sectors with N+ compact components and
N− non-compact ones. It may be written as

KN+N− =
N+∑
i=1

ni ln �i +
N±∑

j=N++1

n j ln � j , (56)

where N± = N+ + N− and the arguments of the logarithms
are identified as

�α =
{

�α+ for α = i,

�α− for α = j.
(57a)

The symbols �α± can be collectively defined as

�α± = 1 ± |Zα|2/nα ∓ k2
αZ

4
vα (57b)

with Zvα is given from Eq. (25) and α = i, j . When explic-
itly indicated, summation and multiplication over i and j is
applied for the range of their values specified in Eq. (56).
Given that i corresponds to compact geometry (+) and j
to non-compact (−) we remove the relevant indices ± from
the various quantities to simplify the notation. Under these
assumptions, the positivity of the arguments of ln implies
restrictions only to � j – cf. Equation (42):

� j > 0 ⇒ |Z j | <
√
n j . (58)

Along the configurations in Eqs. (26a) and (26b) for α =
i, j , the Kähler metric is represented by a N±×N± diagonal
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matrix

Kαβ̄ = diag(v−2
1 , . . . , v−2

N+ , v−2
N++1, . . . , v

−2
N±), (59)

where we introduce the generalizations of the symbols v±,
defined in Eq. (44), as follows

vi = (1 + Z2
i /ni ) and v j = (1 − Z2

j/n j ). (60)

Also R in Eq. (A13) includes contributions for both geomet-
ric sectors, i.e,

RN+N− = 2
∑
i

n−1
i − 2

∑
j

n−1
j . (61)

Inserting K = KN+N− from Eq. (56) and W =
WN±(Zi , Z j ) with Zi = Z∗

i and Z j = Z∗
j in Eq. (A2),

we obtain

VN± = V−2
(∑

i

(ZiWN± + ∂iWN±vi )
2

+
∑
j

(
Z jWN± + ∂ jWN±v j

)2 − 3W 2
N±

)
, (62)

where the prefactor V is defined as follows

V =
∏
i, j

v
−ni /2
i v

n j /2
j . (63)

Setting VN± = 0 and assuming the ansatz for the corre-
sponding WN±

W0N±(Z1, . . . , ZN±) =
∏
i, j

Wi (Zi )Wj (Z j )

⇒ ∂iW0N±
W0N±

= dWi

dZiWi
and

∂ jW0N±
W0N±

= dWj

dZ jW j
, (64)

we obtain the separated differential equations

∑
i

(
Zi + dWi

dZiWi
vi

)2

+
∑
j

(
Z j + dWj

dZ jW j
v j

)2

= 3.

(65)

We can solve the equations above if we set

Zi + dWi

dZiWi
vi = |ai | and Z j + dWj

dZ jW j
v j = |a j | (66)

imposing the constraint
∑
i

a2
i +

∑
j

a2
j = 3, (67)

i.e., the ai and a j can be regarded as coordinates of the hyper-
sphere S

N±−1 with radius
√

3. Solution of the differential
equations above w.r.t Wi and Wj yields

W±
i = v

−ni /2
i u±ai /

√
3

i and W±
j = v

ni /2
j u

±a j /
√

3
j (68)

with the generalizations of u+ and u− in Eq. (47) defined as

ui = e
√

3ni atn(Zi /
√
ni ) and u j = e

√
3n j atnh(Z j /

√
n j ). (69)

Upon substitution of Eq. (68) into Eq. (64) we obtain

W±
0N± = m

∏
i, j

W±
i W±

j = mVU±1, (70)

where we define the function

U =
∏
i, j

uai /
√

3
i u

a j /
√

3
j . (71)

Introducing the generalized C symbols – cf. Equation (15) –

C±
U := C+ ± C−U−2, (72)

we combine both solutions in Eq. (70) as follows

W�N± = C+W+
0N± − C−W−

0N± = mVUC−
U . (73)

