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Abstract We present an analysis of the perturbative real-
ization of the T T J J correlator, with two stress energy ten-
sors and two conserved currents, using free field theory, inte-
grating out conformal sectors in the quantum corrections.
This allows to define, around flat space, an exact perturba-
tive expansion of the complete anomaly effective action – up
to 4-point functions – whose predictions can be compared
against those of the anomaly induced action. The latter is
a variational solution of the conformal anomaly constraint
at d = 4 in the form of a nonlocal Wess–Zumino action.
The renormalization procedure and the degeneracies of the
tensor structures of this correlator are discussed, valid for a
generic conformal field theory, deriving its anomalous trace
Ward identities (WIs). In this application, we also illustrate
a general procedure that identifies the minimal number of
tensorial structures and corresponding form factors for the
T T J J and any 4-point function. The approach is imple-
mented for three, four and five dimensions, addressing the
tensor degeneracies of the expansion in momentum space.
We show that the renormalized T T J J can be split into two
contributions, a non anomalous and an anomalous part, each
separately conserved. The first satisfies ordinary trace WIs,
while the second satisfies anomalous trace WIs. The result of
the direct computation is compared against the expression of
the same 4-point function derived from the nonlocal anomaly
induced action. We show that the prediction for the anoma-
lous part of the T T J J derived from such action, evaluated
in two different conformal decompositions, the Riegert and
Fradkin–Vilkovisky (FV) choices, differ from the anomaly
part identified in the perturbative T T J J , in the flat space-
time limit. The anomaly part of the correlator computed with
the Riegert choice is affected by double poles, while the one
computed with the FV choice does not satisfy the conserva-
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tion WIs. We present the correct form of the expansion of the
anomaly induced action at the second order in the metric per-
turbations around flat space that reproduces the perturbative
result.

1 Introduction

The study of multi-point tensor correlators in conformal field
theory (CFT) plays a significant role in several contexts, with
applications to nonlocal cosmology, condensed matter theory
and particle phenomenology.
Conformal symmetry describes the properties of systems
at energy scales at which the dynamics of the correlation
functions are constrained by the generators of the confor-
mal group, whose number varies according to the spacetime
dimensions (d). In d = 4, a conformally invariant theory
is characterized by a partition function that satisfies all the
15 constraints coming from the conformal group SO(2, 4),
modulo the presence of conformal anomalies.

Conformal anomalies [1] are associated, for a given CFT,
with the need to renormalize the theory, according to a reg-
ularization procedure which, at least around a flat space-
time, can be implemented directly using ordinary Dimen-
sional Regularization (DR). Indeed, all the conformal con-
straints can be derived, for Lagrangian CFTs, by resorting
to the formalism of the effective action via its functional
expansion with respect to the external background metric
[2,3]. In the pure gravity sector, its renormalization can be
performed using only two counterterms: the Euler–Poincarè
density (E) (Gauss–Bonnet) and the Weyl tensor squared
(C2). Both terms will play an important role in our analysis.
All the quantum corrections and the conformal constraints
can be generated by investigating such renormalized partition
functions in the form of trace and special conformal Ward
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identities either in coordinate [4,5], or in momentum space
[6–9]. The breaking of scale invariance by the renormalized
correlator is present in its traceless part.
The derivation of such constraints is general and formulated
in curved spacetime, and subsequently can be specialized
around flat Minkowski space. This approach bypasses the
traditional operator formalism used in deriving the same con-
straints in the standard CFT literature.
The analysis around flat space allows to address quite clearly
several issues left open by the renormalization procedure,
such as the breaking of scale invariance due to the inclusion
of a renormalization scale, which is missing in both local and
nonlocal effective actions [10] of Wess–Zumino forms, com-
monly discussed in the anomaly literature. Scale violations
are expected to be part of the complete effective action, which
is at the centre of our work. However, they are not present
in those actions identified as possible variational solutions
of the anomaly constraints. These do not necessarily include
the quantum corrections discussed in this work, that will be
taken into account for the T T J J correlator.
While all the correlators of a certain CFT are of interest, some
play a crucial role in the possible implications of such theories
in realistic physical contexts. Conformal anomaly actions,
investigated in their Weyl-invariant and anomaly terms, pro-
vide definitive information about the correct effective field
theory description that results once a conformal sector is inte-
grated out of a specific partition function. This procedure
modifies the background gravitational metric in a very spe-
cial way. The extra terms induce a gravitational backreaction
that can be studied around flat space with great accuracy and
quite explicitly in specific renormalization schemes [10].

1.1 Implications for topological matter and nonlocal
cosmology

Among all the correlators, those containing stress-energy
tensors and classically conserved vector and chiral currents,
besides the scalar CFT primaries, for the reasons mentioned
above, are certainly among the most important ones. They
can be studied in ordinary field theories of conformally cou-
pled scalars, fermions and spin-1 gauge fields in free field
theory realizations [11–15]. Such realizations match exactly,
at least for those correlators containing stress energy tensors
(T ) and conserved currents (J ), the general tensor structure
predicted for them by the conformal Ward Identities (CWIs)
of a CFT, with significant simplifications [16–18]. In con-
densed matter theory, they find application in the study of
topological materials, such as Dirac and Weyl semimetals,
where anomalies are expected to play an important role. Due
to the presence of an effective linear dispersion relation in
the band structure of such materials and to their topolog-
ical character (see [19–24]), chiral [25,26] and conformal
anomaly actions can be used to describe their response func-

tions and anomalous transport under external sources. One
link, for example, is provided by Luttinger’s formula, that
relates a thermal solicitation of such materials to an external
gravitational field [23,27].
A second important sector in which these analyses play a role
is in the physics of the early universe and the production of
gravitational waves for defining special corrections to gravity
which may either take the form of local scalar tensor theories
or a nonlocal form (see for instance [28,29]).

1.2 Momentum space analysis

The constraints imposed by the conformal group for d > 2,
up to 3-point functions, are sufficient to identify the correla-
tion functions of a certain CFT only modulo few constants
[4]. The constants appearing in the general solutions of corre-
lation functions, such as the T T T or T J J , are reproduced by
combining a certain number of sectors with arbitrary particle
multiplicities (nS, n f , nV ) of scalars, fermions and gauge
fields, respectively.
We recall that for higher point functions, CWIs do not predict
the exact form of such correlators, since arbitrary functions
of the conformal invariant ratios – which depend on their
coordinate points – are part of their general expressions. This
arbitrariness has also been discussed in momentum space
[30], at least for scalar correlators. The analysis of tensor
correlators is far more involved and has been formulated in
momentum space for 3-point functions of T ’s J ’s and scalar
operators in [7]. However, it remains valid also for n-point
functions [3,31] (see [8,32]), covering also the Minkowski
signature [33–35] as well as applications to cosmology [36–
39].

We will also be using the same approach in our case, sim-
ilarly to the case discussed in [3], but working directly with
a free field theory realization.
A lot of insight and essential information about the structure
of correlation functions can be uncovered by working directly
in momentum space [16]. Indeed, one of the limitations of
CFT in coordinate space is the difficulty of describing the
implications of the conformal anomaly in a complete way
and, in particular, the anomaly action. In this approach, the
anomaly is introduced by hand, in each correlation function,
by extending the solutions of the (non anomalous) CWI’s
with the addition of ultralocal terms. For the rest, the anomaly
contributions are absent in any application based on the oper-
ator product expansion (OPE). The OPE is an operatorial
expansion at short distances that necessarily avoids space-
time regions where all the points of a certain correlator coa-
lesce. On the other end, the momentum space analysis allows
us to derive the anomaly contributions of a certain correla-
tor in a very natural way since integration over momentum
space obviously also covers the contact regions in the exter-
nal coordinate points of the correlator.
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2 The partition function

We start our discussion by defining the unrenormalized par-
tition function of the theory ZB(g), identified by the bare
functional

ZB(g) = N
∫

Dχ e−S0(g,χ), (2.1)

where N is a normalization constant. We have denoted by χ ,
a collection of conformal fields that in d = 4 correspond to
scalars, fermions. Our analysis is set in the Euclidean case.
The transition to Minkowski space can be performed by a
simple analytical continuation of the correlation functions,
since we will be dealing with free field theory realizations.
The bare effective action will be defined as

e−SB (g) = ZB(g) ↔ SB(g) = − logZB(g). (2.2)

Quantum matter fields are assumed to be in a conformal
phase at d = 4. The bare effective action SB(g) includes
all the multiple insertions of the stress energy tensor (pure
gravity sector) and mixed graphs with photons and gravitons.

As usual, ZB(g), which is the semiclassical effective
action (see for instance [40]) in the Feynman diagrammatic
expansion, will contain both connected and disconnected
graphs, while SB(g) collects only connected graphs. In the
gravitational sector, the expansion provides all the pure gravi-
ton vertices, the mixed graviton/gauge and pure gauge ver-
tices, defined by the insertions of the stress energy tensor and
of the gauge current Jμ. For instance, the quantum averages
of 1-point functions are defined as

〈Tμν〉 = 2√
g

δSB

δgμν

〈Jμ〉 = 1√
g

δSB

δAμ

, (2.3)

where the metric is taken to be flat after the variation. Sim-
ilarly, correlation functions of higher order are defined in a
metric background ḡ and with a vanishing gauge field Aμ,
by varying both external fields

S(g)B ≡ S(ḡ)B

+
∞∑
n=1

1

2nn!
∫

dd x1 . . . dd xn
√
g1 . . .

√
gn 〈Tμ1ν1 . . . Tμnνn 〉ḡB

× δgμ1ν1 (x1) . . . δgμnνn (xn),

+
∞∑

n,k=1

1

2nn!k!
∫

dd x1 . . . dd xnd
d xn+1 . . . dd xn+k

× √
g1 . . .

√
gn+k 〈Tμ1ν1 . . . Tμnνn Jμn+1 . . . Jμn+k 〉ḡB

× δgμ1ν1 (x1) . . . δgμnνn (xn)δAμn+1 (xn+1)

. . . δAμn+k (xn+k) + · · · (2.4)

where the dots refer to contributions from the pure gauge
sector in the expansion. The covariant normalization of the

correlation functions is given by

〈Tμ1ν1(x1) . . . Tμnνn (xn)〉
≡ 2√

g1
. . .

2√
gn

δnSB(g)

δgμ1ν1(x1)δgμ2ν2(x2) . . . δgμnνn (xn)

(2.5)

for the n-graviton sector, with
√−g1 ≡ √−|det gμ1ν1(x1)|

and so on, and by

〈Tμ1ν1 (x1) . . . Tμnνn (xn)J
μn+1 (xn+1) . . . Jμn+k (xn+k)〉 ≡

≡ 2√
g1

. . .
2√
gn

1√
gn+1

. . .
1√
gn+k

δnSB(g)

δgμ1ν1 (x1) . . . δgμnνn (xn)δAμn+1 (xn+1) . . . δAμn+k (xn+k)

(2.6)

for the graviton/gauge sector.
Diagrammatically, the pure gravitational sector is identi-

fied, in free field theory realizations, by an infinite sum of 1-
loop diagrams with an arbitrary number of external graviton
lines. The mixed sector will include the T T J , the T J J and
the T T J J correlation functions. The diagrammatic expan-
sion of the 〈T T J J 〉 for the fermionic and scalar cases are
given below in Figs. 6 and 7. In Dimensional Regulariza-
tion (DR) the renormalized effective action is defined by the
inclusion of three counterterms

ZR(g) = N
∫

D� e−S0(g,χ)+ b′
ε
VE (g,d)+ b

ε
VC2 (g,d)−Scount (g,A),

(2.7)

where N is a normalization constant, ε = d − 4, and

VC2(g, d) ≡ με

∫
dd x

√
g C2,

VE (g, d) ≡ με

∫
dd x

√
g E, (2.8)

are the counterterms corresponding to the Gauss–Bonnet

E = R2 − 4RμνRμν + Rμνρσ Rμνρσ (2.9)

and Weyl tensor squared densities

C (d)
αβγ δ = Rαβγ δ

− 1

d − 2
(gαγ Rδβ + gαδ Rγβ − gβγ Rδα − gβδ Rγα)

+ 1

(d − 1)(d − 2)
(gαγ gδβ − gαδ gγβ)R, (2.10)

and the Weyl terms respectively. In order to remove these
divergences of the mixed graviton/gauge correlators we add
to the action the counterterm

Scount (g, A) ≡ −1

ε
VF2(g, d)

≡ −με

ε

∑
I= f,s

n I

∫
dd x

√
g
(
βc(I ) F

2
)

, (2.11)
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corresponding to the field strength F2 = FμνFμν where the
coefficients βc(I ) refer to the scalar and fermion contribu-
tions.

