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Abstract We generate the field equations for a charged
gravitating perfect fluid in Einstein–Gauss–Bonnet gravity
for all spacetime dimensions. The spacetime is static and
spherically symmetric which gives rise to the charged con-
dition of pressure isotropy that is an Abel differential equa-
tion of the second kind. We show that this equation can be
reduced to a canonical differential equation that is first order
and nonlinear in nature, in higher dimensions. The canonical
form admits an exact solution generating algorithm, yield-
ing implicit solutions in general, by choosing one of the
potentials and the electromagnetic field. An exact solution
to the canonical equation is found that reduces to the neutral
model found earlier. In addition, three new classes of solu-
tions arise without specifying the gravitational potentials and
the electromagnetic field; instead constraints are placed on
the canonical differential equation. This is due to the fact that
the presence of the electromagnetic field allows for a greater
degree of freedom, and there is no correspondence with neu-
tral matter. Other classes of exact solutions are presented in
terms of elementary and special functions (the Heun conflu-
ent functions) when the canonical form cannot be applied.

1 Introduction

It is important to describe the physical properties and
behaviour of charged localized distributions in relativistic
astrophysics. This has a long history in physical theories since
such structures model dense stars and astronomical bodies.
These have been widely studied in a variety of physical sce-
narios over the decades. For some comprehensive studies
of charged objects in general relativity see the treatments
of Murad and Fatema [1,2], Fatema and Murad [3], Murad
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[4], Kiess [5] and Ivanov [6,7]. Fewer results are known
in modified gravity theories such as Einstein–Gauss–Bonnet
(EGB) gravity. The introduction of higher order curvature
terms, together with the electromagnetic effects, leads to field
equations which are difficult to integrate. However particu-
lar charged stars in EGB gravity have been generated by
Hansraj [8], Bhar and Govender [9] and Banerjee et al. [10].
Such solutions of the combined EGB and Maxwell equations
should match to the suitable exterior spacetimes of Boulware
and Deser [11] and Wiltshire [12] to produce a charged stel-
lar model. Exact solutions of the charged EGB equations
may also be used to study a variety of physical phenomena.
For example Sharif and Abbas [13] considered the dynamics
of charged radiating collapse in EGB gravity demonstrat-
ing that the Gauss–Bonnet terms affect the role of collapse.
It is important to note that the Gauss–Bonnet term corrects
undesirable physical features that can arise in conventional
Einstein stellar models [8].

For neutral matter with isotropic pressures in EGB gravity,
the fundamental equation governing the behaviour of grav-
ity is the condition of pressure isotropy. Stellar models sat-
isfying this requirement have been found in [14–21]. In the
presence of the electromagnetic field the condition of pres-
sure isotropy is adapted to include the presence of the charge.
The presence of charge changes the behaviour of the gravi-
tational field and allows for a wide class of exact solutions
to the field equations. Therefore in our treatment the charged
condition of pressure isotropy is central to our investigation.
This is a necessary condition to describe an isotropic charged
self-gravitating body in EGB gravity. Two features of our
approach are noteworthy. Firstly, the new charged condition
of pressure isotropy is a simple generalization of the neu-
tral case. Secondly, the connection to general relativity is
easy to make as most of the known Einstein stellar models
have isotropic pressures, both neutral and charged. Clearly
much more general behaviour is allowed, with greater free-
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dom in the analytical forms of the gravitational potentials, if
anisotropic pressures are permitted.

It is our intention to develop an algorithm that may be uti-
lized to find new charged exact solutions in EGB gravity. The
idea is to extend this approach from general relativity to the
charged EGB equations. In general relativity certain solution
generating algorithms have been developed over time; these
are contained in the papers [22–28]. The higher order curva-
ture terms and charge have a profound impact on the charged
condition of pressure isotropy in the EGB case. Naicker et al.
[29] developed an EGB algorithm in N dimensions for neu-
tral and static spherically symmetric metrics. We show in this
treatment that a similar algorithm may be generated in the
presence of the electromagnetic field. The charged condition
of pressure isotropy is shown to be an Abelian differential
equation of the second kind. It can be transformed to canon-
ical form using a transformation suggested by Polyanin and
Zaitsev [30]. We demonstrate that general solutions exist to
the fundamental equation which is not the case for neutral
matter. Particular charged exact models are found by specify-
ing forms for the electric field and one of the potentials which
contain neutral EGB models found earlier. It is the presence
of the electromagnetic field that permits wider classes of solu-
tions. Note that, in a different approach, Maharaj et al. [31]
used an existing solution to generate a new exact EGB solu-
tion in their algorithm.

2 Charged EGB gravity

We first introduce the necessary quantities related to the elec-
tromagnetic field. The Faraday tensor F is defined in terms
of the electromagnetic potential A by

Fab = Ab;a − Aa;b. (1)

We note that the tensor F is skew-symmetric. The electro-
magnetic matter tensor E is composed of the Faraday tensor
and the metric tensor, and is written as

Eab = 1

AN−2

(
FacFb

c − 1

4
gabFcd F

cd
)

, (2)

where AN−2 is the total surface area of the (N − 2)-sphere
denoted by

AN−2 = 2π
N−1

2

Γ
( N−1

2

) . (3)

In the above Γ (. . . ) is the gamma function. The electro-
magnetic field is governed by Maxwell’s equations. These
fundamental equations are expressed covariantly as

Fab;c + Fbc;a + Fca;b = 0, (4a)

Fab;b = AN−2 J
a . (4b)

In the above Ja is the current density defined by

Ja = σua, (5)

for a non-conducting fluid, and σ is the proper charge density.
The energy momentum tensor for neutral matter is defined

by

Tab = (ρ + p)uaub + pgab. (6)

In the above, ρ represents the energy density, p represents
the isotropic pressure and u is the comoving fluid velocity
which is unit and timelike (uaua = −1, ua = e−νδa0). The
total energy momentum tensor T is then given by

Tab = Tab + Eab. (7)

The Gauss–Bonnet action, a modification of the Einstein–
Hilbert action, is required to generate the EGB field equa-
tions in any spacetime dimension. Interestingly, this Gauss–
Bonnet action contains quadratic curvature terms which yield
field equations that are second order and quasilinear in the
highest derivative. The Lovelock tensor H is expressed by

Hab = gabLGB − 4RRab + 8RacR
c
b + 8Rcd Racbd

−4Ra
cdeRbcde, (8)

and the Gauss–Bonnet term LGB is given by

LGB = R2 + Rabcd R
abcd − 4Rcd R

cd . (9)