Plugging K = KN+N− and W = W�N± from Eqs. (56)
and (73) in Eq. (A2) we find

VN± = m2

⎛
⎝∏

i j

�
ni
i �

−n j
j

⎞
⎠ |VU |2

(
−3|C−

U |2

+
∑
i

(
ni�

2
i ·

∣∣∣(aiC+
U−ZiC

−
U )v−1

i

+ (Z∗
i − 4k2

i Z
3
vi )C

−
U�−1

i

∣∣∣
2

·
(

−
∣∣∣4k2

i Z
3
vi−Zi

∣∣∣
2 +ni�i

(
1−12k2

i Z
2
vi

))−1 )

+
∑
j

(
n j�

2
j ·
∣∣∣(a jC

+
U − Z jC

−
U )v−1

j

− (Z∗
j−4k2

j Z
3
v j )C

−
U�−1

j

∣∣∣
2

·
(∣∣∣4k2

j Z
3
v j − Z j

∣∣∣
2 +n j� j

(
1 − 12k2

j Z
2
v j

))−1 ))
.

(74)

Note that there are slight differences between the terms with
subscripts i and j due to our convention in Eq. (57a) – cf.
Equation (50). The settings in Eqs. (26a) and (26b) consist
honest dS/AdS vacua since 〈VN±〉 = V� given in Eq. (6).
However, the conditions in Eq. (A3) for V = VN± and α =
i, j are met only after imposing upper bound on v j and a j .
To determine this, we extract the masses squared of the 2N±
scalar components of Zi and Z j in Eq. (17) which are

m̂2
zi+ = 48k2

i a
2
i m

2
3/2U

〈
v

3/2
i C+

U /C−
U
〉2 ; (75a)

m̂2
z j− = 48k2

j a
2
j m

2
3/2U

〈
v

3/2
j C+

U /C−
U
〉2 ; (75b)

m̂2
z̄i+ � 4m2

3/2U
(

1 + a2
i /ni

)
; (75c)

m̂2
z̄ j− � 4m2

3/2U
(

1 − a2
j /n j

)
, (75d)

where we restore the± symbols for clarity and we neglect for
simplicity terms of order (C−)2 in the two last expressions.
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Fig. 4 The (dimensionless) SUGRA potential V+−/m2m2
P in Eq. (74)

as a function of z1 and z2 in Eq. (17) for z̄1 = z̄2 = 0 and the inputs
shown in column E of Table 1. The location of the dS vacuum in
Eq. (26b) is also depicted by a thick black point

We also compute m3/2 upon substitution of Eqs. (56) and
(73) into Eq. (A7) with result

m3/2U = m
〈UC−

U
〉
. (76)

As in the case of Sect. 3.2, the relevant matrix M2
0 in Eq. (A4)

turns out to be essentially diagonal since the non-zero ele-
ments appearing in the z̄α − z̄β positions with α, β = i, j
are proportional to V� and can be safely ignored compared
to the diagonal terms. From Eqs. (75b) and (75d), we notice
that positivity of m̂2

z j− and m̂2
z̄ j− dictates

Z j <
√
n j and |a j | <

√
n j . (77)

These restrictions together with Eq. (67) delineate the
allowed ranges of parameters in the hyperbolic sector. We
also obtain N± − 1 Weyl fermions with masses m̂z̃α̃ = m3/2

with α̃ = 1, . . . , N± − 1. Inserting the mass spectrum above
into Eq. (A5a) we find

STrM2
N±�6m2

3/2U
(

(N± − 1)+2

3

⎛
⎝∑

i

a2
i

ni
+
∑
j

a2
j

n j

⎞
⎠

+8

〈
C+
U

C−
U

〉2
⎛
⎝∑

i

a2
i k

2
i 〈vi 〉3 +

∑
j

a2
j k

2
j

〈
v j
〉3
⎞
⎠
)

.

(78)

It can be checked that this result is consistent with Eq. (A5b).
For N = 2, N− = N+ = 1 and the parameters shown

in column E of Table 1, we present in Fig. 4 the relevant
VN±, V2± = V+−. – conveniently normalized – versus z1

and z2 in Eq. (17) fixing z̄1 = z̄2 = 0. It is clearly shown
that the vacuum of Eq. (26b), depicted by a bold point, is
indeed stable. In column E of Table 1 we arrange also some
representative masses (in GeV) of the particle spectrum for

N± = 2. From the parameters listed there we infer that a2 =√
2 <

√
n2 = 2 and so Eqs. (67) and (77) are met.