2.1 Local and nonlocal actions and the T T J J test

Most of the analysis of anomaly actions in the literature deals
with the problem of the identification of a functional whose
variation with respect to the metric generates the conformal
anomaly. The correlation functions extracted from the renor-
malized action satisfy hierarchical CWIs that allow the iden-
tification of two contributions, denoted as the Weyl variant
and the Weyl invariant parts, respectively.
As just mentioned, in the case of pure graviton vertices,
the Weyl variant part of the renormalized effective action
is related to the two counterterms VE and VC2 , while in the
T T J J a third counterterm, VF2 , is needed. Their variations
reproduce the anomaly since

2gμν

δ

δgμν

VE (g, d) = ε
√
gE

2gμν

δ

δgμν

VC2(g, d) = ε
√
gC2

2gμν

δ

δgμν

VF2(g, d) = ε
√
gF2, (2.12)

while the bare effective action, corresponding to the Weyl
invariant part, in d dimensions satisfies the condition

2gμν

δ

δgμν

SB(g, d) = 0. (2.13)

The Weyl variant part can be summarized by the functional

Sv ≡ βC

ε
VF2(g, d) + b′

ε
VE (g, d) + b

ε
VC2(g, d), (2.14)

i.e. the counterterm action (with βC = ∑
I= f,s n Iβc(I )) and

this separation between SB and Sv , with

SR = SB + Sv, (2.15)

is perfectly well defined as far as d 	= 4. SB becomes singu-
lar at d = 4 and the renormalization procedure consists in
expanding around four spacetime dimensions both SB and
the counterterm. The expansion is performed using a fidu-
cial metric ḡ and its fluctuations, with ḡ taken to be the
Minkowski metric. Using the fact that the singularities of
SB are removed by the singular parts of the counterterms,
SR gets effectively re-expressed in the form

SR(4) = lim
d→4

(
SB(g, d) + b′

ε
VE (g, d)

+ b

ε
VC2(g, d) + βC

ε
VF2(g, d)

)

= S f (4) + b′ V ′
E (ḡ, φ, 4) + b V ′

C2(ḡ, φ, 4)

+ βC V ′
F2(ḡ, φ, 4) (2.16)

with

V ′(ḡ, φ, 4) = lim
d→4

(
1

ε
(V (g, d) − V (ḡ, 4))

)

= lim
d→4

(
1

ε
(V (g, d) − V (ḡ, d))

)
(2.17)

and the finite contribution coming from the loops contained
in S f

S f (4) = lim
d→4

(
SB(d) + b′

ε
VE (g, 4) + b

ε
VC2(g, 4)

+βC

ε
VF2(g, 4)

)
. (2.18)

The anomaly action generated by this regularization can then
be defined in the form

SA = b′ V ′
E (ḡ, φ, 4) + b V ′

C2(ḡ, φ, 4) + βC V ′
F2(ḡ, φ, 4).

(2.19)

In standard approaches in which one tries to solve the con-
straint

gμν

δSR

δgμν

=
√
g

2

[
bC2 + b′E + βC F

2
]
, (2.20)

ignoring the renormalization process implicit in the extrac-
tion of the effective action at d = 4, which requires to take
a singular limit, the classification of SR in terms of the two
parts does not introduce any extra scale.

Obviously, this simply implies that we are focusing only
on Sv in (2.15), neglecting, at the same time, the presence
of extra scales generated by the virtual quantum corrections,
due to the renormalization procedure. The idea of using the
realizations of free field theory in flat space, as already men-
tioned, allows us to have a firm grip on the structure of the
expansion, although this is only possible for a simpler back-
ground, compared to a curved one For these reasons, it is
not surprising that a functional solution of the anomaly con-
straint, which corresponds to an anomaly induced action, may
not reproduce the perturbative result and the Ward identities
that come with it.

As we are going to show by an explicit computation, there
is a perfect agreement between the complete effective action
derived by a free field theory realization and the anomaly
induced actions that we are going to discuss next, up to
3-point functions. The two actions are derived by select-
ing two different conformal decompositions, usually termed
“gauge choices” in the literature, in which the dilaton field is
expressed in terms of the metric g by two different functional
constraints. In our example, they correspond to the Riegert
(�R) and the Fradkin–Vilkovisky (�FV ) choices. We are
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going to investigate this point performing a direct computa-
tion on the two actions, showing that as we move to 4-point
functions, the correlators do not satisfy the hierarchical Ward
identities of the case.

3 Ward identities

The symmetry constraints on SR , induced on the coefficients
of the expansion (2.4) take the form of WIs which are hier-
archical. The conformal constraints, for instants, are linked
to the Weyl invariance of the renormalized effective action
and to its breaking and a derivation of the corresponding WIs
can be performed directly from either SB or SR , as shown
in [2,3]. We recall that in a curved background, for a certain
action S(g), Weyl invariance is expressed as a symmetry of
the form

S(g) = S(ḡ) when gμν = ḡμνe
2φ. (3.1)

The relation between g and ḡ defines a conformal decompo-
sition, which remains valid under the gauge transformation

ḡ → ḡ e2σ , φ → φ − σ, (3.2)

where σ(x) is a local shift. The renormalization of the quan-
tum corrections, via the counterterms above, breaks this sym-
metry. In the case of a flat background, one is essentially
performing the φ → 0 limit of SR after performing the
metric variations, with the dilaton variation δ

δφ
replaced by

2gμν
δ

δgμν
. A study of the semiclassical effective action in the

presence of a dilaton background is in [41]. In general, on
the bare functional SB(g), one derives the relation

δSB

δφ(x)
= √

g gμν 〈Tμν〉, (3.3)

and its invariance under Weyl

δφgμν = 2gμνδφ, (3.4)

and diffeomorphisms

δεgμν = −∇μεν − ∇νεμ, (3.5)

are summarised by the constraints

δφSB = 0 δεSB = 0, (3.6)

leading to trace and conservation conditions of the quantum
averages of Tμν

〈Tμ
μ 〉 = 0 ∇μ〈Tμν〉 = 0. (3.7)

Ordinary trace and conservation WI’s can be derived from the
equations above by functional differentiations of SB(g) with
respect to the background metric. As far as we stay away from
d = 4 and include in the classical action S0 conformal fields,
we have exact CWI which are derived from the condition of

invariance of the generating functionalSB with respect to dif-
feomorphisms and Weyl transformations. Anomalous CWIs
are derived by replacing the effective action SB with the
renormalized one SR . Non conformal sectors, such as spin-
1 contributions, modify the CWIs by inhomogeneous terms
unrelated to the anomaly, which is a pure 4d phenomenon.

We move to discuss the derivation of the conformal and
conservation WIs for the correlator. This allows us to illus-
trate its decomposition, following the approach of [7], in
terms of a transverse traceless sector, a longitudinal sector
and a trace sector. Only the trace and conservation WIs will
play a role in our analysis.

Assuming that the generating functional of the theory is
invariant under the action of some symmetry groups, then the
correlation function 〈T T J J 〉 satisfies

4∑
j=1

Gg(x j )〈Tμ1ν1(x1)T
μ2ν2(x2)J

μ3(x3)J
μ4(x4)〉 = 0,

(3.8)

with Gg the generators of the infinitesimal symmetry trans-
formations. These constraints come from the invariance of
the generating functional under symmetry transformations

SB[g′, A′] = SB[g, A], (3.9)

that can be expressed equivalently as

∫
dd x

(
δSB

δgμν

δgμν + δSB

δAa
μ

δAa
μ

)
= 0. (3.10)

Among these constraints, the conservation Ward Identity
(WI) in flat space of the energy momentum tensor can be
obtained by requiring the invariance of SB[g, A] under dif-
feomorphisms xμ → xμ + εμ(x) for which the variation
of the metric and the gauge fields are the corresponding Lie
derivatives. In the case of a nonabelian SU (N ) gauge field
Aa

μ (a = 1, 2, . . . , N 2 − 1), for instance, we get

δAa
μ = −εα∇αA

a
μ − Aa

α∇μεα, (3.11)

δgμν = −∇μεν − ∇νεμ. (3.12)

Inserting these variations into (3.10) and integrating by parts,
we obtain the conservation WI

∇μ〈Tμν〉 + (
∂μAaν − ∂ν Aaμ

) 〈Jaμ〉 + Aaν ∇μ〈Jaμ〉 = 0.

(3.13)

Similarly, the requirement of invariance under a gauge trans-
formation with a parameter θa(x) gives

δAa
μ = ∂μθa + g f abc Ab

μθc, (3.14)

δgμν = 0, (3.15)

123



427 Page 6 of 34 Eur. Phys. J. C (2023) 83 :427

and the invariance of the generating functional under gauge
transformations gives

∇μ〈Jaμ〉 = g f abc Ac
μ〈Jbμ〉. (3.16)

Inserting this equation into (3.13) we obtain the conservation
WI’s

∇μ〈Tμν〉 + Fa μν〈Jaμ〉 = 0, (3.17a)

∇μ〈Jaμ〉 − g f abc Ac
μ〈Jbμ〉 = 0. (3.17b)

In the Abelian case, which is the case of our interest, diffeo-
morphism and gauge invariance give the relations

∇μ〈Tμν〉 + Fμν〈Jμ〉 = 0, (3.18a)

∇μ〈Jμ〉 = 0. (3.18b)

By functional differentiations of (3.18) we derive ordinary
WIs for the various correlators involving energy-momentum
tensors and conserved currents. In the 〈T T J J 〉 case we
obtain, after a Fourier transform, the conservation equation

p1μ1
〈Tμ1ν1(p1)T

μ2ν2(p2)J
μ3(p3)J

μ4(p4)〉
=
[

2 p2λ1
δν1(μ2〈T ν2)λ1(p1 + p2)J

μ3(p3)J
μ4(p4)〉

− p2
ν1〈Tμ2ν2(p1 + p2)J

μ3(p3)J
μ4(p4)〉

]

+ 2

{[
δν1(μ2 pν2)

3 〈Jμ3(p1 + p2 + p3)J
μ4(p4)〉

− δν1(μ2δν2)μ3 p3λ1
〈Jλ1(p1 + p2 + p3)J

μ4(p4)〉
+ 1

2
δμ3ν1 p3λ1〈Jλ1(p1 + p3)T

μ2ν2(p2)J
μ4(p4)〉

− 1

2
pν1

3 〈Jμ3(p1 + p3)T
μ2ν2(p2)J

μ4(p4)〉
]

+
[
(3 ↔ 4)

]}
, (3.19)

where the notation (3 ↔ 4) means the exchange of the sub-
script 3 with 4, and the vector current Ward identities

pi μi 〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉 = 0,

i = 3, 4. (3.20)

In our conventions, all the momenta, in a given correlator,
are incoming. Furthermore we consider the invariance of the
generating functional under Weyl transformations for which
the fields transform as in (3.4) and

δσ Aa
μ = 0 (3.21)

giving the naive trace Ward identity

gμν〈Tμν〉 = 0. (3.22)

The functional differentiation of (3.22) gives the (non-
anomalous) condition

δμ1ν1〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉

= −2 〈Tμ2ν2(p1 + p2)J
μ3(p3)J

μ4(p4)〉, (3.23)

that is preserved for d 	= 2n, n ∈ N. In Appendix A we offer
more details on the conservation WI’s.