The EGB field equations for charged matter are derived
in the form

Gab − α

2
Hab = κNTab. (10)

In the above, Gab is the Einstein tensor, α is the Gauss–
Bonnet parameter, and κN is the gravitational coupling con-
stant defined by

κN = 2 (N − 2) π
N−1

2 G

c4 (N − 3) Γ
( N−1

2

) . (11)

If N = 4, then we obtain κ (= κ4) = 8πG
c4 as the appropriate

limit in general relativity. When the matter distribution con-
tains electric charge, we must consider the contribution of the
electromagnetic field to the total energy momentum tensor
T . For a charged gravitating body we need to solve the EGB
field equations (10) together with Maxwell’s equations (4).
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3 Field equations

The interior spherically symmetric static stellar manifold in
N dimensions has the metric

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2dΩ2
N−2, (12)

where ν(r) and λ(r) are the gravitational potentials that are
arbitrary functions of r. The (N − 2)-sphere is given by

dΩ2
N−2 =

N−2∑
i=1

⎡
⎣i−1∏

j=1

sin2(θ j )

⎤
⎦ (dθi )

2. (13)

For charge we select the electromagnetic potential A in the
form

Aa = (Φ(r), 0, 0, . . . , 0) , (14)

which is usually the choice made when studying static
spheres in general relativity. We then get the Faraday ten-
sor component

F01 = e−2(ν+λ)Φ ′(r) = e−(ν+λ)E(r). (15)

Hence we obtain the following form for the electrostatic field
intensity

E(r) = e−(ν+λ)Φ ′(r). (16)

Then the static spherically symmetric metric (12), the elec-
tromagnetic potential (14) and the matter distribution (7) lead
to the charged EGB field equations. If we equate the curva-
ture and the matter components using the definition (10), we
obtain the EGB field equations in N dimensions. These are
expressed by

κN

(
ρ+ E2

2AN−2

)
= (N−2)

r4e4λ

[
r3e2λλ′+ (N − 3) r2e4λ

2

− (N − 3) r2e2λ

2
+α (N − 3) (N − 4)

(
e2λ−1

)

×
(

2rλ′ + (N − 5)
(
e2λ − 1

)
2

)]
, (17a)

κN

(
p − E2

2AN−2

)
= (N − 2)

r4e4λ

[
r3e2λν′ + (N − 3) r2e2λ

2

− (N − 3) r2e4λ

2
+ α (N − 3) (N − 4)

(
e2λ − 1

)

×
(

2rν′ − (N − 5)
(
e2λ − 1

)
2

)]
, (17b)

κN

(
p + E2

2AN−2

)

= 1

r2e2λ

[
(N − 3) (N − 4)

2
+ r2ν′′

+r2ν′2 − r2ν′λ′ + (N − 3) r
(
ν′ − λ′)

+2α (N − 3) (N − 4)

(
ν′′ + ν′2 − ν′λ′

)]

+ (N − 3) (N − 4)

r2e4λ

×
[

6αν′λ′ − e4λ

2
− 2α

(
ν′′ + ν′2) ]

+2α (N − 3) (N − 4)[
(N − 5)

r3e4λ

(
e2λ − 1

) (
ν′ − λ′) ]

−α (N − 3) (N − 4) (N − 5) (N − 6)

2r4e4λ

(
e2λ − 1

)2
,

(17c)

σ = e−λ
(
r (N−2)E

)′
r (N−2)AN−2

. (17d)

Note that primes represent differentiation with respect to the
variable r. Then the combined field equations describe the
gravitational behaviour of a charged gravitating fluid in EGB
gravity in N dimensions.

If we set E = 0 then we obtain the neutral EGB field
equations of Naicker et al. [29]. Note that the system (17)
contains several cases that arise in general relativity and EGB
gravity: spacetime dimensions N = 4, N ≥ 5, neutral and
charged matter. This is reflected in Table 1. Our investigation
allows for a comprehensive treatment of all the cases.

We now apply the transformation

e2ν(r) = y2(x), e−2λ(r) = Z(x), x = r2, (18)

first introduced by Durgapal and Bannerji [32] in general
relativity, to simplify the system (17). The charged EGB field
equations can then be recast as

κN

(
ρ+ E2

2AN−2

)
= (N−2)

[
(N−3) (1−Z)−2x Ż

2x

+α (N−3) (N−4) (1−Z)

2x2

(−4x Ż+ (N−5) (1−Z)
)]

,

(19a)
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Table 1 Fluids with isotropic
pressures in general relativity
and EGB gravity

Case α N E2 Model

I 0 4 0 Neutral fluid in general relativity

II 0 4 �= 0 Charged fluid in general relativity

III 0 ≥ 5 0 Neutral fluid in higher dimensional general relativity

IV 0 ≥ 5 �= 0 Charged fluid in higher dimensional general relativity

V �= 0 ≥ 5 0 Neutral fluid in EGB gravity

VI �= 0 ≥ 5 �= 0 Charged fluid in EGB gravity

κN

(
p − E2

2AN−2

)
= (N − 2)

[
2Z ẏ

y
+ (N − 3) (Z − 1)

2x

+α (N−3)(N−4) (1−Z)

(
4Z ẏ

xy
− (N−5) (1−Z)

2x2

)]
,

(19b)

κN

(
p + E2

2AN−2

)
= 2

y

[
2x Z ÿ + x Ż ẏ + (N − 2) ẏ Z

]

+ (N−3)

[
Ż+ (N−4) (Z−1)

2x

]

+α (N−3) (N−4)

[
4Ż ẏ (1−3Z)

y
+8Z (1−Z) ÿ

y

+4 (N − 4) Z (1 − Z) ẏ

xy
+ 2 (N − 5) Ż (1 − Z)

x

− (N − 5) (N − 6) (1 − Z)2

2x2

]
, (19c)

σ 2 =
Z
[
2x

(N−1)
2 Ė + (N − 2) x

(N−3)
2 E

]2

(AN−2)2 x (N−2)
. (19d)

Note that dots represent differentiation with respect to the
variable x .