5 Generalization

It is certainly impressive that the models described in
Sects. 3.2 and 4.2 can be combined in a simple and (there-
fore) elegant way. We here just specify the utilized K and W
of a such model and restrict ourselves to the verification of
the results. In particular, we consider the following K

KN f± = KN f + KN+N− , (79)

which incorporates the individual contributions from Eqs. (24)
and (56). It is intuitively expected that the required W for
achieving dS/AdS vacua has the form – cf. Eqs. (35) and
(73)

W�N f± = C+W+
0N f± + C−W−

0N f±, (80)

where the definitions of W±
0N f± follow those in Eqs. (33) and

(70) respectively. Namely, we set

W±
0N f± = mWV(FU)±1, (81)

where the parameters a�, ai and a j , which enter the expres-
sions of the functions F and U in Eqs. (34) and (71), satisfy
the constraint – cf. Equations (31) and (67)
∑

�

a2
� +

∑
i

a2
i +

∑
j

a2
j = 3. (82)

I.e., they lie at the hypersphere S
Nt−1 with radius

√
3 and

Nt = Nf + N±. If we introduce, in addition, the C symbols
– cf. Eqs. (36) and (72) –

C±
FU := C+ ± C−(FU)−2, (83)

W�N f± in Eq. (80) is simplified as

W�N f± = mWVFUC−
FU . (84)

Plugging K = KN f± and W = W�N f± from Eqs. (79)
and (84) into Eq. (A2) we obtain

VN f± = m2eKN f

⎛
⎝∏

i j

�
ni
i �

−n j
j

⎞
⎠ |FVU |2

(
− 3|C−

FU |2

+
∑
i

(
ni�

2
i ·

∣∣∣(aiC+
FU − ZiC

−
FU )v−1

i

+ (Z∗
i − 4k2

i Z
3
vi )C

−
FU�−1

i

∣∣∣
2

·
(

−
∣∣∣4k2

i Z
3
vi − Zi

∣∣∣
2 + ni�i

(
1 − 12k2

i Z
2
vi

))−1 )

+
∑
j

(
n j�

2
j ·
∣∣∣(a jC

+
FU − Z jC

−
FU )v−1

j

123



328 Page 10 of 15 Eur. Phys. J. C (2023) 83 :328

− (Z∗
j − 4k2

j Z
3
v j )C

−
FU�−1

j

∣∣∣
2

·
(∣∣∣4k2

j Z
3
v j − Z j

∣∣∣
2 + n j� j

(
1 − 12k2

j Z
2
v j

))−1 )

+
∑

�

∣∣∣a�C
+
FU − Z�−C−

FU − 4k2
� Z

3
v�C

−
FU

∣∣∣
2

·
(

1 − 12k2
� Z

2
v�

)−1
)

. (85)

Once again, we infer that Eqs. (26a) and (26b) consist dS/AdS
vacua since 〈VN f±〉 = V� – see Eq. (6) – and Eq. (A3) with
V = VN f± and α = �, i, j is fulfilled if we take into account
the restrictions in Eqs. (77) and (58).

The G̃ mass is derived from Eq. (A7), after substituting
K and W from Eqs. (79) and (84) respectively. The result is

m3/2FU = m
〈
FUC−

FU
〉
. (86)

From Eqs. (A4) and (A9) with α = �, i, j , we can obtain the
mass spectrum of the present model which includes 2Nt real
scalars and Nt − 1 Weyl fermions with masses m̂z̃α = m3/2

where α = 1, . . . , Nt − 1. The masses squared of the 2Nf

scalars are given in the C− → 0 limit by Eqs. (38a) and
(38b) forC+

F /C−
F = 1 andm3/2F replaced bym3/2FU . In the

same limit the masses squared of the 2N± scalars are given
by Eqs. (75a)–(75d) for C+

U /C−
U = 1 and m3/2U replaced by

m3/2FU .
To provide a pictorial verification of our present setting,

we demonstrate in Fig. 5 the three-dimensional plot of VN f±
with Nf = N− = 1 and N+ = 0, i.e. V1f−, versus z1 and z2

for z̄1 = z̄2 = 0 – see Eq. (17) – and the other parameters
arranged in column F of Table 1. Note that the subscripts 1
and 2 of z correspond to � = 1 and j = 1 and the validity of
Eqs. (77) and (82) is protected. It is evident that the ground
state, depicted by a tick black point is totally stable. Some
characteristic values of the masses of the relevant particles
are also arranged in column F of Table 1.