4 Decomposition of the correlator

As already mentioned, the general form of the 〈T T J J 〉 cor-
relator can be constructed by a decomposition into transverse,
longitudinal and trace terms [7], exploiting its symmetries.
We start by decomposing the operators T and J in terms
of their transverse traceless part and the longitudinal (local)
ones

Tμi νi (pi ) ≡ tμi νi (pi ) + tμi νi
loc (pi ), (4.1)

Jμi (pi ) ≡ jμi (pi ) + jμi
loc(pi ), (4.2)

where

tμi νi (pi ) = �
μi νi
αiβi

(pi ) T
αiβi (pi ),

tμi νi
loc (pi ) = �

μi νi
αiβi

(p) T αiβi (pi ), (4.3)

jμi (pi ) = πμi
αi

(pi ) J
αi (pi ),

jμi
loc(pi ) = pμi

i pi αi

p2
i

Jαi (pi ), (4.4)

having introduced the transverse-traceless (�), transverse
(π), longitudinal (�) projectors, given respectively by

πμ
α = δμ

α − pμ pα

p2 , (4.5)

�
μν
αβ = 1

2

(
πμ

α πν
β + π

μ
β πν

α

)
− 1

d − 1
πμνπαβ, (4.6)

�
μi νi
αiβi

= pi βi

p2
i

[
2δ(νi

αi
pμi )
i − piαi

(d − 1)

(
δμi νi + (d − 2)

pμi
i pνi

i

p2
i

)]

+ πμi νi (pi )

(d − 1)
δαiβi ≡ Iμi νi

αi
pi βi + πμi νi (pi )

(d − 1)
δαiβi . (4.7)

By using the projectors introduced above, the correlator can
be written as

〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉

= 〈tμ1ν1(p1)t
μ2ν2(p2) j

μ3(p3) j
μ4(p4)〉
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+ 〈tμ1ν1(p1)t
μ2ν2(p2) j

μ3(p3) j
μ4(p4)〉loc (4.8)

where

δμi νi 〈tμ1ν1(p1)t
μ2ν2(p2) j

μ3(p3) j
μ4(p4)〉 = 0, i = 1, 2,

(4.9)

pμi 〈tμ1ν1(p1)t
μ2ν2(p2) j

μ3(p3) j
μ4(p4)〉 = 0,

i = 1, . . . , 4, (4.10)

and

〈tμ1ν1 (p1)t
μ2ν2 (p2) j

μ3 (p3) j
μ4 (p4)〉loc

= 〈tμ1ν1
loc Tμ2ν2 Jμ3 Jμ4 〉 + 〈Tμ1ν1 tμ2ν2

loc Jμ3 Jμ4 〉
− 〈tμ1ν1

loc tμ2ν2
loc Jμ3 Jμ4 〉

=
[(

Iμ1ν1
α1

p1 β1 + πμ1ν1 (p1)

(d − 1)
δα1β1

)
δμ2
α2

δ
ν2
β2

+ (Iμ2ν2
α2

p2 β2

+πμ2ν2 (p2)

(d − 1)
δα2β2

)
δμ1
α1

δ
ν1
β1

−
(
Iμ1ν1

α1
p1 β1 + πμ1ν1 (p1)

(d − 1)
δα1β1

) (Iμ2ν2
α2

p2 β2

+πμ2ν2 (p2)

(d − 1)
δα2β2

)]
〈T α1β1T α2β2 Jμ3 Jμ4 〉. (4.11)

It is clear now that only the second term in (4.8), expressed
explicitly in (4.11), will contain the entire trace and longi-
tudinal contributions, with these two sectors constrained by
the conservation WIs (3.19), (3.20) and (3.23). Thus, the
unknown part of the correlator is contained in its transverse-
traceless (t t j j), since the remaining longitudinal + trace con-
tributions – the local terms – are related to lower point func-
tions by conservation and trace WIs. Therefore, we can pro-
ceed by studying the general decomposition of the transverse-
traceless part 〈t t j j〉 into a product of form factors and tensor
structures.
Due to conditions (4.9) and (4.10), such sector, using the
transverse and traceless projectors, can be written in the form

〈tμ1ν1(p1)t
μ2ν2(p2) j

μ3(p3) j
μ4(p4)〉

= �
μ1ν1
α1β1

(p1)�
μ2ν2
α2β2

(p2)π
μ3
α3

(p3)π
μ4
α4

(p4)X
α1β1α2β2α3α4 ,

(4.12)

where Xα1...α4 is a general rank six tensor built out of products
of metric tensors and momenta with the appropriate selection
of indices. Note that due to the presence of the projectors in
(4.12), the terms δαiβi , i = 1, 2 or pαi

i , i = 1, . . . , 4 cannot be
used as fundamental tensors and vectors to build the Xα1...α4

tensor. In addition, the conservation of the total momentum

pαi
1 + pαi

2 + pαi
3 + pαi

4 = 0, (4.13)

allows to select for each index αi a pair of momenta out of the
four, to be used in the general construction of X . The choice
of the independent momenta of the expansion, similarly to

the case of 3-point functions discussed in [7], can be different
for each set of contracted tensor indices. We will choose

{(α1, β1), (α2, β2)} ↔ p3, p4,

{α3, α4} ↔ p1, p2, (4.14)

as a basis of the expansion, for each pair of indices shown
above. Once the decomposition has been performed accord-
ing to this scheme and the number of form factors identified,
one momentum, for instance p4, can be chosen as the depen-
dent one.
This approach is rather economical, since it allows to reduce
the number of form factors to a minimum, exploiting the
presence of a single t t projector for each external momentum.
Regarding the tensor structures built out of metric δs, the only
non vanishing ones appearing in Xα1...α4 are

δα1α2 , δα1α3 , δα1α4 , δα2α3 , δα2α4 , δα3α4 (4.15)

together with the similar ones obtained by the exchange
αi ↔ βi , i = 1, 2. This strategy has been introduced in [7]
for 3-point functions and applied also to the case of 4-point
functions in [3]. In the next section, we are going to describe
the procedure in order to write explicitly the expression of
Xα1...α4 in terms of the minimal number of tensor structures
and form factors, in general d dimensions [31].

4.1 Orbits of the permutations

Xα1...α4 is expressed in terms of tensor structures and form
factors using the symmetry of the correlator. The 〈T T J J 〉
manifests two types of discrete symmetries related to the
permutation group: it must be symmetric under the exchange
of the two gravitons (1 ↔ 2), of the two conserved J currents
(3 ↔ 4), and the combination of both transformations. We
label such transformations respectively as P12, P34 and PC =
P12P34. It is worth mentioning that P12 exchanges the pair
of indices of the two gravitons and the momenta associated
with them, and analogously for the two currents J ’s.
The tensorial structures in Xα1...α4 will be constructed by
using the metric tensors and the momenta with the choices
(4.15) and (4.14). Then, in Xα1...α4 , there are structures of
four different type, depending on the number of metric ten-
sors and momenta used to saturate the number of free indices.
We consider the general terms

δδδ, δδpp, δpppp, pppppp, (4.16)

observing that these sectors do not mix when the permutation
operator Pi j is applied. This property allows us to construct
the general symmetric form of each sector separately.
As a first step, we determine the orbits of the P operators act-
ing on the tensor structures belonging to each tensorial sector
(4.16). This can be achieved by applying all the P transfor-
mations to a tensor structure and following the “trajectory”
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(orbits) in the sector generated by this process. For instance,
in the sector δδpp, we encounter the two orbits

δα2β1δα4β2 pα1
3 pα3

1 δα1β2δα4β1 pα2
3 pα3

2

δα2β1δα3β2 pα1
4 pα4

1 δα1β2δα3β1 pα2
4 pα4

2

P12

PC
P34P34

P12

(4.17)

δα1α2δβ1β2 pα3
1 pα4

1 δα1α2δβ1β2 pα3
2 pα4

2 .
P12

PC

P34 P34

(4.18)

In this way we decompose every sector (4.16) into orbits.
Every P transformation acts on an orbit irreducibly, i.e. it
connects every element on the orbit. The number of orbits
for all the sectors equals the number of independent form
factors representing the correlator. In fact, a representative
can be selected for each orbit to which an independent form
factor can then be associated. The orbit provides a visual
realization of the symmetry properties of the form factors
that belong to it.
For clarity, let’s clarify this statement with an explicit exam-
ple, using the sector δδδ. With the choices (4.15) and (4.14)
we construct the three possible tensor structures in Xα1...α4

as

δα1α2δα3α4δβ1β2 , δα1α3δα2α4δβ1β2 , δα1α4δα2α3δβ1β2 .

(4.19)

This sector can be decomposed into two orbits as

δα1α3δα2α4δβ1β2 δα1α4δα2α3δβ1β2
P12

P34

PC PC

, δα1α2δα3α4δβ1β2

P34,P12,PC

(4.20)

from which we can conclude that for this sector there exist
just two independent form factors related to the representa-
tives of the orbits. Then the general form of X for the sector
with three δs (denoted as zero momentum or “0p”) can be
directly written as

Xα1β1α2β2α3α4
(0p) = A(0p)

1 δα1α2δα3α4δβ1β2

+ A(0p)
2 δα1α3δα2α4δβ1β2

+ A(0p)
2 (p1 ↔ p2)δ

α1α4δα2α3δβ1β2 , (4.21)

where the two independent form factors satisfy the symmetry
conditions

A(0p)
1 (p1 ↔ p2) = A(0p)

1 (p3 ↔ p4) = A(0p)
1 , (4.22)

A(0p)
2 (p3 ↔ p4) = A(0p)

2 (p1 ↔ p2),

A(0p)
2 (p1 ↔ p2, p3 ↔ p4) = A(0p)

2 .

(4.23)

The properties of the orbits within the tensorial sector are
directly reflected in the symmetry conditions of the form
factors.
The method proposed in [31] is similar, but more involuted,
since it starts from the most general tensor structure with
a non-minimal number of form factors. By imposing the
symmetry conditions under the group of permutations, one
obtains the conditions that reduce the number of form fac-
tors and the symmetry constraints that they have to satisfy.
Indeed, applying the prescription of the example above, we
should identify its expression starting from the general ansätz

Xα1β1α2β2α3α4
(0p) = F1δ

α1α2δβ1β2δα3α4 + F2δ
α1α3δα2α4δβ1β2

+F3δ
α1α4δα2α3δβ1β2 . (4.24)

The invariance of the correlator under the permutation P12

reduces the number of independent form factors and gives
the symmetry conditions

F1 = F1(p1 ↔ p2),

F3 = F2(p1 ↔ p2). (4.25)

The invariance of the correlator under the other symmetry
transformations P34 and PC , turns into some symmetry con-
ditions on the independent form factors as

F1 = F1(p1 ↔ p2) = F1(p3 ↔ p4)

= F1(p1 ↔ p2, p3 ↔ p4)

F2 = F2(p1 ↔ p2, p3 ↔ p4),

F2(p1 ↔ p2) = F2(p3 ↔ p4), (4.26)

obtaining again (4.21). It is now clear that the study of the
orbits of the tensor structures under the permutation group,
provides directly the answer about the minimal number of
independent form factors that are needed in order to describe
the general solution of any 4-point correlator. This proce-
dure can be simply generalized to higher point correlation
functions involving operators of any spin.

Once we identify and select representative of each orbit
for every sector, then the general structure of Xα1...α4 can be
written down quite easily. In this way, we find that in d > 4
the general form of Xα1...α4 related to 〈T T J J 〉 is written in
terms of 47 independent form factors. This number reduces
significantly when d ≤ 4, as we are going to show in the
following sections.

The number of tensor structures and independent form
factors for the general d dimensional case is listed in Table 1
and the representative of each orbit are listed in Appendix B.
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Table 1 Number of tensor structures and independent form factors in
Xα1...α4 for the 〈T T J J 〉
Sector # of tensor structures # of orbits

δδδ 3 2

δδpp 38 13

δpppp 73 21

pppppp 36 11

Total 150 47

Table 2 Possible tensor identities depending on the relation n ≥ 6 −
k − l

d = 5

k l n Tensor rank k l n Tensor rank

2 0 ≥ 4 10 5 0 ≥ 1 7

1 1 4 1

3 0 ≥ 3 9 3 2

2 1 6 0 ≥ 0 6

4 0 ≥ 2 8 5 1

3 1 4 2

2 2 3 3

5 Dimensional dependent degeneracies of tensor
structures in d ≤ 5

In the previous section we have presented the method to con-
struct the general form of the correlator in order to obtain a
minimal number of form factors in the general d dimensional
case. In d ≤ 5, the structure of Xα1...α4 changes, according to
the degeneracies of the tensor structures [3,9,42,43]. These
degeneracies cause a reduction in the number of indepen-
dent form factors and significantly simplifies the structure
of the correlator. In this section, we discuss the dimensional
reduction patterns for d ≤ 5.

5.1 Case of d = 5

Following the argument presented in [42,43], for any ten-
sor in d-dimensional space there is associated a fundamen-
tal tensor identity obtained by antisymmetrizing over d + 1
indices. In particular let T A b1...bl

a1...ak = T A [b1...bl ][a1...ak ] be
a trace-free tensor on all of its indices, where A denotes an
arbitrary number of additional lower and/or upper indices.
Then

T A [b1...bl[a1...ak
δ
bl+1
ak+1 . . . δ

bl+n]
ak+n] = 0, (5.1)

where n ≥ d − k − l + 1 and n ≥ 0.
In d = 5, (5.1) admits a tower of tensor identities depend-

ing on the values of k and l with the condition n ≥ 6 − k − l
and n ≥ 0 as showed in Table 2.