If we equate (19b) and (19c) then we find the charged
isotropic pressure condition

4x2Z [x + 2α (N − 3) (N − 4) (1 − Z)] ÿ

+2x
[
x2 Ż − 2α (N − 3) (N − 4) (2Z (1 − Z)

−x (1 − 3Z) Ż
)]

ẏ +
[

(N − 3)
(
x Ż − Z + 1

)
× (x + 2α (N − 4) (N − 5) (1 − Z))

− (N − 2)

(N − 3)
xE2

]
y = 0. (20)

The charged condition of pressure isotropy has to be inte-
grated to find an exact model of a charged gravitating sphere.
To solve Eq. (20) we need to restrict two of the quantities y,
Z and E . Note that the case N = 5 is special as the term
2α (N − 4) (N − 5) (1 − Z) vanishes. There is simplifica-
tion in (20) and most exact solutions found correspond to
N = 5. The dimensions N ≥ 6 have a dramatic effect and
lead to new features absent in the model when N = 5. A
choice of the potentials y and Z may lead to a model with

unphysical behaviour. Consequently in many investigations,
a choice for the electric field is made on physical grounds.
For recent examples of this approach see the treatments of
Mathias et al. [33], Lighuda et al. [34] and Mafa Takisa et al.
[35].

We can summarize our results in the following statements:

Theorem 1 If the electric field E is specified then the con-
dition of pressure isotropy, a nonlinear second order differ-
ential equation, has to be integrated.

Corollary 1 We can obtain a general form for E without
integration if the potentials Z = Z0 and y = y0 are specified.

4 Abelian differential equation

Progress in the integration of (20) can be made if we write
it in a particular analytic form. Expression (20) can also be
regarded as a first order nonlinear ordinary differential equa-
tion in Z . This is given by[

2x3 ẏ + 4α (N − 3) (N − 4) x2 ẏ + (N − 3) x2y

+2α (N − 3) (N − 4) (N − 5) (1 − Z) xy

−12α (N − 3) (N − 4) x2 ẏ Z

]
Ż

+2α (N − 3) (N − 4)
[
4x ẏ − 4x2 ÿ + (N − 5) y

]
Z2

+
[

4x3 ÿ + 8α (N − 3) (N − 4) x2 ÿ

−8α (N − 3) (N − 4) x ẏ − (N − 3) xy

−4α (N − 3) (N − 4) (N − 5) y

]
Z

+
[

(N − 3) x + 2α (N − 3) (N − 4) (N − 5)

− (N − 2)

(N − 3)
xE2

]
y = 0. (21)

The above is further identified as an Abel differential equa-
tion of the second kind in Z if y and E are specified. It is
important to find exact solutions to this equation in order to
determine the dynamics of our model. In general (21) is dif-
ficult to solve, however it can be simplified by making use of

123



Eur. Phys. J. C (2023) 83 :343 Page 5 of 14 343

a transformation similar to that in Polyanin and Zaitsev [30].
We now present the new variable

w =
(
Z − (N − 3) [2α (N − 4) (N − 5) + x] y

2α (N − 3) (N − 4) [6x ẏ + (N − 5) y]

− 2x (x + 2α (N − 3) (N − 4)) ẏ

2α (N − 3) (N − 4) [6x ẏ + (N − 5) y]

)
W, (22)

where w = w(x) and

W = exp

(
−
∫ (

4x ẏ − 4x2 ÿ + (N − 5) y
)

x [6x ẏ + (N − 5) y]
dx

)
. (23)

Equation (21) then reduces to the canonical differential equa-
tion of the form

wẇ = F1w + F0, (24)

where the new functions F1 and F0 depend on the metric
potential y, its derivatives and E . These are expressed by

F1 = x [y − 2 (x + 2α (N − 3) (N − 4)) ẏ]

α (N − 3) (N − 4)
[
6x ẏ + (N − 5) y

]2
× [(N − 3) ẏ − 2x ÿ] W, (25)

and

F0 = x2 (−2y + 4 (x + 2α (N − 3) (N − 4)) ẏ)

× [(N − 3) y (ẏ + 2 (x + 2α (N − 4) (N − 5)) ÿ)

+2 ẏ [(x − 4α (N − 3) (N − 4)) ẏ

+2x (x + 2α (N − 3) (N − 4)) ÿ]]

× W 2

2α2 (N − 3)2 (N − 4)2 [6x ẏ + (N − 5) y]3

− (N − 2) yE2W 2

2α (N − 3)2 (N − 4) [6x ẏ + (N − 5) y]
. (26)

In order to find a solution for w = w(x), we must inte-
grate (24) and make appropriate choices for y and E . Since
F1 and F0 both depend on an arbitrary function of y in a
complicated manner and F0 contains contributions from the
electromagnetic field, it will not be possible to find a general
solution to (24). However particular solutions do exist.

We summarize our result in the following:

Theorem 2 Whenα �= 0 and 6x ẏ+(N − 5) y �= 0, the con-
dition of pressure isotropy is classified as anAbelian differen-
tial equation of the second kind in Z , in N dimensions,which
can be transformed to the canonical form wẇ = F1w + F0.

Corollary 2 If particular choices for the potential y = y0

and the electromagnetic field E = E0 are made, then wẇ =
F1w + F0 can be solved to find the metric potential Z = Z0.

Observe that the above result is a generalisation of the
model presented in Naicker et al. [29] to include the elec-
tromagnetic field; we regain the result by [29] when E = 0.

It is indeed interesting that the canonical form (24) is not

affected by the electromagnetic field. However it is impor-
tant to observe that the presence of E leads to a new differ-
ential equation. We note that our result provides a solution
generating algorithm for the charged EGB field equations
which extends the neutral algorithm of [29] to include the
electromagnetic field.

4.1 A specific metric

Equation (24) does admit exact solutions. As an example we
illustrate a solution to (24) by setting

y = √
x . (27)

This metric potential was also used by Hansraj and Mkhize
[19] when N = 6 and by Naicker et al. [29] for arbitrary
spacetime dimensions N ≥ 5, for uncharged matter. The
integral (23) evaluates to

W = 1

x
. (28)

Then expression (24) now has the form

wẇ = − 1

(N − 2) x2 w − 2

(N − 2)2 x3

− E2

2α (N − 3)2 (N − 4) x2
. (29)

In order to solve Eq. (29) we must specify a form for the
electromagnetic field. We choose a form for E as

E2 = 2A (N − 3)2 (N − 4)

(N − 2)2 x
, (30)

where A is some arbitrary constant. Other forms of E are
possible but the chosen form simplifies the integration pro-
cess. The form for E selected leads to a singularity at the
centre so that the model applies to an envelope region away
from the centre. Equation (29) then becomes

wẇ = − 1

(N − 2) x2 w − 2

(N − 2)2 x3
− A

α (N − 2)2 x3
.