6 Link to the observable sector

Our next task is to study the transmission of the SUSY break-
ing to the visible world. Here we restrict for simplicity our-
selves to the cases with just one Goldstino superfield, Z . To
implement our analysis, we introduce the chiral superfields
of the observable sector 	α with α = 1, . . . , 5 and assume
the following structure – cf. [1,5,6,35] – for the total super-
potential, WHO, of the theory

WHO = WH(Z) + WO (	α) , (87)

where WH is given by Eqs. (14) or (49) for flat or curved Z
geometry respectively whereas WO has the following generic

Fig. 5 The (dimensionless) SUGRA potential Vf−/m2m2
P in Eq. (85)

as a function of z1 and z2 for z̄1 = z̄2 = 0 – see Eq. (17) – and the
inputs shown in column F of Table 1. The location of the dS vacuum in
Eq. (26b) is also depicted by a thick black point

form

WO = h	1	2	3 + μ	4	5. (88)

with h and μ free parameters. On the other hand, we consider
three variants of the total K of the theory, KHO, ensuring
universal SSB parameters for 	α:

K1HO = KH(Z) +
∑
α

|	α|2; (89a)

K2HO = KH(Z) + NO ln

(
1 +

∑
α

|	α|2/NO

)
, (89b)

where KH(Z) may be identified with Kf in Eq. (8) or K± in
Eq. (41) for flat or curved Z geometry respectively whereas
NO may remain unspecified. For curved Z geometry we may
introduce one more variant

K3HO = ±n ln
(
�± ±

∑
α

|	α|2/n
)
. (89c)

If we expand the KHO’s above for low 	α values, these may
assume the form

KHO = KH(Z) + K̃H(Z)|	α|2, (90a)

with K̃H being identified as

K̃H =
{

1 for KHO = K1HO, K2HO;
�−1

± for KHO = K3HO.
(90b)

Adapting the general formulae of [5,6,35] to the case
with one hidden-sector field and tiny 〈V 〉, we obtain the SSB
terms in the effective low energy potential which can be writ-
ten as

VSSB = m2
α|	̂α|2 + (

Aĥ	̂1	̂2	̂3 + Bμ̂	̂4	̂5 + h.c.
)
,

(91)
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Table 2 SSB parameters: a case study for the inputs of Table 1

Input settings SSB Parameters in GeV

WH KH K̃H mα |A| |B|
W�f Kf 1 170 208 378

W�+ K+ 1 145 177 32

W�+ K+ 1/�+ 290 711 388

W�− K− 1 179 220 40

W�− K− 1/�− 90 55 69

where the rescaled parameters are

ĥ = e〈KH〉/2〈K̃H〉−3/2h and μ̂ = e〈KH〉/2〈K̃H〉−1μ (92)

and the canonically normalized fields are 	̂α = 〈K̃H〉1/2	α .
In deriving the values of the SSB parameters above, we

distinguish the cases:
(a) For flat Z geometry, i.e. KH = Kf , we see from

Eq. (90b) that K̃H is constant for both adopted KHO’s and
so, the results are common. Substituting

〈
FZ

〉
= √

3m3/2 f and 〈∂Z KH〉 = v, (93)

into the relevant expressions [5,6] we arrive at

mα =
(

1 + e
√

6vV�/m2
〈
C−

f

〉2)
m3/2 f � m3/2 f ,

A = −
√

3

2
v

〈
C+

f

C−
f

〉
m3/2 f �

√
3

2
vm3/2 f ,

B = A − m3/2 f ,

(94)

where (̂h, μ̂) = ev2/4(h, μ) and the last simplified expres-
sions are obtained in the realistic limit C− → 0 which
implies C+

f /C−
f → −1.