It is worth mentioning that for l + k ≥ 6 we obtain the
condition that the tensor itself vanishes for n = 0, and all the
other identities for n > 0 are trivially satisfied. In order to
clarify this point, let us consider the case with k = 3, l = 3
for which, in d = 5, the relation (5.1) becomes

T A [b1 b2 b3[a1 a2 a3
δb4
a4

. . . δ
b3+n]
a3+n] = 0, n ≥ 0. (5.2)

The first identity, depending on the values of n, is obtained
for n = 0

T A b1 b2 b3
a1 a2 a3

= 0, (5.3)

which trivially satisfies all other identities for n > 0. For
example, using the fact that an anti-symmetrization on n
indices can be decomposed iteratively on a smaller number
of indices, in the case n = 1 one obtains

T A [b1 b2 b3[a1 a2 a3
δ
b4]
a4]

= 1

4

(
T A [b1 b2 b3[a1 a2 a3] δb4]

a4
− T A [b1 b2 b3[a1 a2 a4] δb4]

a3

+T A [b1 b2 b3[a1 a4 a3] δb4]
a2

− T A [b1 b2 b3[a4 a2 a3] δb4]
a1

)

= 1

42

(
T A [b1 b2 b3][a1 a2 a3] δb4

a4
+ · · · + T A [b4 b2 b3][a1 a2 a3] δb1

a4

−T A [b1 b2 b3][a1 a2 a4] δb4
a3

+ . . .
)

= 0 (5.4)

by means of (5.3).
After a meticulous investigation of all the tensorial identities
in d = 5, we present below only those that affect the form
of the tensorial structure of the T T J J . In particular, all the
constraints from Table 2 are equivalent to only one. To show
which one is the constraint for the T T J J in d = 5, we
consider the case with k = 3 and l = 3 that takes the form

T b1 b2 b3
a1 a2 a3

= 0. (5.5)

In order to construct the antisymmetric tensor T , we consider
the tensor

t b1 b2 b3
a1 a2 a3

= p1 [a1
p2 a2

p3 a3] p
[b1
1 p b2

2 p b3]
3 , (5.6)

and then the traceless and completely antisymmetric tensor
T is directly written in the form

T b1 b2 b3
a1 a2 a3

≡ t [a4 a5 a6
a4 a5 a6

δb1
a1

δb2
a2

δb3]
a3

. (5.7)

This is the only non-trivial tensor that can be constructed
using the three independent momenta of a 4-point function.
The use of the metric δ

bi
ai in (5.6) gives a trivially zero result

in five dimensions. In order to find the dimension-dependent
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equation of the tensor structure of the transverse-traceless
part of the 〈T T J J 〉, we apply to (5.7) the � and π projectors

�μ1ν1 β1
α1

�μ2ν2 β2
α2

πμ3
α3

πμ4 α4
(
T α1 α2 α3

β1 β2 α4

)
= 0, (5.8)

or explicitly

�μ1ν1 β1
α1

�μ2ν2 β2
α2

πμ3
α3

πμ4 α4

{
J123 δ

[α1
β1

δ
α2
β2

δα3]
α4

(5.9)

− 3 J12;[12 p[α1
3] δ

α2[β1
δα3]
α4

p3β2]
+ 6 J1;[1 p[σ

2
pα1

3] δ
α2[β2

δα3]
α4

p2β1] p3σ

+ 6 J2;[1 p[σ
2

pα1
3] δ

α2[β1
δα3]
α4

p1β2] p3σ

+ 4 p3σ
p[μ3

1 pα1
2 pα2

3 δ
α3][α4

p2β1
p1β2]

}
= 0,

where

J123 = p1[a1
p2 a2

p3 a3] p
[a1
1 p a2

2 pa3]
3 , (5.10)

J12;i j = p1[a1
p2 a2] p

[a1
i pa2]

j , Ji; j = (pi · p j ).

From this analysis, we conclude that in d = 5 the number
of independent form factors is reduced by one according to
the constraint (5.10) on the tensor structures.

5.2 Case of d = 4

Analogously to the previous case, in d = 4 one has to con-
sider tensor identities derived from (5.1). However, in this
case, we are going to show that there is an even more effi-
cient way to identify the independent tensorial structures.
Indeed, in d = 4, the metric δ is not an independent tensor
and one can construct a different basis in which it can be re-
expressed. For this purpose, we construct a new orthogonal
four-vector nμ using the completely antisymmetric tensor
εμ1...μ4 and three of the four external momenta in the form

nμ1 = εμ1μ2μ3μ4 p1μ2
p2μ3

p3μ4
. (5.11)

Notice that this reduction is possible if one has in d dimen-
sions at least d − 1 independent external momenta in a cor-
relation function. The vector (5.11) is obviously transverse
with respect to p1, p2, p3, i.e. n · pi = 0. Having defined
such a vector, we use this new basis, that we call the n-p
basis, to construct all the tensorial structures that we use to
define the correlation function. In this new basis, the metric
tensor is expressed as

δμν =
4∑

i=1

(Z−1) j i P
μ
i Pν

j , (5.12)

where Z−1 is the inverse of the Gram matrix Z = [Pi ·
Pj ]di, j=1 and Pμ

j ∈ {pμ
1 , pμ

2 , pμ
3 , nμ}. In particular, the Gram

matrix in this case is written as

Z =

⎛
⎜⎜⎝

p2
1 p1 · p2 p1 · p3 0

p1 · p2 p2
2 p2 · p3 0

p1 · p3 p2 · p3 p2
3 0

0 0 0 n2

⎞
⎟⎟⎠ (5.13)

from which we obtain the expression of δ as

δμν =
3∑

i, j=1

[
(pi+1 · p j−1)(pi−1 · p j+1)

−(pi−1 · p j−1)(pi+1 · p j+1)
] pμ

i pν
j

n2

+nμnν

n2 , (5.14)

where the indices i, j are labelled mod-3 and

n2 = −p2
1 p

2
2 p

2
3 + p2

1 (p2 · p3)
2 + p2

2 (p1 · p2)
2

+p2
3 (p1 · p2)

2 − 2 (p1 · p2) (p2 · p3) (p1 · p3). (5.15)

With the expression for the metric given in (5.14), and using
the constraint δαiβi �

μi ν1
αiβi

= 0, we find

�
μi νi
αiβi

(pi ) n
αi nβi = �

μi νi
αiβi

(pi )[(
p2
i−1 p2

i − (pi · pi−1)
2
)
pαi
i+1 pβi

i+1

+
(
p2
i+1 p2

i − (pi · pi+1)
2
)
pαi
i−1 pβi

i−1

+ 2
(
(pi · pi+1) (pi · pi−1) − p2

i (pi−1

· pi+1)
)
pαi
i−1 pβi

i+1

]
, i = 1, 2 (5.16)

with the indices labelled mod-3. With the conventions for
independent momenta and indices made in (4.14), the con-
straint can be explicitly rewritten as

�
μi νi
αiβi

(pi ) n
αi nβi

= �
μi νi
αiβi

(pi )

[
pαi

3 pβi
3

(
p2
i (pi + p4)

2 − (pi · (pi + p4))
2
)

+ pαi
4 pβi

4

(
p2
i p2

3 − (pi · p3)
2
)

+ 2pαi
3 pβi

4

((
pi · (pi + p4)

)
(pi · p3)

− p2
i

(
(pi + p4) · p3

))]
, i = 1, 2. (5.17)

The previous constraints, occurring when at least two n vec-
tors are contracted with a transverse traceless projector, allow
us to write the decomposition of the transverse-traceless part
(4.12) in d = 4 in terms of just three sectors, i.e.

nnnnpp, nnpppp, pppppp. (5.18)

It is worth to point out that in this new basis the term
nα1nβ1nα2nβ2nα3nα4 cannot appear in the decomposition of
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Table 3 Number of tensor structures and independent form factors in
d = 4 with the n-p basis

Sector # of tensor structures # of orbits

nnnnpp 4 2

nnpppp 73 21

pppppp 36 11

Total 113 34

Xα1...α4 , since because of the constraints (5.17) it would be
rewritten as pα1

i pβ1
j pα2

k pβ2
l nα3nα4 with i, j, k, l = 3, 4.

Furthermore, in this new basis we notice a drastic reduction
of the number of independent tensorial structures of (5.18).
By analysing the orbits of the tensor structures under the
permutation group, we select the representatives of each of
them (see Appendix B) and thus determine the number of
independent form factors in d = 4. The result is considerably
simplified respect to the general case. We conclude that in this
specific case the transverse traceless part of the 〈T T J J 〉 is
parametrised by 34 independent form factors as summarized
in Table 3.

5.3 Case of d = 3

In the case of d = 3 the decomposition of the 〈t t j j〉 reduces
significantly. Indeed, also in this case the δ is not an inde-
pendent tensor but it can be written in terms of the external
momenta. Furthermore, contrary to the case of d = 4, there
is no need to introduce an additional orthogonal vector. The
three independent momenta p1, p2 and p3 are sufficient to
span the new basis. The three dimensional version of (5.12)
and (5.14) is immediate and we have

δ(3) μν =
3∑

i=1

(Z−1) j i p
μ
i pν

j = 1

J

3∑
i, j=1

[
(pi−1 · p j−1)(pi+1 · p j+1)

− (pi+1 · p j−1)(pi−1 · p j+1)
]

mod3
pμ
i pν

j , (5.19)

where J is the determinant of the Gram matrix given as

J = p2
1 p

2
2 p

2
3 − p2

1 (p2 · p3) − p2
2 (p1 · p2)

−p2
3 (p1 · p2) + 2 (p1 · p2) (p2 · p3) (p1 · p3). (5.20)

The form of the δ in three dimensions in (5.19) allows
us to conclude that the only structure present in (4.16) is
formed just by momenta, and we have to study a single ten-
sorial sector made of six momenta. Also in this case we
have some constraints coming from the contraction of (5.19)
with a transverse-traceless projector. Indeed, the property
δαiβi �

μi νi
αiβi

= 0 gives

�
μi νi
αiβi

(pi ) p
αi
3 pαi

4 = �
μi νi
αiβi

(pi )
1

Ji

[(
p2
i p2

3 − (pi · p3)
2
)
pαi

4 pβi
4

Table 4 Number of tensor structures and independent form factors in
d = 3

Sector # of tensor structures # of orbits

pppppp 16 5

Table 5 Number of independent form factors needed to characterize
the 〈T T J J 〉 depending on the dimensions d

Correlator d ≥ 6 d = 5 d = 4 d = 3

〈T T J J 〉 47 46 34 5

+
(
p2
i (pi + p4)

2 − (
pi · (pi + p4)

)2)
pαi

3 pβi
3

]
, i = 1, 2

(5.21)

where

Ji = 2
[
p2
i

(
p3 · (pi + p4)

)− (pi · p3)
(
pi · (pi + p4)

)]
, i = 1, 2.

(5.22)

By using these constraints we find that at d = 3 the number of
tensor structures is smaller respect to the general case and that
of d = 4. Following the procedure described in the previous
sections, we find that the number of independent form factors
in this case is reduced to five, as shown in Table 4.

5.4 Summary

We are ready to summarize the results obtained in the previ-
ous sections.

By studying the orbits of the tensor structures under
the group of permutations, we have identified the minimal
tensor structures and form factors needed to construct the
transverse-traceless part of the correlator.

This study has been first performed in the case of d ≥ 6.
For d ≤ 5, because of degeneracies in the tensor structures,
one needs to take into account identity (5.1). In particular,
for d = 5, we find one independent constraint that reduces
the number of form factors by one. In d = 4, we have shown
how to rewrite the metric δμν in the basis n-p by introducing
an orthogonal vector n given by (5.11). This approach can
also be performed for d = 3, showing that the independent
tensor structures are considerably reduced, as is the number
of independent form factors.

It is worth mentioning that when it is possible to define a
new independent tensor base, the identities (5.1) are automat-
ically satisfied. This property has been checked in the case of
the T T J . The generalization of this approach to any 3- or 4-
point correlator will be presented elsewhere. The number of
minimal form factors for specific dimensions is summarised
in Table 5.
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6 Divergences and renormalization

In the previous sections, we have shown how to decompose
the correlator in terms of a minimal number of form factors
and tensorial structures. In particular, we have seen that this
number depends on the specific spacetime dimensions d. In
particular, one has to consider the d-dependent degeneracies
in order to identify such minimal decomposition, which may
be divergent.

Working in DR with the minimal subtraction (MS)
scheme, the tensor degeneracy identities in the n-p basis
should be carefully analyzed in the ε → 0 limit, with
ε ≡ d −4. This is clear if we consider the case where d = 4,
where the new vector n is defined using the Levi Civita tensor
in four dimensions. This tensor does not allow extending the
basis n − p outside the four dimensions, which is necessary
in DR. The procedure we then use is to consider the general
decomposition in d dimensions, extract the divergences as
poles in 1/ε around the target dimension, then renormalize
the correlator with an appropriate counterterm, and once we
have the finished result for ε → 0, then consider the change
of basis to obtain a minimal decomposition.