(31)

This equation can be identified as a nonlinear first order dif-
ferential equation in the variable w(x) which can be simpli-
fied further using the substitution

W (x) =
(

2 + A

α

)−1

(N − 2) xw(x). (32)

As a result, we obtain(
2 + A

α

)
W Ẇ(

2 + A
α

)
W 2 − W − 1

= 1

x
, (33)

in terms of the new variable W (x). The structure of expres-
sion (33) is a separable differential equation which can be
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solved to obtain

[
2

(
2 + A

α

)
W − 1 −

√
9 + 4A

α

]1+
(

9+ 4A
α

)−1/2

×
[

2

(
2 + A

α

)
W − 1 +

√
9 + 4A

α

]1−
(

9+ 4A
α

)−1/2

× 1

4
(
2 + A

α

) = C1x
2, (34)

where C1 > 0 represents an integration constant. We can
then write Eq. (34) in terms of the variable w(x) in the form

[
2 (N − 2) wx − 1 −

√
9 + 4A

α

]1+
(

9+ 4A
α

)−1/2

×
[

2 (N − 2) wx − 1 +
√

9 + 4A

α

]1−
(

9+ 4A
α

)−1/2

× 1

4
(
2 + A

α

) = C1x
2, (35)

using (32).
Therefore we have solved Eq. (31). The solution (35) is

provided implicitly. In terms of the potential Z we can obtain
the form[

2 (N − 2)

(
Z − (N − 2) x + 2α (N − 3) (N − 4)2

2α (N − 2) (N − 3) (N − 4)

)

−
√

9 + 4A

α
− 1

]1+
(

9+ 4A
α

)−1/2

×
[

2 (N−2)

(
Z − (N−2) x+2α (N − 3) (N − 4)2

2α (N − 2) (N − 3) (N − 4)

)

+
√

9 + 4A

α
− 1

]1−
(

9+ 4A
α

)−1/2

= 4

(
2 + A

α

)
C1x

2. (36)

Hence the gravitational potential Z is given exactly, contain-
ing elementary functions of x for all spacetime dimensions
N ≥ 5. The charged condition of pressure isotropy (21)
admits the particular exact solutions given by (27), (30) and
(36).

Earlier solutions are contained in our general result. When
A = 0 in expression (36) we obtain, for all N ≥ 5, the
solution

Z = 1

N − 2

[ (
−1 ±√2C1x

3

+
√

∓2
√

2C1x3 + 2C1x6

)− 1
3 +

(
−1 ±√2C1x

3

+
√

∓2
√

2C1x3 + 2C1x6

) 1
3 + 1

]

+ (N − 2) x + 2α (N − 3) (N − 4)2

2α (N − 2) (N − 3) (N − 4)
, (37)

which is explicit. This regains the neutral solution found by
Naicker et al. [29]. The uncharged model of Hansraj and
Mkhize [19] with N = 6 is a special case of (37). The
uncharged solutions generate an explicit form for Z . The
electromagnetic field also leads to exact models but its over-
all effect on Z is that it has to satisfy an implicit equation.

5 Dimension N = 5

Note that the spacetime dimension N = 5 leads to simplifi-
cation in the Abelian differential equation (21) with several
terms vanishing. In addition the transformation (22) takes on
the simpler form

w =
(
Z − [y + (x + 4α) ẏ]

12α ẏ

)
W, (38)

where the function W now has the explicit form

W =
(
ẏ

x

) 2
3

. (39)

The functions F1 and F0 in (24) can then be written as

F1 =
(
ẏ

x

) 2
3
[
− 1

18α
+ y

36αx ẏ
+ x ÿ

18α ẏ
+ 2 ÿ

9ẏ

− y ÿ

36α ẏ2 − 2

9x

]
, (40)

F0 =
(
ẏ

x

) 4
3
[

y

432α2 ẏ
− y2 ÿ

216α2 ẏ3 − 1

54α
+ y

27αx ẏ

+ ÿ

ẏ

(
4

27
+ 2x

27α
+ x2

108α2

)
+ x

216α2 + xy ÿ

216α2 ẏ2

− y2

432α2x ẏ2 − 4

27x
+ y ÿ

54α ẏ2 − yE2

16α ẏ

]
. (41)

We can observe that the spacetime dimension N = 5 is spe-
cial as integration of the canonical form (24) is now possible
and the functions F1 and F0 are expressed in a simpler form.

We now demonstrate an explicit solution to (24) when
N = 5. The choice y = 1

2 D1x2 + D2 for the potential and
E2 = bx for the electrostatic field intensity in (24) then
yields

wẇ = (D1)
4
3

[
x

64α2 + 1

12α
+ D2

18αD1x2 − D2
2

144α2D2
1x

3
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− bx2

32α
− D2b

16αD1

]
, (42)

which is a separable differential equation that can be inte-
grated to obtain w and consequently Z . The gravitational
potential Z is then provided by

Z =
[(

(D1)
4
3

α

)[
x2

64α
+ (D2)

2

144α(D1)2x2 + x

6
− D2

9C1x

−bx3

48
− D2b

8D1

]
+ C

] 1
2
(

1

D1

) 2
3

+1

3
+ x

8α
+ D2

12αD1x
. (43)

Note that D1, D2 and b are constants. The solution for the
potential Z is thus provided explicitly in closed form and is
expressed in terms of elementary functions of x . This appears
to be a new class of solutions to the charged EGB field equa-
tions. When b = 0, we obtain the uncharged case similar to
the solution illustrated in Hansraj et al. [17].

6 Exceptional metrics

The transformation given by (22) holds when α �= 0 and
6x ẏ + (N − 5) y �= 0. Therefore we need to consider these
cases separately.

Firstly we consider the case when α = 0, then the condi-
tion of pressure isotropy (21) takes on the form
[
2x3 ẏ + (N − 3) x2y

]
Ż +

[
4x3 ÿ − (N − 3) xy

]
Z

+ (N − 3) xy − (N − 2)

(N − 3)
xE2y = 0. (44)

This is a first order linear ordinary differential equation in
Z which can be solved by making a choice for the potential
y = y0 and the electromagnetic field E = E0. For a recent
general treatment of (44) see Komathiraj and Sharma [36].
In particular, if we let y = √

x and use (30) for E, then (44)
has the solution

Z = Bx − (N − 3)
[A (N − 4) − (N − 2) x]

(N − 2)2 x
, (45)

where B is a constant of integration. Note that when A = 0
(45) reduces to the neutral case in Naicker et al. [29].