(b) For curved Z geometry, i.e. KH = K±, we can dis-
tinguish two subcases depending on which KHO from those
shown in Eqs. (89a)–(89c) is selected. Namely,

• If KHO = K1HO or K2HO, then K̃H in Eq. (90b) is Z
independent. For KH = K± respectively we find

(mα, A, B) =
(

1,
√

3/2v, A/m3/2± − 1
)
m3/2±, (95)

where (̂h, μ̂) = 〈v±〉±n/2 (h, μ) and we take into account
the following

〈
FZ

〉
= √

3 〈v±〉m3/2± and 〈∂Z K±〉 =
〈
Zv−1

±
〉
.

• If KHO = K3HO, then K̃H in Eq. (90b) is Z dependent.
Inserting the expressions

〈
∂Z ln K̃H

〉 = 1

n 〈v±〉2 and
〈
∂Z ln K̃ 2

H

〉
= 2v

n 〈v±〉

into the general formulae [5,6,35] we end up with the
following results for KH = K± correspondingly:

mα = √
1 ± 3/n m3/2±;

A = √
3/2v(1 ± 3/n)m3/2±;

B =
(√

3/2v(1 ± 2/n) − 1
)
m3/2±,

(96)

where ĥ = 〈v±〉(3±n)/2 h and μ̂ = 〈v±〉(2±n)/2 μ.

In both cases above we take C− � 0 for simplicity. Note
that the condition n > 3 for K = K− which is imperative
for the stability of the configurations in Eqs. (10a) and (10b)
– see Eq. (51b) – implies non-vanishing SSB parameters too.
Taking advantage from the numerical inputs listed in columns
A, C and D of Table 1 (for the three unimodular models)
we can obtain some explicit values for the SSB parameters
derived above – restoring units for convenience. Our outputs
are arranged in the three rightmost columns of Table 2 for the
specific forms of WH, KH and KHO in Eqs. (87) and (90a)
shown in the three leftmost columns. We remark that there is
a variation of the achieved values of SSB parameters which
remain of the order of the G̃ mass in all cases.

7 Conclusions

We have extended the approach of [12,13], proposing new
no-scale SUGRA models which lead to Minkowski, dS and
AdS vacua without need for any external uplifting mecha-
nism. We first provided a simple but general enough argu-
ment which assists to appreciate the effectiveness of our
paradigm. We then adopted specific single-field models and
showed that the achievement of dS/AdS solutions using
pairs of Minkowski ones works perfectly well for flat – see
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Eqs. (8) and (14) – and hyperbolic or spherical geometry –
see Eqs. (41) and (49). We also broadened these construc-
tions to multi-field models – see Sects. 3.2, 4.2 and 5. Within
each case we derived the SUGRA potential and the relevant
mass spectrum paying special attention to the stability of
the proposed solutions. Typical representatives of our results
were illustrated in Fig. 1, 2, 3, 4 and 5 employing numeri-
cal inputs from Table 1. We provided, finally, the set of the
soft SUSY-breaking parameters induced by our unimodular
models linking them to a generic observable sector – see Eqs.
(94) - (96). We verified – see Table 2 – that their magnitude
is of the order of the gravitino mass.

As stressed in [13,30], this kind of constructions, based
exclusively in SUGRA, can be considered as part of an effec-
tive theory valid below mP. However, the correspondence
between Kähler and super-potentials which yields naturally
Minkowski, dS and AdS (locally stable) vacua with broken
SUSY may be a very helpful guide for string theory so as to
establish new possible models with viable low energy phe-
nomenology. As regards the ultraviolet completion, it would
be interesting to investigate if our models belong to the string
landscape or swampland [17–19]. Note that the swampland
string conjectures are generically not satisfied in SUGRA-
based models but there are suggestions [20,21] which may
work in our framework too. One more open issue is the inter-
face of our settings with inflation. We aspire to return on
this topic soon taking advantage from other similar stud-
ies [30,37–41] – see [42]. At last but not least, let us men-
tion that the achievement of the present value of the dark-
energy density parameter in Eq. (7) requires an inelegant
fine tuning, which may be somehow alleviated if we take
into account contributions from the electroweak symmetry
breaking and/or the confinement in quantum chromodynam-
ics [13,30].