Let us now consider the possible cases in which diver-
gences may occur, and make use of the scaling behaviour of
the entire correlator. The scale invariance of the correlator is
expressed through the dilatation Ward identity which for a

specific form factor A
(d; Np)

j takes the form

(
d − 2 − Np −

3∑
i=1

pμ
i

∂

∂pμ
i

)
A

(d; Np)

j = 0, (6.1)

where Np is the number of momenta multiplying the form
factor in the decomposition. This equation characterizes the
scaling behaviour of A(d),Np and allows to identify quite eas-
ily those among all which will be manifestly divergent in the
UV regime. In general, their behaviour is summarized in
Table 6.

In all the cases, whenever divergences are present, they
will show up as single poles in the regulator ε. The pro-
cedure of renormalization, obtained by the inclusion of the
counterterm, will remove these divergences and will gener-
ate an anomaly. In the next section, we are going to discuss
the appearance of the conformal anomaly after the renormal-
ization procedure, for the d = 4 case.

7 Perturbative analysis in the conformal case

In this section we direct our attention towards an important
aspect of our analysis, which will allow us to extend the result
of the T J J correlator presented in [18,44] to the T T J J . The
two correlators are connected via the hierarchical structures

of the trace and conservation WIs and the renormalization
procedure.

We use the free field theory realization of the T T J J in
order to study the structure of the anomalous Ward identities
once the conformal symmetry is broken after its renormal-
ization. After the renormalization, the vertex will separate
into a renormalized part of the form (4.8) and an anomaly
part, following the same pattern of the T J J . This anomaly
part will be compared directly with the result coming from
the variation of the anomaly effective action.

We start our analysis by defining our conventions for the
perturbative sectors. The fundamental classical actionS0 can
be defined as a sum of two sectors, the scalar and the fermion
sectors, which will be considered separately. It can be defined
in the form

S0 =
∑
l

Sl,scalar +
∑
l ′

Sl ′, f ermion (7.1)

where l = 1, 2 . . . Ns and l ′ = 1, 2 . . . N f enumerate the
conformally coupled scalars and fermions in the total action.
We will consider the case of a single scalar and a single
fermion, correcting the results for their multiplicities at the
end.

The action for the fermion field in a gravitational back-
ground is

S f ermion =
∫

dd x V

×
[
i

2
Vμ
a ψ̄ γ a (Dμψ

)− i

2
Vμ
a

(
D†

μψ̄
)

γ a ψ

]
, (7.2)

where Vμ
a is the vielbein and V its determinant, Dμ is the

covariant derivative defined as

Dμψ = (∇μ + i e Aμ

)
ψ =

(
∂μ + i e Aμ + 1

2
ωμ ab �ab

)
ψ,

(7.3)

Dμψ̄ = (∇μ − i e Aμ

)
ψ̄ =

(
∂μ − i e Aμ − 1

2
ωμ ab �ab

)
ψ̄,

(7.4)

where �ab are the generators of the Lorentz group in the case
of a spin 1/2-field, and

ωμ ab ≡ V ν
a

(
∂μ Vν b − �λ

μν Vλ b
)
, (7.5)

being the spin connection in the holonomic (metric) defini-
tion, with the antisymmetric property ωμ ab = −ωμ ba . The
Latin and Greek indices are related to the (locally) flat basis
and the curved background respectively. Using the explicit
expression of the generators of the Lorentz group one can
re-expresses the action as follows
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Table 6 UV scaling behaviour

of A
(d;Np)

j depending on the
dimensions

Form factor A
(d≥5,Np=6)

j A
(d,Np=4)

j A
(d,Np=2)

j A
(d,Np=0)

j

Degree d − 8 d − 6 d − 4 d − 2

UV divergent in d ≥ 8 ✓ ✓ ✓ ✓

UV divergent in d = 6, 7 ✗ ✓ ✓ ✓

UV divergent in d = 4, 5 ✗ ✗ ✓ ✓

Fig. 1 Vertices with fermions for the construction of the T T J J correlator

S f ermion =
∫

dd x V

[
i

2
ψ̄ Vμ

a γ a (∂μψ
)

− i

2

(
∂μψ̄

)
Vμ
a γ a ψ − e ψ̄Vμ

a γ a Aμ ψ

− i

4
ωμ ab V

μ
c ψ̄ γ abcψ

]
, (7.6)

where γ abc is a completely antisymmetric product of gamma
matrices defined as

γ abc ≡ 1

3!
(
γ aγ bγ c + antisymmetric

)
. (7.7)

We recall the property

γ c �ab + �ab γ c = −γ abc (7.8)

where �ab = − 1
4 [γ a, γ b]. Taking a first variation of the

action with respect to the metric one can construct the energy
momentum tensor as

Tμν = − i

2

[
ψ̄ γ (μ∇ν)ψ − ∇(μψ̄ γ ν)ψ

− gμν
(
ψ̄ γ λ∇λψ − ∇λψ̄ γ λψ

) ]

− e ψ̄
(
gμνγ λ Aλ − γ (μAν)

)
ψ. (7.9)

The computation of the vertices can be done by taking func-
tional derivatives of the action with respect to the metric and
the gauge field and Fourier transforming to momentum space.
They are given in Fig. 1 and their explicit expressions have
been collected in Appendix E.

The action of a scalar coupled to a gauge field in a curved
background is defined by the functional

Sscalar =
∫

dd x
√
g

(∣∣Dμφ
∣∣2 + (d − 2)

4(d − 1)
R|φ|2

)
, (7.10)

where R is the scalar curvature and φ denotes a complex
scalar field and Dμφ = ∇μφ + ie Aμφ, the covariant deriva-
tive for the coupling to the gauge field Aμ. The vertices for the
scalar interactions depicted in Fig. 2 are listed in Appendix E.
It is worth mentioning that we have not considered the vertex
with two gauge fields/two scalars and two gravitons because
it contributes as a massless tadpole at one-loop, and vanishes
in DR.

7.1 Feynman diagrams

In order to find all the Feynman diagrams that will contribute
to the correlation function, we start from the definition of the
energy momentum tensor as given in (2.3). The T T J J corre-
lator around flat space is extracted by taking four derivatives
of the bare effective action SB with respect to the metric and
the gauge field, evaluated when the sources are turned off

〈Tμ1ν1(x1) T
μ2ν2(x2) J

μ3(x3) J
μ4(x4)〉

= 4
δ4 SB

δgμ1ν1(x1) δgμ2ν2(x2) δAμ3(x3) δAμ4(x4)

∣∣∣∣
g=δ, A=0

.

(7.11)

We will discuss the Euclidean case, with background metric
δμν . The analytic continuation of our results to Minkowski
space are pretty straightforward, since the basic master inte-
grals appearing in the computations are the scalar self-energy,
the triangle and the box diagram. Having denoted with S0 the
conformal invariant classical action in SB , we have
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〈Tμ1ν1(x1) T
μ2ν2(x2) J

μ3(x3) J
μ4(x4)〉 = 4

{ 〈
δS0

δg1

δS0

δg2

δS0

δA3

δS0

δA4

〉
−
〈

δ2S0

δg1 δg2

δS0

δA3

δS0

δA4

〉

−
〈

δ2S0

δg1 δA3

δS0

δg2

δS0

δA4

〉
−
〈

δ2S0

δg1 δA4

δS0

δg2

δS0

δA3

〉
−
〈
δS0

δg1

δ2S0

δg2 δA3

δS0

δA4

〉
−
〈
δS0

δg1

δ2S0

δg2 δA4

δS0

δA3

〉

+
〈

δ2S0

δg1 δA3

δ2S0

δg2 δA4

〉
+
〈

δ2S0

δg1 δA4

δ2S0

δg2 δA3

〉
+
〈

δ3S0

δg1 δg2 δA3

δS0

δA4

〉
+
〈

δ3S0

δg1 δg2 δA4

δS0

δA3

〉 }
, (7.12)

where for sake of simplicity we have indicated for gi =
gμi νi (xi ), i = 1, 2 and for A j = Aμ j (x j ), j = 3, 4.
In (7.12) the angle brackets denote the vacuum expectation
value and all the terms are referred to a particular topology
for the Feynman diagrams. In particular, we have the box
diagram topology, the first term in (7.12), then the triangle
diagrams topology expressed by the second term and the sec-
ond line of (7.12), and finally the bubble diagrams written in
the last line of the same equation. As we have already men-
tioned, we discard the term〈

δ4S0

δg1 δg2 δA4δA3

〉
(7.13)

in (7.12), because it generates a tadpole diagram at one-loop.
For the fermionic case, examples of diagrams are shown

in Fig. 3. For instance, the first in Fig. 3a, is summarized by
the expression

Vμ1ν1μ2ν2μ3μ4
1, f ermion (p1, p2, p3, p4) =

= −
∫

ddl

(2π)d

Tr
[
Vμ1ν1

T ψ̄ψ
(l + p2, l + p1 + p2)

(
/l + /p2

)
Vμ2ν2

T ψ̄ψ
(l, l + p2)

(
/l
)
Vμ3

J ψ̄ψ

(
/l − /p3

)
Vμ4

J ψ̄ψ

(
/l + /p1 + /p2

)]

l2 (l + p2)
2 (l + p2 + p1)

2 (l − p3)
2 ,

(7.14)

A few additional examples of triangle diagrams contribut-
ing to the T T J J can be found in Fig. 4. The first diagram,
for instance, is expressed as

Vμ1ν1μ2ν2μ3μ4
2, f ermion (p1, p2, p3, p4) = −

∫
ddl

(2π)d

Tr
[
Vμ1ν1μ2ν2

T T ψ̄ψ
(l + p3, l − p4)

(
/l + /p3

)
Vμ3

J ψ̄ψ

(
/l
)
Vμ4

J ψ̄ψ

(
/l − /p4

)]

l2(l + p3)2(l − p4)2 . (7.15)

Other topologies are given by the bubble contributions.
Some examples of these are shown in Fig. 5. For instance,
for the first diagram we have

Vμ1ν1μ2ν2μ3μ4
3, f ermion (p1, p2, p3, p4) = −

∫
ddl

(2π)d

Tr
[
Vμ1ν1μ2ν2μ4

T T J ψ̄ψ
(l + p3, l)

(
/l + /p3

)
Vμ3

J ψ̄ψ
(l, l + p3)/l

]

l2(l + p3)2 . (7.16)

All the diagrams computed in the fermionic and scalar
cases are given in Figs. 6 and 7. The perturbative realiza-
tion of the T T J J will be written down as the sum of these
amplitudes, formally given by the expression

〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉

= 4
∑
i∈G

Si V
μ1ν1μ2ν2μ3μ4
i (p1, p2, p3, p4), (7.17)

where G is the set of all the diagrams listed in Figs. 6 and 7,
and Si is the symmetry factor of each diagram.

This perturbative realisation of the T T J J in d dimensions
satisfies the conservation and trace Ward identities (3.19),
(3.20), (3.23). However, around d = 4, some loop integrals
diverge and the renormalisation procedure of this correla-
tor will lead to the appearance of an anomalous part (the
trace anomaly). Scale-breaking contributions will be natu-

rally associated with the renormalization procedure, and they
are not accounted for by the trace anomaly condition, as we
will discuss in the next sections.
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Fig. 2 Vertices with scalars for the construction of the T T J J correlator

Fig. 3 Examples of box diagrams that contribute to the T T J J correlator

Fig. 4 Examples of triangle diagrams of the triangle topology

Fig. 5 Examples of bubble
diagrams of bubble topology

From (7.17), by using the transverse π and transverse trace-
less � projectors defined in (4.7) and (4.6), we obtain the
perturbative realization of the transverse traceless part

〈tμ1ν1(p1)t
μ2ν2(p2)t

μ3(p3)t
μ4(p4)〉

= �
μ1ν1
α1β1

(p1)�
μ2ν2
α2β2

(p2)π
μ3
α3

(p3)π
μ4
α4

(p4)

×
⎡
⎣4

∑
i∈G

Si V
α1β1α2β2α3α4
i (p1, p2, p3, p4)

⎤
⎦ , (7.18)

and then identify the form factors described in Sect. 4.
The computation of all the diagrams has been performed

explicitly and the expression of the renormalized CWI’s sat-
isfied by the form factors of the T T J J will be discussed
separately for d = 4, since they are rather involved.