Secondly we consider the case

6x ẏ + (N − 5) y = 0. (46)

We can integrate the above to get

y = C̃x
5−N

6 , (47)

where C̃ is an integration constant. This potential y leads to

−6x

[
α (N − 3) (N − 4) (N − 5) + (N − 2) x

2

]
Ż

+α (N − 2) (N − 3) (N − 4) (N − 5) Z2

− (N−11)

[
(N−2) x

2
+α (N−3) (N−4) (N−5)

]
Z

−9 (N − 3)
[ x

2
+ α (N − 4) (N − 5)

]

+9 (N − 2) xE2

2 (N − 3)
= 0, (48)

for the isotropy pressure condition (21). We can solve the
above equation by specifying a form for the electromagnetic
field E . We choose

E2 = 2A (N − 3)2 (N − 4)

(N − 2)2 x
. (49)

Then expression (48) has the form

−6x

[
α (N − 3) (N − 4) (N − 5) + (N − 2) x

2

]
Ż

+α (N − 2) (N − 3) (N − 4) (N − 5) Z2

− (N − 11)

[
(N − 2) x

2
+α (N−3) (N−4) (N−5)

]
Z

−9 (N − 3)
[ x

2
+ α (N − 4) (N − 5)

]

+9A (N − 3) (N − 4)

(N − 2)
= 0. (50)

We show that (50) can be solved.
For the particular spacetime dimension N = 5, expression

(50) is a linear differential equation in Z .The solution is given
by

Z = C̃1x + 1 − A

3x
. (51)

Note that C̃1 is an integration constant, and setting A = 0
regains the generalised Einstein static model in EGB theory
as expected for the neutral case.

When N �= 5 then (50) is not linear in Z , it is a Riccati
equation. When A = 0 (corresponding to uncharged matter)
it reduces to the equation considered by Naicker et al. [29].
When A �= 0, other solutions are then possible which we
present in Appendix A. It is clear that the spacetime dimen-
sion N and the charge parameter A have a profound effect
on the dynamics.

7 General cases

The charged condition of pressure isotropy has been trans-
formed to the canonical form (24). We have shown that exact
solutions exist by choosing specific functions for y and E,

123



343 Page 8 of 14 Eur. Phys. J. C (2023) 83 :343

and then integrating to find Z . We now show that it is possi-
ble to find general solutions to (24) without having to make a
choice for y, Z or E . These new classes of solutions arise by
placing restrictions on the functions F0 and F1. The presence
of the electromagnetic field allows for greater freedom and
permits these three new classes of solutions to exist. In the
absence of charge there is less freedom.

7.1 Case I: F0 = 0

We set

F0 = 0, (52)

so that

F0 = 2x2 (−2y + 4 (x + 2α (N − 3) (N − 4)) ẏ)

× [(N − 3) y (ẏ + 2 (x + 2α (N − 4) (N − 5)) ÿ)

+2 ẏ [(x − 4α (N − 3) (N − 4)) ẏ

+2x (x + 2α (N − 3) (N − 4)) ÿ]]

−α (N − 2) (N − 4) yE2 [6x ẏ + (N − 5) y]2 = 0.

(53)

From Eq. (53) we can obtain a general form for the electric
field intensity E as

E =
(

2x2 (−2y + 4 (x + 2α (N − 3) (N − 4)) ẏ)

× [(N − 3) y (ẏ + 2 (x + 2α (N − 4) (N − 5)) ÿ)

+2 ẏ [(x − 4α (N − 3) (N − 4)) ẏ

+2x (x + 2α (N − 3) (N − 4)) ÿ]]

× 1

α (N − 2) (N − 4) y [6x ẏ + (N − 5) y]2

) 1
2

. (54)

Equation (24) is now written as

ẇ = F1, (55)

which is identified as a separable differential equation. We
integrate Eq. (55) to obtain w, and consequently Z in the
form

Z =
[∫

x [y − 2 (x + 2α (N − 3) (N − 4)) ẏ]

α (N − 3) (N − 4)
[
6x ẏ + (N − 5) y

]2
× [(N − 3) ẏ − 2x ÿ] W dx + C

]
1

W

+ (N − 3) [2α (N − 4) (N − 5) + x] y

2α (N − 3) (N − 4) [6x ẏ + (N − 5) y]

+ 2x (x + 2α (N − 3) (N − 4)) ẏ

2α (N − 3) (N − 4) [6x ẏ + (N − 5) y]
, (56)

where C is a constant of integration.
Hence we have solved the charged condition of pressure

isotropy when F0 = 0. There is freedom of choice for the
metric function y. Any choice y = y0 generates forms for E

and Z via (54) and (56) respectively. We can state our result
as

Proposition 1 If F0 = 0 then a general expression for the
electric field E is provided by Eq. (54). Any choice of the
potential y = y0 leads to an exact solution for the charged
EGB field equations.

7.2 Case II: F1 = 0

We now let

F1 = 0, (57)

which yields the following constraint

[y−2 (x+2α (N−3) (N−4)) ẏ] [(N−3) ẏ−2x ÿ] = 0.

(58)

Equation (58) is a product of a first order linear ordinary
differential equation and a second order linear differential
equation. The permissible solutions are given by

y =
⎧⎨
⎩
Q̃

√
x + 2α (N − 3) (N − 4),

2B1x
N−1

2

N−1 + B2,
(59)

where Q̃, B1 and B2 represent integration constants.
It now remains to find the potential Z if the constraint (57)

holds. Equation (24) then has the form

wẇ = F0, (60)

which is a separable equation. Integrating we obtain w and
then the function Z in the form

Z =
(

2
∫ (

x2 (−2y + 4 (x + 2α (N − 3) (N − 4)) ẏ)

× [(N − 3) y (ẏ + 2 (x + 2α (N − 4) (N − 5)) ÿ)

+2 ẏ [(x − 4α (N − 3) (N − 4)) ẏ

+2x (x + 2α (N − 3) (N − 4)) ÿ]]

× W 2

2α2 (N − 3)2 (N − 4)2 [6x ẏ + (N − 5) y]3

− (N−2) yE2W 2

2α (N−4) (N−3)2 [6x ẏ+ (N−5) y]

)
dx+C

) 1
2 1

W

+ (N − 3) [2α (N − 4) (N − 5) + x] y

2α (N − 3) (N − 4) [6x ẏ + (N − 5) y]

+ 2x (x + 2α (N − 3) (N − 4)) ẏ

2α (N − 3) (N − 4) [6x ẏ + (N − 5) y]
. (61)

With F1 = 0 we have integrated the charged condition
of pressure isotropy. The form of y in (59) and any choice
E = E0 leads to a functional form for Z via (61). This result
leads to the statement:

Proposition 2 If F1 = 0 then two forms for the potential y
are possible. The potential Z is given by (61): Any choice of
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the electric field E = E0 leads to an exact solution of the
charged EGB field equations.