Despite the shortcomings above, we believe that the estab-
lishment of novel models for SUSY breaking with a nat-
ural emergence of Minkowski and dS/AdS vacua can be
considered as an important development which offers the
opportunity for further explorations towards several cosmo-
phenomenological directions.
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Appendix A: Mass formulae in SUGRA

We here generalize our formulae in [5,6] for N chiral mul-
tiplets and dS/AdS vacua. Let us initially remind that cen-
tral role in the SUGRA formalism plays the Kähler-invariant
function expressed in terms of the Kähler potential K and
the superpotential W as follows

G := K + ln |W |2. (A1)

Using it we can derive the F-term scalar potential [1]

V = eG
(
Gαβ̄GαG β̄ − 3

)
= eK |W |2

(
K αβ̄GαG β̄ − 3

)
,

(A2)

where the subscripts of quantities G and K denote differen-
tiation w.r.t the superfields Zα and Gαβ̄ = K αβ̄ is the inverse
of the Kähler metric Kαβ̄ . The spontaneous SUSY break-
ing takes place typically at a (locally stable) vacuum or flat
direction of V which satisfies the extremum and minimum
conditions

〈∂αV 〉 = 〈∂ᾱV 〉 = 0 and m̂2
A > 0. (A3)

Here ∂α := ∂/∂Zα and ∂ᾱ := ∂/∂Z ∗̄
α with the scalar com-

ponents of the superfields denoted by the same superfield
symbol. Also m̂2

A are the eigenvalues of the 2N × 2N mass-
squared matrix M2

0 of the (canonically normalized) scalar
fields which is computed applying the formula

M2
0 =

⎧⎪⎪⎪⎪⎪⎩

〈
∂α̂∂β̂V

〉 〈
∂α̂∂̂̄βV

〉
〈
∂̂̄β∂α̂V

〉 〈
∂̂̄β∂̂̄αV

〉
⎫⎪⎪⎪⎪⎪⎭ (A4)

where ∂ Â := ∂/∂ Ẑ A with A = α or ᾱ and Ẑα = √
KαᾱZα

given that the K ’s considered in our work are diagonal. The
aforementioned M2

0 is one of the mass-squared matrices M2
J

of the particles with spin J , composing the spectrum of the
model. They obey the super-trace formula [1,2]

STrM2 :=
3/2∑
J=0

(−1)2J (2J + 1)TrM2
J (A5a)

= 2m2
3/2

( 〈
(N − 1)(1 + V/m2

3/2)
〉

+
〈
GαG

αβ̄ Rβγ̄ G
γ δ̄G δ̄

〉 )
, (A5b)
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where Rαβ̄ is the (moduli-space) Ricci curvature which reads

Rαβ̄ = −∂α∂β̄ ln det
(
Gγ δ̄

)
. (A6)

Note that Eq. (A5b) provides a geometric computation of
STrM2 which can be employed as an consistency check for
the correctness of a direct computation via the extraction of
the particle spectrum by applying Eq. (A5a).

The factor N − 1 in the first term of Eq. (A5b) reflects the
fact that we obtain one fermion with spin 1/2 less than the
number N of the chiral multiplets. This is because one such
fermion, known as goldstino, is absorbed by the gravitino
(G̃) with spin 3/2 according to the super-Higgs mechanism
[1]. The G̃ mass squared is evaluated as follows

m2
3/2 =

〈
eG

〉
= 1

3

〈
Gαβ̄F

αF∗β̄ − V
〉
, (A7)

where the F terms are defined as [35]

Fα := eG/2K αβ̄G β̄ and F∗ᾱ := eG/2K ᾱβGβ. (A8)

In our work we compute also the elements of M1/2, i.e.,
the masses of the (canonically normalized) chiral fermions,
Z̃α, which can be found applying the formula

mαβ = m3/2
〈
Gαβ + (1 − 2/U )GαGβ

〉 〈
GαᾱGββ̄

〉−1/2
,

(A9)

where Gαβ is defined in terms of the Kähler-covariant deriva-
tive Dα as

Gαβ := DαGβ = ∂αGβ − �
γ
αβGγ , (A10)

with �
γ
αβ = K γ γ̄ ∂αKβγ̄ and U takes into account a possible

non-vanishing 〈V 〉, i.e.,

U = 3 + 〈V 〉 /m2
3/2. (A11)

In Eq. (A9) care is taken so as to canonically normalize the
various fields and remove the mass mixing between G̃ and
fields with spin 1/2 in the SUGRA lagrangian.