7.2 Divergences in d = 4 and renormalization

We have computed the explicit expressions of the form fac-
tors in Sect. 6 and classified the divergent ones, that coincide
with the list given in Table 6. As already mentioned, their
expressions are finite at d = 3. Here, in this section, we
focus on the analysis of the structure of their divergences in
DR at d = 4. At d = 4, from Table 6, we expect that the form
factors multiplying the tensorial structures with (2δ, 2p) and
(3δ) are divergent. We actually find, form the perturbative
calculations, that the divergent part of the transverse trace-
less component is written, after some manipulation, as

〈tμ1ν1 tμ2ν2 jμ3 jμ4 〉div

= �
(4−ε) μ1ν1
α1β1

�
(4−ε) μ2ν2
α2β2

πμ3
α3

πμ4
α4

(
e2 (4N f + Ns)

12π2ε

)
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Fig. 6 Diagrams with fermions for the T T J J correlator

×
{
δα1α2δβ1β2 pα4

3 pα3
4

− 4 δα1α2δα3(β2 pβ1)
4 pα4

3 + 4δα1α2δα3α4 p(β1
3 pβ2)

4

− 4δα1α2δα4(β2 pβ1)
3 pα3

4 + 2δα2α3δα4β2 pβ1
4 pα1

3

+ 2δα1α3δα4β1 pβ2
4 pα2

3

− 2pβ1
4 pβ2

3 δα1α3δα2α4 − 2pβ2
4 pβ1

3 δα1α4δα2α3

+ (s − p2
3 + p2

4)

[
2δα1(α4δα3)α2δβ1β2 − 1

2
δα1α2δβ1β2δα3α4

]}
,

(7.19)

where N f and Ns indicate the number of fermion and scalar
families respectively, that are arbitrary. The projectors � are
expanded around d = 4 as

�
(4−ε) μ1ν1
α1β1

= �
(4) μ1ν1
α1β1

− ε

9
πμ1ν1πα1β1 + O(ε2) (7.20)

with �(4) the transverse traceless projectors defined in (4.6)
with d = 4.

The counterterm vertex is

〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4 〉count
= −1

ε

∑
I= f,s

NI βc(I ) V
μ1ν1μ2ν2μ3μ4
F2 (p1, p2, p3, p4), (7.21)

where

Vμ1ν1μ2ν2μ3μ4
F2 (p1, p2, p3, p4) = 4

∫
dd x

4∏
k=1

dd xk

(
δ4
(√

g F2
)
(x)

δgμ1ν1(x1)δgμ2ν2(x2)δAμ3(x3)δAμ4(x4)

)

g→δ

ei
∑4

j p j x j

≡ [√
g F2]μ1ν1μ2ν2μ3μ4

(p1, p2, p3, p4) δ(p1 + p2 + p3 + p4), (7.22)

where we will henceforth adopt the notation [. . . ]μi νi ... μ j ...

to indicate the functional variation with respect to metrics
gμiνi and gauge sources Aμ j in the flat limit and transformed
in momentum space. From this counterterm we can extract
its transverse traceless part that can be written as

〈tμ1ν1 tμ2ν2 jμ3 jμ4 〉count = �
(4−ε) μ1ν1
α1β1

�
(4−ε) μ2ν2
α2β2

πμ3
α3

πμ4
α4

×
⎛
⎝−

∑
I=s, f

8

ε
βc(I ) NI

⎞
⎠
{
δα1α2δβ1β2 pα4

3 pα3
4

− 4 δα1α2δα3(β2 pβ1)
4 pα4

3 + 4δα1α2δα3α4 p(β1
3 pβ2)

4

− 4δα1α2δα4(β2 pβ1)
3 pα3

4 + 2δα2α3δα4β2 pβ1
4 pα1

3

+ 2δα1α3δα4β1 pβ2
4 pα2

3
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Fig. 7 Diagrams with scalars that contribute to the T T J J correlator

− 2pβ1
4 pβ2

3 δα1α3δα2α4 − 2pβ2
4 pβ1

3 δα1α4δα2α3

+ (s − p2
3 + p2

4)

[
2δα1(α4δα3)α2δβ1β2 − 1

2
δα1α2δβ1β2δα3α4

]}
,

(7.23)

where s = (p1 + p2)
2. From (7.19) and (7.23) we notice that

the divergences are removed with the choices

βc(s) = e2

96 π2 , βc( f ) = e2

24 π2 . (7.24)

It is worth mentioning, as expected, that these are exactly
the same choices that renormalize the 2-point function 〈J J 〉
and 3-point function 〈T T J 〉 as well as all the other n-point
functions involving two conserved currents.

Furthermore, the counterterm contribution satisfies the
constraints

p1μ1〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉count

=
[

2 p2λ1
δν1(μ2〈T ν2)λ1(p1 + p2)J

μ3(p3)J
μ4(p4)〉count

− p2
ν1〈Tμ2ν2(p1 + p2)J

μ3(p3)J
μ4(p4)〉count

]

+ 2

{[
δν1(μ2 pν2)

3 〈Jμ3(p1 + p2 + p3)J
μ4(p4)〉count

− δν1(μ2δν2)μ3 p3λ1
〈Jλ1(p1 + p2 + p3)J

μ4(p4)〉count
+ 1

2
δμ3ν1 p3λ1〈Jλ1(p1 + p3)T

μ2ν2(p2)J
μ4(p4)〉count
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− 1

2
pν1

3 〈Jμ3(p1 + p3)T
μ2ν2(p2)J

μ4(p4)〉count
]

+
[
(3 ↔ 4)

]}
, (7.25)

where

〈Jμ3(p3)J
μ4(p4)〉count

=
⎛
⎝−

∑
I=s, f

1

ε
βc(I ) NI

⎞
⎠
∫

dd x dd x3 d
d x4

(
δ2 F2(x)

δAμ3(x3)δAμ4(x4)

)
eip3x3+i p4x4

=
⎛
⎝−

∑
I=s, f

4

ε
βc(I ) NI

⎞
⎠
[
δμ3μ4(p3 · p4) − pμ3

4 pμ4
3

]

(7.26)

is the counterterm 2-point function of two photons when
p3 = −p4. It is the counterterm of the photon self-energy
at one-loop with intermediate scalars and fermions, as clear
from the sum over s and f present in the equation above.

It is worth mentioning that this counterterm renormalizes
the 2-point function 〈J J 〉, perturbatively expressed as

〈Jμ3(−p4)J
μ4(p4)〉 = e2

(4π)2

2(d − 2)N f + Ns

(d − 1)

[
δμ3μ4 p2

4

− pμ3
4 pμ4

4

]
B0(p

2
4), (7.27)

with B0(p2
4) denoting the scalar (bubble) 2-point function,

where the divergent part is extracted in DR as

〈Jμ3(−p4)J
μ4(p4)〉div = e2

24π2

4N f + Ns

ε

×
[
δμ3μ4 p2

4 − pμ3
4 pμ4

4

]
. (7.28)

Coming to the trace Ward identities, we also have

δμ1ν1〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉count

= 2
[√

g F2]μ2ν2μ3μ4(p2, p3, p4)

− 2 〈Tμ2ν2(p1 + p2)J
μ3(p3)J

μ4(p4)〉count . (7.29)

At this point, having identified the anomalous conserva-
tion and trace WIs satisfied by the correlator, its renormalized
expression is given by

〈Tμ1ν1(p1)J
μ3(p3)J

μ4(p4)〉Ren
= 〈Tμ1ν1(p1)J

μ3(p3)J
μ4(p4)〉 f in

+ 〈Tμ1ν1(p1)J
μ3(p3)J

μ4(p4)〉anomaly (7.30)

where the anomaly contribution is given by

〈Tμ1ν1(p1)J
μ3(p3)J

μ4(p4)〉anomaly

=
∑
I=s, f

βc(I )
πμ1ν1(p1)

3

[
F2
]μ3μ4

(p3, p4). (7.31)

These direct computations are performed with no reference to
the reconstruction procedure into transverse/traceless, trace
and longitudinal sectors introduced in the previous sections,
that allows the identification of a minimal number of form
factors.

7.3 The reconstruction of the renormalized correlator from
the transverse-traceless sector

Once we have removed the divergences from the transverse
traceless part, we are able to reconstruct the entire correla-
tor. The transverse traceless part, after the renormalization,
acquires an anomalous contributions, with an anomalous
dilatation WI satisfied by the corresponding form factors.
The longitudinal part, instead, is affected by the presence of
the trace anomaly. In this section, we are going to discuss
this point in more detail.
The renormalized correlator is given by

〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉Ren

=
(
〈Tμ1ν1(p1)T

μ2ν2(p2)J
μ3(p3)J

μ4(p4)〉
+ 〈Tμ1ν1(p1)T

μ2ν2(p2)J
μ3(p3)J

μ4(p4)〉count
)
d→4

= 〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉 f in

+ 〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉anomaly,

(7.32)

where the bare correlator and the counterterm are re-
expressed in terms of a finite renormalized correlator not
contributing to the trace Ward identity, and a second part
which accounts for the trace anomaly. In order to show this,
we consider the first term in the longitudinal part of the cor-
relator in (4.11), for which the divergent contribution is given
by

〈tμ1ν1
loc Tμ2ν2 Jμ3 Jμ4 〉div
=
(
Iμ1ν1

α1 p1 β1 + πμ1ν1 (p1)

(d − 1)
δα1β1

)
〈T α1β1Tμ2ν2 Jμ3 Jμ4 〉div

= Iμ1ν1
α1

{[
2 p2λ1

δα1(μ2 〈T ν2)λ1 (p1 + p2)Jμ3 (p3)Jμ4 (p4)〉div

− p2
α1 〈Tμ2ν2 (p1 + p2)Jμ3 (p3)Jμ4 (p4)〉div

]

+ 2

[(
δα1(μ2 p

ν2)
3 〈Jμ3 (p1 + p2 + p3)Jμ4 (p4)〉div

− δα1(μ2 δν2)μ3 p3λ1
〈Jλ1 (p1 + p2 + p3)Jμ4 (p4)〉div
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+ 1

2
δμ3α1 p3λ1 〈Jλ1 (p1 + p3)Tμ2ν2 (p2)Jμ4 (p4)〉div

− 1

2
p
α1
3 〈Jμ3 (p1 + p3)Tμ2ν2 (p2)Jμ4 (p4)〉div

)

+
(

(3 ↔ 4)

)]}

− 2
πμ1ν1 (p1)

(d − 1)
〈Tμ2ν2 (p1 + p2)Jμ3 (p3)Jμ4 (p4)〉div. (7.33)

By adding the counterterm part, we are able to renormalize
this expression, and taking the limit d → 4 we find

〈tμ1ν1
loc Tμ2ν2 Jμ3 Jμ4 〉Ren =

(
〈tμ1ν1
loc Tμ2ν2 Jμ3 Jμ4 〉div

+ 〈tμ1ν1
loc Tμ2ν2 Jμ3 Jμ4 〉count

)
d→4

= 〈tμ1ν1
loc Tμ2ν2 Jμ3 Jμ4 〉(d=4)

f in

+ 〈tμ1ν1
loc Tμ2ν2 Jμ3 Jμ4 〉(d=4)

anom , (7.34)

where the anomalous part is explicitly given by

〈tμ1ν1
loc Tμ2ν2 Jμ3 Jμ4 〉(d=4)

anom

=
{
I(d=4) μ1ν1

α1

[
2 p2λ1

δα1(μ2 〈T ν2)λ1 (p1 + p2)J
μ3 (p3)J

μ4 (p4)〉anom
− p2

α1 〈Tμ2ν2 (p1 + p2)J
μ3 (p3)J

μ4 (p4)〉anom
+
(

δμ3α1 p3λ1 〈Jλ1 (p1 + p3)T
μ2ν2 (p2)J

μ4 (p4)〉anom

− pα1
3 〈Jμ3 (p1 + p3)T

μ2ν2 (p2)J
μ4 (p4)〉anom

)

+
(

δμ4α1 p4λ1 〈Jλ1 (p1 + p4)T
μ2ν2 (p2)J

μ3 (p3)〉anom

− pα1
4 〈Jμ4 (p1 + p4)T

μ2ν2 (p2)J
μ3 (p3)〉anom

)]

− 2
πμ1ν1 (p1)

3
〈Tμ2ν2 (p1 + p2)J

μ3 (p3)J
μ4 (p4)〉anom

+ 2
πμ1ν1 (p1)

3

[√
g F2]μ2ν2μ3μ4 (p2, p3, p4)

}
, (7.35)

and where the 〈T J J 〉anom 3-point function is given in (7.31).
We make this contribution explicit by using (7.31) to obtain

〈tμ1ν1
loc Tμ2ν2 Jμ3 Jμ4 〉(d=4)

anom

= βC

{
I(d=4) μ1ν1

α1

[
2 p2λ1

δα1(μ2 πν2)λ1 (p1 + p2)

3

[
F2]μ3μ4

(p3, p4)

− p2
α1

πμ2ν2 (p1 + p2)

3

[
F2]μ3μ4

(p3, p4)

+ πμ2ν2 (p2)

3

(
δμ3α1 p3λ1

[
F2]λ1μ4

(p1 + p3, p4)

− pα1
3

[
F2]μ3μ4

(p1 + p3, p4)

)

+ πμ2ν2 (p2)

3

(
δμ4α1 p4λ1

[
F2]λ1μ3

(p1 + p4, p3)

− pα1
4

[
F2]μ3μ4

(p3, p1 + p4)

)]

− 2
πμ1ν1 (p1)

3

πμ2ν2 (p1 + p2)

3

[
F2]μ3μ4

(p3, p4)

+ 2
πμ1ν1 (p1)

3

[√
g F2]μ2ν2μ3μ4 (p2, p3, p4)

}
, (7.36)

where we have defined

βC ≡
⎛
⎝ ∑

I=s, f

βc(I )

⎞
⎠ . (7.37)

Then, the second term in (4.11) is obtained from
〈Tμ1ν1 tμ2ν2

loc Jμ3 Jμ4〉(d=4)
anom with the replacement (1 ↔ 2).