7.3 Case III: F1 = K F0

An interesting class of models are possible if F0 and F1 are
related. We let the function F1 be proportional to F0 where
K is some constant. This gives the condition

F1 = K F0. (62)

From Eqs. (25), (26) and (62) we obtain

E =
[
x2 (−2y + 4 (x + 2α (N − 3) (N − 4)) ẏ)

× [(N − 3) y (ẏ + 2 (x + 2α (N − 4) (N − 5)) ÿ)

+2 ẏ [(x − 4α (N − 3) (N − 4)) ẏ

+2x (x + 2α (N − 3) (N − 4)) ÿ]]

× 1

α (N − 2) (N − 4) y [6x ẏ + (N − 5) y]2

−2 (N − 3) x [y − 2 (x + 2α (N − 3) (N − 4)) ẏ]

KW (N − 2) (N − 4) y [6x ẏ + (N − 5) y]

× [(N − 3) ẏ − 2x ÿ]

] 1
2

. (63)

Therefore the electric field E is specified. On substituting
(62) in Eq. (24) we obtain

wẇ = F0 (K w + 1) , (64)

which is a separable equation. Integrating we obtain

w

K
− ln (1 + K w)

K 2 =
∫

F0 dx + C. (65)

Note that K �= 0 and we obtain a class of models different
from Case II in Sect. 7.2. In terms of the variable Z we obtain

1

K

⎛
⎝Z −

[
2α Ñ (N − 5) + (N − 3) x

]
y

2α Ñ [6x ẏ + (N − 5) y]

−
2x
(
x + 2α Ñ

)
ẏ

2α Ñ [6x ẏ + (N − 5) y]

⎞
⎠W

− 1

K 2 ln

⎛
⎝1+K

⎛
⎝Z−

[
2α Ñ (N−5) + (N−3) x

]
y

2α Ñ [6x ẏ+ (N−5) y]

−
2x
(
x + 2α Ñ

)
ẏ

2α Ñ [6x ẏ + (N − 5) y]

⎞
⎠W

⎞
⎠

=
∫ x

[
y − 2

(
x + 2α Ñ

)
ẏ
]

[(N − 3) ẏ − 2x ÿ] W

αK Ñ [6x ẏ + (N − 5) y]2
dx

+C, (66)

where (N − 3) (N − 4) = Ñ and C is a constant of integra-
tion.

We have solved the charged condition of pressure isotropy
when F1 = K F0. The integration in (66) can be completed
once a functional form for y = y0 is selected. We can state
our result as:

Proposition 3 If F1 = K F0 then a general expression for
the electric field E is given by (63). Any choice for the metric
function y = y0 results in an exact solution of the charged
EGB field equations.

We have established that three propositions, resulting from
restrictions on F1 and F0, that allow for integration, lead to
expressions for the first potential Z in terms of the second
potential y. A specific choice of y will lead to a functional
form for Z . Clearly the choice made for y should simplify
the integration and lead to an acceptable model.

8 Matching

The solutions found in this paper may be interpreted as static
cosmological models or more realistically as interior descrip-
tions of static charged stars. For a stellar structure there has to
be matching at the surface at an exterior gravitational field. In
general models, including spherical geometry, the matching
conditions are well known and can be written as(
ds2−

)
Σ

=
(
ds2+

)
Σ

, (67a)(
K−
ab

)
Σ

= (K+
ab

)
Σ

, (67b)

across a comoving boundary surface Σ for the line element
ds2 and the extrinsic curvature Kab. The matching condi-
tions (67) hold in general relativity. Several models of static
relativistic stars have been found in the past which satisfy the
conditions in (67). In EGB gravity the boundary conditions
on Σ have the form(

ds2−
)

Σ
=
(
ds2+

)
Σ

, (68a)

[Kab − Khab]± + 2α
[
3Jab − Jhab + 2 P̂abcd K

bc
]± =0,

(68b)

as given by Davis [37]. In the above we have

P̂abcd=R̂abcd+2R̂b[chd]a−2R̂a[chd]b+R̂ha[chd]b, (69)

where the caret “̂” indicates quantities associated with the
induced metric and Pabcd is the divergence free part of the
Riemann tensor. The tensor Jab is defined by

Jab = 1

3

(
2KKacK

c
b + Kcd K

cd Kab

−2KacK
cd Kdb − K 2Kab

)
, (70)
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and J is its trace.
For a proper distribution of a static star in EGB gravity

we need to match an interior solution to an exterior vac-
uum solution, say the Boulware–Deser metric. In many EGB
treatments the matching conditions are taken to be the gen-
eral relativity equations (67); for an example of this approach
see [16]. Such investigations do produce useful physical fea-
tures of the stellar model but it has to be acknowledged that
the resulting structure is incomplete as Eqs. (68) may not
be satisfied. However it is difficult to solve (68) in general.
In an attempt to circumvent this problem Maurya et al. [38]
have suggested that the conservation of energy momentum
could be used in the analysis of the boundary conditions. This
approach is helpful but the boundary conditions (68) are still
not satisfied in general. In an ongoing investigation we are
presently studying the general matching of the Boulware–
Deser spacetime to the interior static spherically symmetric
matter distribution. This will then produce a complete stellar
model in EGB gravity.

We now consider the existence of stellar models in EGB
gravity using the approach of Maurya et al. [38] for the solu-
tions found in this paper. We expect that the dimension N
should affect the matter content and the geometry. The inte-
rior spacetime is described by the metric (12), and the exterior
spacetime is described by

ds2 = −F(r)dt2 + 1

F(r)
dr2 + r2dΩ2

N−2, (71)

where

F(r) = 1 + r2

2α (N − 3) (N − 4)

(
1 −

(
1 + 4α (N − 4)

×
(

2M

rN−1 − κN Q2

(N − 2)AN−2r2N−4

)) 1
2

⎞
⎠ , (72)

which is the Boulware–Deser–Wiltshire metric in N space-
time dimensions. In the above M is the gravitational mass
of the hypersphere and Q is its charge. Note that in the limit
as α → 0 we regain the Reissner–Nordstrom solution in N
dimensions.