Let us, finally, note that Eq. (A5b) can be significantly
simplified for N = 1 since it can be brought into the form

STrM2 = 2m2
3/2〈G−2

Z Z∗GZGZ∗ RZZ∗〉
= 2m2

3/2

〈
(3 + V/m2

3/2)R
〉
, (A12)

where we make use of Eq. (A2) and the definition of the
scalar curvature R which is

R = Gαβ̄ Rαβ̄ . (A13)

Note that the first term of Eq. (A5b) vanishes for N = 1 due
to the super-Higgs effect.

Appendix B: Half-plane parametrization

In this Appendix we employ the half-plane parametrization
of the hyperbolic geometry which allows us to compare our
results in Sect. 4.1 with those established in [12,13]. The
transformation from the disc coordinates Z and Z∗, utilized
in Sect. 4.1, to the new ones T and T ∗ is performed [9,32,34]
via the replacement

Z = −√
n
T − 1/2

T + 1/2
with Re(T ) > 0. (B1)

The last restriction – from which the name of the T − T ∗
coordinates – is compatible with Eq. (42) for K = K−.

Inserting Eq. (B1) into Eqs. (41) and (46), K− and W0−
may be expressed in terms of T and T ∗ as follows

K− = −n ln
T + T ∗

(T + 1/2)(T ∗ + 1/2)
(B2a)

and W±
0− = (2T )n∓(T + 1/2)−n, (B2b)

where we fix k = 0 in Eq. (41), define the exponents

n± = 1

2

(
n ± √

3n
)

(B3)

and take into account the identity

atnh
Z√
n

= 1

2
ln

√
n + Z√
n − Z

. (B4)

Performing a Kähler transformation as in Eq. (21) with

�K = −n ln (T + 1/2) (B5)

we can show that the model described by Eqs. (B2a) and
(B2b) is equivalent to a model relied on the following ingre-
dients

K̃− = −n ln
(
T + T̄

)
and W̃±

− = m(2T )n∓ . (B6)

We reveal the celebrated K and W analyzed in [12,13]. Con-
trary to the solutions proposed in Eqs. (13) and (47), the pres-
ence of the exponents in Eq. (B6) may require some special
attention from the point of view of holomorphicity [12,13].
Considering, though, W̃±

− as an effective W , valid close to
the non-zero vacuum of the theory, any value of n± is, in
principle, acceptable.

Trying to achieve locally stable dS/AdS vacua with stabi-
lized T we concentrate on the following K

K̃− = −n ln �̃, (B7a)

where the argument of ln is introduced as

�̃ = T + T ∗ + k2T 4
v /n with Tv = T + T ∗ − √

2v. (B7b)

As regards W , this can be generated by interconnecting the
two parts in Eq. (B6). Namely, we define

W̃�− = C+W̃+
0− − C−W̃−

0− = m(2T )n+C−
T , (B8)
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where the last short expression is achieved thanks to the new
C symbols defined as

C±
T := C+ ± C−(2T )−

√
3n . (B9)

The resulting SUGRA potential Ṽ−, obtained after replacing
Eqs. (B7a) and (B8) into Eq. (A2), is found to be

Ṽ−=(m/2)2�̃−n|2T |2n+
(
−12|C−

T |2+n�̃2

·
∣∣∣
(√

3C+
T +√

nC−
T

)
/T−2

√
n(1+4k2T 3

v /n)C−
T �̃−1

∣∣∣
2

·
(
n
(

1+4k2T 3
v /n

)2 −12k2T 2
v �̃

)−1 )
.