Similarly, one writes the last term 〈tloctloc J J 〉anom , as pre-
sented in Appendix C, in order to write the entire anomalous
contribution given as

〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4 〉(d=4)
anom = 〈tμ1ν1

loc Tμ2ν2 Jμ3 Jμ4 〉(d=4)
anom

+ 〈Tμ1ν1 tμ2ν2
loc Jμ3 Jμ4 〉(d=4)

anom − 〈tμ1ν1
loc tμ2ν2

loc Jμ3 Jμ4 〉(d=4)
anom

= 〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4 〉0−residue

+ 〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4 〉pole. (7.38)

In this expression we have defined

〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4〉pole
= βC

{
2
πμ1ν1(p1)

3

([√
g F2]μ2ν2μ3μ4(p2, p3, p4)

−πμ2ν2(p1 + p2)

3

[
F2
]μ3μ4

(p3, p4)

)

+ 2
πμ2ν2(p2)

3

([√
g F2]μ1ν1μ3μ4(p1, p3, p4)

−πμ1ν1(p1 + p2)

3

[
F2
]μ3μ4

(p3, p4)

)

+ 2
πμ1ν1(p1)

3

πμ2ν2(p2)

3

[
F2
]μ3μ4

(p3, p4)

}
(7.39)

with the properties

δμi νi 〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4〉pole
= 2βC

([√
g F2]μ j ν jμ3μ4(p j , p3, p4)

−πμ j ν j (p1 + p2)

3

[
F2
]μ3μ4

(p3, p4)

)
, (7.40)

pμi 〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4〉pole
= 2βC πμ j ν j (p j )

3
piμi

([√
g F2]μi νiμ3μ4(pi , p3, p4)

−πμi νi (p1 + p2)

3

[
F2
]μ3μ4

(p3, p4)

)
, (7.41)

where i 	= j ∈ {1, 2}, and the 0-residue term, instead, is
written explicitly as

〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4〉0−residue

= βC

{
I(d=4) μ1ν1

α1
�

μ2ν2
α2β2

(
2

3
p2λ1

δα1α2πβ2λ1(p1 + p2)
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−1

3
p2

α1πα2β2(p1 + p2)

)[
F2
]μ3μ4

(p3, p4)

+ I(d=4) μ2ν2
α2

�
μ1ν1
α1β1

(
2

3
p1λ2

δα1α2πβ1λ2(p1 + p2)

−1

3
p1

α2 πα1β1(p1 + p2)

)[
F2
]μ3μ4

(p3, p4)

+ I(d=4) μ1ν1
α1

I(d=4) μ2ν2
α2

δα1α2 p2λ1 p2λ2

× πλ1λ2(p1 + p2)

3

[
F2
]μ3μ4

(p3, p4)

}
, (7.42)

with the property

δμi νi 〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4 〉0−residue = 0, (7.43)
p1μ1 〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4 〉0−residue

= βC

{
�

μ2ν2
α2β2

(
2

3
p2λ1

δν1α2πβ2λ1 (p1 + p2)

−1

3
p2

ν1πα2β2 (p1 + p2)

) [
F2]μ3μ4

(p3, p4)

+ δν1α2 p2λ1 p1λ2

πλ1λ2 (p1 + p2)

3

[
F2
]μ3μ4

(p3, p4)

}
,

p1μ1 p2μ2 〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4 〉0−residue

= βC

{
δν1α2 p2λ1 p2λ2

πλ1λ2 (p1 + p2)

3

[
F2
]μ3μ4

(p3, p4)

}
.

(7.44)

These relations show that the anomaly part of the action sat-
isfies the conservation Ward identity

p1μ1〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉anom =

=
[

2 p2λ1
δν1(μ2〈T ν2)λ1(p1 + p2)J

μ3(p3)J
μ4(p4)〉anom

− p2
ν1〈Tμ2ν2(p1 + p2)J

μ3(p3)J
μ4(p4)〉anom

]

+
{[

δμ3ν1 p3λ1〈Jλ1(p1 + p3)T
μ2ν2(p2)J

μ4(p4)〉anom

− pν1
3 〈Jμ3(p1 + p3)T

μ2ν2(p2)J
μ4(p4)〉anom

]

+
[
(3 ↔ 4)

]}
, (7.45)

and the anomalous trace Ward identity

δμ1ν1〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉anom

= δμ1ν1〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉pole

= 2βC

([√
g F2]μ2ν2μ3μ4(p j , p3, p4)

−πμ2ν2(p1 + p2)

3

[
F2
]μ3μ4

(p3, p4)

)
. (7.46)

Therefore, the anomaly part of the correlator satisfies the
conservation WI by itself. A direct, explicit computation of

the diagrams allows to check these relations for d = 4. The
explicit anomalous conformal Ward Identities satisfied by the
single form factors of the decompositions will be discussed
elsewhere.

8 4-Point functions from anomaly induced actions

In this section we turn our attention towards a study of the
same correlator using the formalism of the anomaly induced
actions. Actions of these type are variational solutions of the
anomaly constraint.
We denote by SA[g] the functional identified by the integra-
tion of the trace anomaly

2 gμν

δ SA[g]
δgμν(x)

= √
g

[
b C2 + b′ E + βC F2

]
. (8.1)

This functional is obtained by a Weyl rescaling of the metric
gμν(x) = e2φ(x) ḡμν(x), to give

SA[g] = S[ḡ] + �S[φ, ḡ], (8.2)

such that its conformal variation

2 gμν

δ SA[g]
δgμν(x)

= δ SA[g]
δφ(x)

∣∣∣∣
g=e2φ ḡ

= δ
(
�S[φ, ḡ])
δφ(x)

= √
g

[
b C2 + b′ E + βC F2

]∣∣∣∣
g=e2φ ḡ

(8.3)

is the anomaly. The explicit expression for �S can be
obtained after the integration of (8.3) along a path φ̃(x, λ) =
λ φ(x) with 0 ≤ λ ≤ 1 as

�S[φ, ḡ] =
∫

d4x
∫ 1

0
dλ

δ
(
�S[φ, ḡ])
δφ(x)

∣∣∣∣
φ=φ̃(x,λ)

∂ φ̃(x, λ)

∂λ

=
∫

d4x
∫ 1

0
dλ

[√
g

(
b C2 + b′ E + βC F2

)]
g=e2φ̃(x,λ) ḡ

φ(x).

(8.4)

After the integration �S is written as

�S[φ, ḡ] = b′
∫

d4x
√
ḡ

[
2 φ �̄4φ +

(
Ē − 2

3
�̄R̄

)
φ

]

+
∫

d4x
√
ḡ

[
b C̄2 + βC F̄2

]
φ, (8.5)

up to terms which are σ independent, i.e. conformally invari-
ant, and hence do not contribute to the variation (8.3). In (8.5)
we have defined the fourth order operator �4 as

�4 = ∇μ

(
∇μ∇ν + 2Rμν − 2

3
R gμν

)

∇ν = �2 + 2Rμν ∇μ∇ν

−2

3
R � + 1

3
∇μR ∇μ. (8.6)
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In order to obtain a nonlocal form of the anomaly induced
action, one can impose a condition χ(g) = 0, such that the
relation χ(g e−2φ) = 0 is satisfied. From this condition one
solves for φ in terms of a function of the metric, mainly
φ = �(g), such that

ḡμν = e−2 �(g) gμν, gαβ

δ

δgαβ

ḡμν[g] = 0. (8.7)

Thus the conformal decomposition is expressed as

S[g] = S̄[g] + SA[g, �(g)] (8.8)

SA[g, �(g)] =
∫

d4x
√
g

[
b′
(
E − 2

3
�R

)
�

+
(
b C2 + βC F2

)
� − 2b′ � �4�

]
(8.9)

where S̄[g] and SA[g, �(g)] are its conformal-invariant and
anomalous parts respectively. There are two distinct exactly
solvable conformal choices in 4D, in which the gauge param-
eter �(g) can be calculated in a closed form, as a functional
of g. They are discussed in [45]. One is due to Fradkin and
Vilkovisky (FV) [46]

χFV (g) = R(g) (8.10)

with

�FV = − ln

(
1 + 1

6
(� − R/6)−1 R

)
(8.11)

where (� − R/6)−1 is the inverse of the operator � − R/6,
playing the role of the corresponding Faddeev–Popov oper-
ator. Another choice is due to Riegert [47] with

χR(g) = E(g) − 2

3
� R(g), (8.12)

for which

�R = 1

4
(�4)

−1
(
E − 2

3
� R

)
, (8.13)

with (�4)
−1 the inverse of the operator in (8.6).

8.1 Variation of the anomaly effective action

In general, the two choices of � should be equivalent, giv-
ing the same result when the action is varied with respect
to the metric. In order to see if this is the case, we expand
SA[g, �(g)] around flat space by the simultaneous expan-
sions of the metric gμν , the gauge field Aμ, and the local

factor �

gμν = g(0)
μν + g(1)

μν + g(2)
μν + · · · ≡ ημν + hμν + h(2)

μν + · · ·
(8.14a)

Aμ = A(0)
μ + A(1)

μ + A(2)
μ + · · · (8.14b)

� = �(0) + �(1) + �(2) + · · · . (8.14c)

The local effective action from (8.9) is then written at the
first order in hμν as

S(1)
A [g, �(g)] = βC

∫
d4x F2 �(1) (8.15)

neglecting the terms that are pure gravitational. We are
assuming that �(0) = 0 as we will prove it in the next sec-
tions for the two choices of the parameter �. The first order
in the fluctuation hμν of the expansion is related to the struc-
ture of the T J J anomaly contribution. In order to extract the
contribution to the T T J J we need the second order in hμν ,
given as

S(2)
A [g, �(g)] = βC

∫
d4x

{
F2 �(2) + (

√
gF2)(1) �(1)

}
.

(8.16)

8.2 The Riegert action

We consider first the Riegert choice, for which

√
g�4 �R = 1

4

(
E − 2

3
�R

)
, (8.17)

where we have used the relation on the Green function of the
�4. Expanding (8.17) and taking order by order in the power
of the fluctuations we determine the relations

�
(0)
R = 0,

�
(1)
R = −1

6

1

�0
R(1),

�
(2)
R = 1

4

1

�2
0

E (2) + 1

6

1

�2
0

(
√
g�4)

(1) 1

�0
R(1)

− 1

6

1

�2
0

�1 R(1) − 1

6

1

�0
R(2). (8.18)

Substituting this expression into (8.15) we obtain the contri-
bution to the T J J as

S(1)
A [g, �R(g)] = βC

∫
d4x F2 �

(1)
R

= −βC

6

∫
d4x F2 1

�0
R(1), (8.19)
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while the second order term is expressed as

S(2)
A [g, �R(g)] = βC

∫
d4x

(
(
√
g F2)(1) �

(1)
R + F2 �

(2)
R

)

= βC

∫
d4x

(
− 1

6
(
√
g F2)(1) 1

�0
R(1)

+ 1

4
F2 1

�2
0

E (2) + 1

6
F2 1

�2
0

(
√
g�4)

(1) 1

�0
R(1)

− 1

6
F2 1

�2
0

�1 R(1) − 1

6
F2 1

�0
R(2)

)
, (8.20)

and by using the expansion of the Paneitz operator �4

(
√
g�4)

(1) = (
√
g�2)(1) + 2 ∂μ

(
Rμν − 1

3
gμν R

)(1)

∂ν

(8.21)

with

(
√
g�2)(1) = (

√
g�)(1)�0 + �0 �1 (8.22)

and integrating by parts we obtain

S(2)
A [g, �R(g)] = −βC

2

∫
d4x

∫
d4x ′

{
1

3
(
√
g F2)(1)

x

(
1

�0

)
xx ′

R(1)

x ′ − 1

2
F2
x

(
1

�2
0

)

xx ′
E (2)

x ′

− 1

3

∫
d4x ′′

[
2 F2

x

(
1

�2
0

)

xx ′
∂μ

(
Rμν

−1

3
ημνR

)(1)

x ′ ∂ν

(
1

�0

)
x ′x ′′

R(1)

x ′′

+ F2
x

(
1

�0

)
xx ′

(�1)x ′
(

1

�0

)
x ′x ′′

R(1)

x ′′

]

+ 1

3
F2
x

(
1

�0

)
xx ′

R(2)

x ′ + 1

3
F2
x

(
1

�0

)
xx ′

(√
g
)(1)

R(1)

x ′

}
.