The first fundamental form is the direct matching of the
line elements (12) and (72) at the boundary r = R. This
yields

ε2
1 = 1 + R2

2α (N − 3) (N − 4)

(
1 −

(
1 + 4α (N − 4)

×
(

2M

RN−1 − κN Q2

(N − 2)AN−2R2N−4

)) 1
2

⎞
⎠ , (73)

ε2 = 1

4R2

(
1+ R2

2α (N−3) (N−4)

(
1−
(

1+4α (N−4)

×
(

2M

RN−1 − κN Q2

(N − 2)AN−2R2N−4

)) 1
2

⎞
⎠
⎞
⎠ , (74)

where ε1 = y(R2) and ε2 = Z(R2). The gravitational mass
M is given by

M =
[
(N − 3)

2

(
RN−3 (1 − ε2)

+ κN Q2

(N − 2) (N − 3)AN−2RN−3

+α (N − 3) (N − 4)RN−5 (1 − ε2)
2
) ]

,

= ME + MGB, (75)

where

ME = (N − 3)

2

(
RN−3 (1 − ε2)

+ κN Q2

(N − 2) (N − 3)AN−2RN−3

)
, (76)

and

MGB = 1

2

(
α (N − 3)2 (N − 4)RN−5 (1 − ε2)

2
)

. (77)

In the above ME and MGB are the masses corresponding
to the contributions from general relativity and Einstein–
Gauss–Bonnet gravity respectively. It is clear that the dimen-
sion N affects the value of the gravitational mass M.

The second fundamental form implies that the radial pres-
sure vanishes at the boundary r = R. From (19b) we obtain

(N − 2)

[
2ε2ε3

ε1
+ (N − 3) (ε2 − 1)

2R2

+α (N − 3) (N − 4) (1 − ε2)

(
4ε2ε3

R2ε1

− (N − 5) (1 − ε2)

2R4

)]
+ κN ε2

4

2AN−2
= 0, (78)

where ε3 = y′(R2) and ε4 = E(R2). The charge density at
r = R is expressed by

σ =
√

ε2
[
RN−2E ′(R2) + (N − 2)RN−3E(R2)

]
(AN−2)R(N−2)

. (79)

The total charge within a radius r of the hypersphere of radius
R is given by

Q=
∫ R

0

[
r N−2E ′(r2) + (N − 2) r N−3E(r2)

]
r (N−2)

r2dr, (80)

where Q is the charge as measured by an external observer at
infinity. Observe that Eq. (80) generates a restriction on the
parameters when the electric field is specified. If E is given
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by (30) then (80) becomes

Q =
[

2ε5 (N − 3)4 (N − 4)

(N − 2)2

] 1
2

R, (81)

where we have set ε5 = A which is a charge parameter.
Hence the matching at r = R gives the four restrictions,
(73), (74), (78) and (81). Observe that the free parameters
are ε1, ε2, ε3, ε4, ε5 and R so that we have an algebraic
system of four equations with six unknowns. Hence this sys-
tem always admits a real solution when two unknowns are
specified. (Note that Q is defined in terms of R, ε5 and M is
given in terms of R, ε2 and Q). It is important to note that Z
is given implicitly in general by Eq. (36). When the charge
parameter A = 0 then an explicit form for Z results which
is also the case for the parameters ε1–ε5. When A �= 0 then
the junction conditions have to be solved numerically.

The dimension of spacetime is critical in our analysis. We
note that for the spacetime dimension N = 5 the junction
conditions take on the simpler form

3

[
2ε2ε3

ε1
+ (ε2 − 1)

R2 + 8α (1 − ε2)
ε2ε3

R2ε1

]
+ 2ε5

3R2 = 0,

(82)

Q =
[

32ε5

9

] 1
2

R, (83)

due to the fact that the term (N−5)(1−ε2)

2R4 in (78) vanishes.
This indicates that the dimension N = 5 is a special case.
We note that the EGB part of the mass function MGB in (77)
also takes on the simpler form MGB = 2α(1 − ε2)

2 which is
independent of R. For N ≥ 6 note that MGB depends on R.

The evolution of the static star is therefore different in five
dimensions than in higher dimensions. When the dimension
of spacetime is N = 6, the junction conditions become

4

[
2ε2ε3

ε1
+ 3 (ε2 − 1)

2R2

+6α (1 − ε2)

(
4ε2ε3

ε1R2 − (1 − ε2)

2R4

)]
+ 3ε5

2R2 = 0,

(84)

Q =
[

81ε5

4

] 1
2

R, (85)

where the term (N−5)(1−ε2)

2R4 now comes into effect. We also
note that the mass function (77) is greater in six dimen-
sions because of the effect of the RN−5 term; for R > 1.

The charge Q also increases in magnitude, as the spacetime
dimension increases, from Eqs. (83) and (85), for N = 5 and
N = 6 respectively.

9 Discussion

We have studied static spherically symmetric models in a
higher dimensional charged EGB gravity setting. The mat-
ter distribution considered is a perfect fluid, in an electric
field, with isotropic pressure. The charged EGB field equa-
tions for such a fluid distribution were found for all spacetime
dimensions N ≥ 5. We demonstrate that the charged condi-
tion of pressure isotropy is an Abelian differential equation
of the second kind in Z which is reduced to the canonical
form wẇ = F1w + F0 after using a transformation. This
generalises the Naicker et al. [29] result to include the elec-
tromagnetic field. It is interesting to observe that a solution
generating algorithm to this equation exists for all dimen-
sions N ≥ 5. The canonical equation is solved by choosing
a specific form for the potential y and the electromagnetic
field E . As a result the gravitational potential Z is defined
exactly in an implicit manner. An important point to note
is that the presence of the electromagnetic field permits an
implicit equation in the potential Z . However, if the electro-
magnetic field vanishes, we regain an explicit exact solution
in Z as demonstrated in [29]. Furthermore, three new classes
of exact solutions to the charged EGB field equations were
generated by placing constraints on the functions F1 and F0.

In the first approach, we set F0 = 0: this permitted a general
expression for E without integration, and any choice for the
potential y will yield a functional form for the potential Z .