(B10)

For the directions in Eqs. (10a) and (10b) – with Z replaced
by T – we obtain dS/AdS vacua since 〈Ṽ−〉 = V� given in
Eq. (6). In addition, the conditions in Eq. (A3) forV = Ṽ− are
satisfied after imposing n > 3. This is, because the sgoldstino
components (t and t̄) – appearing by the decomposition of T
as in Eq. (17) – acquire masses squared

m̂2
t = 288

√
2k2n−1v3 〈C+

T /C−
T

〉2
m̃2

3/2; (B11a)

m̂2
t̄ = 4

(
1 − (3/n)

〈
C+
T /C−

T

〉2)
m̃2

3/2. (B11b)

Note that the expression for m̂t̄ coincides with that for m̂z̄

in Eq. (51b) for K = K− if we replace C±
T with C±

u−. As
in that case, to ensure m̂2

t̄ > 0 we have to impose the afore-
mentioned lower bound on n. Otherwise, an extra term of the
form k̃(T − T ∗)4 [12,13] added in Eq. (B7b) may facilitate
the stabilization for lower n values. The expressions above
contain the G̃ mass

m̃3/2 = m(
√

2v)
√

3n/2 〈C−
T

〉
(B12)

which can be determined after inserting Eqs. (B7a) and (B8)
into Eq. (A7). Upon substitution of the the mass spectrum
above into Eq. (A5a) we find

STrM2
T− = (12/n)m̃2

3/2

〈
C+
T /C−

T

〉2 (
24

√
2k2v3/n − 1

)
,

(B13)

consistently with the expression of Eq. (A12) given that R
from Eq. (A13) is

〈R̃T−
〉 =

(
24

√
2k2v3/n − 1

)
/v2. (B14)

Adopting the superpotential in Eq. (88) for the visible-
sector fields 	a and employing for simplicity C− � 0 we
below find the resulting SSB parameters. To this end, we
identify KH in Eqs. (89a) and (89b) with K̃− in Eq. (B7a)
and so we obtain the corresponding K̃1HO and K̃2HO. On
the other hand, K3HO in Eq. (89c) may be replaced with the

following

K̃3HO = −n ln

(
�̃ −

∑
α

|	α|2/n
)

. (B15)

For low 	α values, the KHO’s above reduce to that shown in
Eq. (90a), with K̃H being identified as

K̃H =
{

1 for KHO = K̃1HO, K̃2HO;
�̃−1 for KHO = K̃3HO.

(B16)

Using the standard formalism [5,6], we extract the following
SSB masses squared

m2
α =

{
m̃2

3/2 for KHO = K̃1HO, K̃2HO;
(1 − 3/n)m̃2

3/2 for KHO = K̃3HO,
(B17a)

trilinear coupling constant

A

m̃3/2
=

⎧
⎪⎨
⎪⎩

−√
3n for KHO = K̃1HO

and K̃2HO;√
3
(
3/

√
n − √

n
)

for KHO = K̃3HO,

(B17b)

and bilinear coupling constant

B

m̃3/2
=

⎧⎪⎪⎨
⎪⎪⎩

−
(

1 + √
3n
)

for KHO = K̃1HO

and K̃2HO;(√
3/n(2 − n) − 1

)
for KHO = K̃3HO.

(B17c)

To reach the results above we take into account the auxiliary
expressions

〈
FT

〉
= 2

√
3m̃3/2/

√
n, 〈∂T KH〉 = −n/

√
2v

〈
∂T ln K̃ 3

H

〉
= 3

〈
∂T ln K̃ 2

H

〉
/2 = −3/

√
2v

(B18)

and define the rescaled parameters

(̂h, μ̂) =
(√

2v
)−n/2

(h, μ)

for KHO = K̃1HO and K̃2HO. For KHO = K̃3HO we have

ĥ =
(√

2v
)(3−n)/2

h and μ̂ =
(√

2v
)(2−n)/2

μ.

For KHO = K̃3HO and n = 3 we recover the standard
no-scale SSB terms as regards mα and A [9,14] but not for
B – cf. [30,43,44]. The reason is that here W in Eq. (B8) is
not constant as in the original no-scale models and this fact
modifies the resulting

〈
FT

〉
which includes derivation of W

w.r.t T . Comparing the above results with those in Eqs. (95)
and (96) we remark that the expressions for mα are exactly
the same.

Extensions of the present model including more than one
goldstini and also matter fields are extensively investigated
in [12,13].
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