The second approach, F1 = 0, yielded two analytic forms
for the metric y and any choice for the electromagnetic field
E will result in an exact solution for Z . In the third and final
constraint, F1 = K F0, a general form for the electromag-
netic field E is illustrated. As a result the gravitational poten-
tial Z can be determined exactly by specifying any form for
the metric function y. These families of exact solutions arise
due to the presence of charge. Charge allows for a greater
degree of freedom which is not the case for neutral models.
Other possible exact solutions to the charged EGB condition
of pressure isotropy are found when exceptional metrics are
considered. The matching conditions in EGB gravity were
also considered for our model. A complete stellar model in
EGB gravity (and general Lovelock gravity) is not yet known,
yet it is still possible to ascertain the existence of a static star
in EGB gravity. The higher dimensional interior spherically
symmetric spacetime was matched to the exterior vacuum
solution of Boulware–Deser and it was shown that the radial
pressure vanishes at the boundary of the star as expected.
The mass function was also obtained in N dimensions. The
dimension N critically affects the geometry of the star as
well as its matter distribution.

An important point to note is that our classes of interior
models have no general relativity counterpart. These models
exist only in EGB gravity. The charged condition of pressure
isotropy, an Abel differential equation of the second kind, is
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reduced to a canonical form which is different from general
relativity. This is a nonlinear differential equation (an Abelian
differential equation of the second kind) in Z . In general
relativity the charged condition of pressure isotropy is a linear
differential equation in Z if y is specified. An explicit solution
to this Abelian equation for Z , in tandem with a resolution
of the boundary condition from the matching will yield a
complete stellar model.
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Appendix A: General solutions for exceptional metrics

We provide some exact solutions to the Riccati equation (50)
that are written in terms of special functions. When N = 11,

expression (50) takes on a simpler form as the linear term in
Z vanishes. As a result we have

−48x

[
336α + 9

2
x

]
Ż + 24192Z2 − 288x

−24192α + 448A = 0, (A.1)

which remains a Riccati differential equation. It has the solu-
tion

Z =
[(

H

[
0,−

√
6
√−A + 6α

6
√

α
,−1, 0,−3

2
,

224α + 3x

3x

]

×α
√−A + 6α

√
6 x

−12Hx

[
0,−

√
6
√−A + 6α

6
√

α
,−1, 0,−3

2
,

224α+3x

3x

]

×
(

α3/2x + 224α5/2

3

))(
3x

224α

)√
6
√−A+6α

6
√

α

+
(
H

[
0,−

√
6
√−A+6α

6
√

α
,−1, 0,−3

2
,

224α+3x

3x

]

×α
√−A + 6α

√
6 x

+12Hx

[
0,−

√
6
√−A+6α

6
√

α
,−1, 0,−3

2
,

224α+3x

3x

]

×
(

α1/2x + 224α3/2

3

))
C

(
3x + 224α

224α

)√
6
√−A+6α

6
√

α

⎤
⎦

×
⎡
⎣18

√
αx

⎛
⎝(3x + 224α

224α

)√
6
√−A+6α

6
√

α

×H

[
0,−

√
6
√−A+6α

6
√

α
,−1, 0,−3

2
,

224α+3x

3x

]
C

−α

(
3x

224α

)√
6
√−A+6α

6
√

α

H

[
0,−

√
6
√−A+6α

6
√

α
,−1, 0,

−3

2
,

224α + 3x

3x

])]−1

, (A.2)

in closed form and C represents an integration constant. H
is the Heun confluent (HeunC) function. Furthermore, Hx

represents the HeunCPrime function which is the derivative
of the HeunC function.

Expression (50) is a Riccati differential equation when
N �= 5. The Riccati equation (50) can be solved in general
and we have verified the result using the package Maple. We
obtain the potential Z in the form

Z = 2C (N − 2) x

[
3 ((N − 3) (N − 4))

√(− (N − 5) (N − 11)2 ((−N + 5) α + A) α
)

+ (N − 11) (N − 5)

(
α (N − 3) (N − 4) (N − 5) + (N − 2) x

2

)]

×Hx

⎡
⎣0,

N−5

6
,

√(− (N−5) (N−11)2 ((−N+5) α+A) α
)

α (N−5) (N−11)
, 0,− (N − 2)

6
,−α (N − 3) (N − 4) (N − 5)

(N − 2) x

⎤
⎦

−24α (N − 3) (N − 4) (N − 5) (N − 11) ×
(

α (N − 3) (N − 4) (N − 5) + (N − 2) x

2

)
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×Hx

⎡
⎣0,

N − 5

6
,

√(− (N − 5) (N − 11)2 ((−N + 5) α + A) α
)

α (N − 5) (N − 11)
, 0,− (N − 2)

6
,−α (N − 3) (N − 4) (N − 5)

(N − 2) x

⎤
⎦

−288

[
α (N − 5) (N − 11)

(
α (N − 3) (N − 4) (N − 5) + (N − 2) x

2

)

×Hx

⎡
⎣0,

N − 5

6
,

√(− (N − 5) (N − 11)2 ((−N + 5) α + A) α
)

α (N − 5) (N − 11)
, 0,− (N − 2)

6
,−α (N − 3) (N − 4) (N − 5)

(N − 2) x

⎤
⎦

−1

4

(
x
√(− (N − 5) (N − 11)2 ((−N + 5) α + A) α

)

×Hx

⎡
⎣0,

N−5

6
,

√(− (N−5) (N−11)2 ((−N+5) α+A) α
)

α (N−5) (N−11)
, 0,− (N − 2)

6
, −α (N−3) (N−4) (N − 5)

(N−2) x

]
(N−2)

)]

×
(

(N − 2) x

2α (N − 3) (N − 4) (N − 5)

) N−5
6
[

2α (N − 2)2 (N − 5) (N − 11) x

(
C (N − 3) (N − 4)

×Hx

⎡
⎣0,

N − 5

6
,

√(− (N − 5) (N − 11)2 ((−N + 5) α + A) α
)

α (N − 5) (N − 11)
, 0,− (N − 2)

6
,−α (N − 3) (N − 4) (N − 5)

(N − 2) x

]

+12

(
(N − 2) x

2α (N − 3) (N − 4) (N − 5)

) N−5
6

×Hx

⎡
⎣0,

N − 5

6
,

√(− (N − 5) (N − 11)2 ((−N + 5) α + A) α
)

α (N − 5) (N − 11)
, 0,− (N − 2)

6
,−α (N − 3) (N − 4) (N − 5)

(N − 2) x

])]−1

.

(A.3)

The solution when N > 5 is given in terms of both ele-
mentary functions and Heun functions. Observe that the case
N = 11 is not contained in (A.3); it is given separately by
(A.2).
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