(8.23)

In the expression above, the three terms affected by the Green
function of �2 identify logarithmic contributions which can
be correctly defined only by the inclusion of a scale μF , in
order to define their Fourier transform to momentum space.
Indeed they can be correctly transformed to momentum space
only in the presence of such cutoff. Obviously, one would
expect such cutoff to disappear from the final expression, in
such a way that the correlator satisfies, in its anomaly part,
the same WIs valid for the anomaly part of its perturbative
realization.

In momentum space, we obtain

〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉Ranom

= 2βC

{
1

3

[√
g F2]μ1ν1μ3μ4(p1, p3, p4)π

μ2ν2(p2)

+ 1

3

[√
g F2]μ2ν2μ3μ4(p2, p3, p4)π

μ1ν1(p1)

− 1

2

[
F2]μ3μ4(p3, p4)G(p1 + p2)[E]μ1ν1μ2ν2(p1, p2)

+ 1

3

[
F2]μ3μ4(p3, p4)

1

(p1 + p2)2

[
R
]μ1ν1μ2ν2(p1, p2)

− 2

3

[
F2]μ3μ4(p3, p4)G(p1 + p2) (p1 + p2)μ

×
[
Rμν − 1

3
ημνR

]μ1ν1
(p1) p2 ν πμ2ν2(p2)

− 2

3

[
F2]μ3μ4(p3, p4)G(p1 + p2) (p1 + p2)μ

×
[
Rμν − 1

3
ημνR

]μ2ν2
(p2) p1 ν πμ1ν1(p1)

− 1

3

[
F2]μ3μ4(p3, p4)

1

(p1 + p2)2[[
�1
]μ1ν1(p1, p2)π

μ2ν2(p2)

+ [
�1
]μ2ν2(p2, p1)π

μ1ν1(p1)

]

+ 1

3

[
F2]μ3μ4(p3, p4)

1

(p1 + p2)2

[
p2

2

2
δμ1ν1 πμ2ν2(p2)

+ p2
1

2
δμ2ν2 πμ1ν1(p1)

]}
δ(4)

(
4∑
i

pi

)
(8.24)

where G(p) = c log(p2/μ2
F ) as pointed out also in [48–50]

and we have used the relations in Appendix F.
One can easily figure out that the μF dependence in the

sum logarithmic correlators does not cancel. As we are going
to discuss next, a similar problem emerges in the case of the
FV gauge. This, as we are now going to clarify, indicates
an inconsistency of the expansion around the flat spacetime
limit.

Indeed, a closeIndeed, a close look at (7.45), the hierar-
chical equation of the conservation WI, relates on the lhs a 4-
point function which remains logarithmic even after an ordi-
nary differentiation, to 3-point functions on the r.h.s. which
are not, and are correctly described by the two anomaly-
induced actions that we have considered.

In the case of the Riegert action, therefore, this shortcom-
ing appears to be related to 1/�2 terms.
This could provide an indication that these types of action
do not allow a consistent expansion starting from the quartic
order.

8.3 Fradkin–Vilkovisky gauge

We consider then the Fradkin Vilkoviski choice for which

�FV = − log

(
1 + 1

6
G�−R/6 R

)

=
∞∑
k=1

(−1)k
1

k 2k 3k
(
G�−R/6 R

)k
. (8.25)
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In order to obtain the first and second order contributions in
hμν with this choice we need the relations of expansion of
the Green function of the conformal Laplacian. These are
obtained considering(

� − R

6

)
x
G�−R/6(x, x

′) = δ(x − x ′)√
g(x)

, (8.26)

and expanding and collecting the terms order by order we
obtain

G(0)

�−R/6 = 1

�0
,

G(1)

�−R/6 = − 1

�0
[√g�](1) 1

�0
+ 1

6

1

�0
R(1) 1

�0
, (8.27)

where the dependence on variables has been omitted for clar-
ity. Still, it will be written explicitly later when we consider
the explicit expressions of the expansion of the effective
action order by order around the flat metric. With these results
we use (8.25) to get

�
(0)
FV = 0, �

(1)
FV = −1

6

1

�0
R(1),

�
(2)
FV = −1

6

1

�0
R(2) + 1

6

1

�0
[√g�](1) 1

�0
R(1)

− 1

2332

1

� R(1) 1

� R(1). (8.28)

It is worth noticing that the two choices are equivalent at the
first order, indeed

�
(1)
R = �

(1)
FV (8.29)

and then the anomalous contribution to the three point func-
tion T J J is the same by using one choice or the other. Indeed,
we obtain

S(1)
A [g, �FV (g)] = S(1)

A [g, �R(g)]
= −βC

6

∫
d4x F2 1

�0
R(1), (8.30)

showing the equivalence of the two choices at the first order.
At the second order, by inserting (8.28) in the expansion
(8.17), we have

S(2)
A [g, �FV (g)] = −βC

6

∫
d4x

∫
d4x ′

{
(
√
gF2)(1)

x

(
1

�0

)
xx ′

R(1)

x ′

+ F2
x

(
1

�0

)
xx ′

R(2)

x ′

+
∫

d4x ′′
[

1

12
F2
x

(
1

�0

)
xx ′

R(1)

x ′

(
1

�0

)
x ′x ′′

R(1)

x ′′

− F2
x

(
1

�0

)
xx ′

[√g�](1)

x ′

(
1

�0

)
x ′x ′′

R(1)

x ′′

]}
, (8.31)

noticing that at the second order the expansions with the two
different choices of � give distinguished results, and they

differ for terms like

S(2)
A [g, �FV (g)] − S(2)

A [g, �R(g)] ∼ 1

2

F2
x

(
1

�2
0

)

xx ′
E (2)

x ′ + · · · (8.32)

We compute now the contribution of the anomaly effective
action with the Fradkin Vilkovisky gauge, to the T T J J in
momentum space. From (8.31) and by using the variations
in Appendix F we have

〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉FVanom =

= 2

3
βC

{[
(
√
gF2)

]μ2ν2μ3μ4(p2, p3, p4)π
μ1ν1(p1)

+ [
(
√
gF2)

]μ1ν1μ3μ4(p1, p3, p4)π
μ2ν2(p2)

+ [
F2]μ3μ4(p3, p4)

1

(p1 + p2)2

([
R
]μ1ν1μ2ν2(p1, p2)

+ 1

12
(p2

1 + p2
2)πμ1ν1(p1)π

μ2ν2(p2)

)

− [
F2]μ3μ4(p3, p4)

1

(p1 + p2)2([√
g�

]μ1ν1(p1, p2)π
μ2ν2(p2)

+ [√
g�

]μ2ν2(p2, p1)π
μ1ν1(p1)

)}
. (8.33)

One can check by explicit computation in momentum space
– in this case the expression is transformable by the Fourier
integral – that the anomalous trace Ward identity is no more
satisfied. Indeed we have

δμ1ν1δμ2ν2〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉FVanom

= 2 βC

3

{[
F2]μ3μ4(p3, p4)

1

(p1 + p2)2

(
9(p1 · p2)

+ 3

4
(p2

1 + p2
2)

)
− 3

[
F2]μ3μ4(p3, p4)

}
, (8.34)

contrary to the expected result (7.46). This is, obviously, at
variance with the trace Ward identity satisfied by the anomaly
contribution coming from the perturbative expansion dis-
cussed in the previous sections. In the case of the FV action,
such Ward identities are expected to be expressed only in
terms of hierarchical equations involving only the 3- and 4-
point functions identified by the same action.

This result raises some important issues concerning the
consistency of the flat spacetime limit of such actions. Notice
that the FV action also introduces a conformal decomposi-
tion related to a logarithmic conformal choice (8.25). The
corresponding expansion, in FV, is also essentially deprived
of a physical scale, although it is possible to formulate an
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explicit expansion of such gauge conditions in terms of the
dimensionless combination R�−1.

9 Expected expansion

In this section we show what is the expansion of an effec-
tive action that reproduces the anomalous contribution of
the 〈T T J J 〉 calculated perturbatively. The expression in a
covariant form of this non-local effective action, that will dif-
fer from Riegert and Fradkin–Vilkovisky ones, is currently
under investigation and will be presented in a later work. The
result we are going to discuss comes from the explicit calcu-
lation of the anomalous part of the correlator 〈T T J J 〉 per-
formed in Sect. 7.3. In particular we write the correct expan-
sion at the second order in curvature of an effective action
that reproduces (7.38). We find that at the second order in
the metric fluctuation, the desired expansion of the anomaly
effective action should be

S(2)
anom = −βC

6

∫
d4x

∫
d4x ′

{
(
√
g F2)(1)

x

(
1

�0

)
xx ′

R(1)

x ′

+ F2
x

(
1

�0

)
xx ′

R(2)

x ′

+
∫

d4x ′′
[
F2
x

(
1

�0

)
xx ′

(�1)x ′
(

1

�0

)
x ′x ′′

R(1)

x ′′

− 1

6
F2
x

(
1

�0

)
xx ′

R(1)

x ′

(
1

�0

)
x ′x ′′

R(1)

x ′′

+ 1

3
R(1)
x

(
1

�0

)
xx ′

F2
x ′

(
1

�0

)
x ′x ′′

R(1)

x ′′

]}
. (9.1)

The contribution to the anomaly part of the 〈T T J J 〉 of this
expansion in momentum space reads as

〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉anom

= 2βC

3

{
(
√
g F2)μ1ν1μ3μ4(p1, p3, p4)

1

p2
2

[R]μ2ν2(p2)

+ (
√
g F2)μ2ν2μ3μ4(p2, p3, p4)

1

p2
1

[R]μ1ν1(p1)

+ [F2]μ3μ4(p3, p4)
1

(p1 + p2)2 [R]μ1ν1μ2ν2(p1, p2)

+ 2

3
[R]μ1ν1(p1)

1

p2
1

[F2]μ3μ4(p3, p4)
1

p2
2

[R]μ2ν2(p2)

+ [F2]μ3μ4(p3, p4)
1

(p1 + p2)2[
[�1]μ1ν1(p1, p2)

1

p2
2

[R]μ2ν2(p2)

+[�1]μ2ν2(p2, p1)
1

p2
1

[R]μ1ν1(p1)

]

− 1

6
[F2]μ3μ4(p3, p4)

1

(p1 + p2)2[
[R]μ1ν1(p1)

1

p2
1

[R]μ2ν2(p2)

+ [R]μ2ν2(p2)
1

p2
2

[R]μ1ν1(p1)

]}
δ(4)

(
4∑

i=1

pi

)
.

(9.2)

Using the expression of the functional variations in momen-
tum space given in Appendix F, we write

〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉anom

= 〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4〉0−residue

+ 〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4〉pole + 〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4〉inv

(9.3)

where the first two terms are exactly those in (7.39) and
(7.44), and the last term is a Weyl invariant term written
as

〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4〉inv

= 1

3
βC �

μ1ν1
α1β1

(p1)�
μ2ν2
α2β2

(p2)

{
δα1α2

(p1 + p2)2

[
2pβ2

1 pβ1
2

−δβ1β2
(
(p1 + p2)

2 − p1 · p2

)]
[F2]μ3μ4(p3, p4)

}
,

(9.4)

and it does not contribute to the trace anomaly part. In prin-
ciple this Weyl invariant contribution can be removed by an
inclusion of a Weyl invariant term in the effective action. It
is worth mentioning that the expression derived satisfies cor-
rectly the conservation and anomalous trace Ward identities.

10 Conclusions

In this work, we have performed an explicit computation of
the T T J J correlator using a free field theory realization.
We have identified the general structure of the correspond-
ing form factors in its tensorial decomposition. In particular,
we have implemented a method that simplifies their number,
exploiting the momentum dependent degeneracies in combi-
nation with the classification of their orbits. The approach we
presented is general and will be applied to similar correlators
in future works.

We have used this correlator to investigate the structure
of the anomalous CWIs satisfied by it and compared the
results with the analogous prediction for its anomaly part, as
identified by the anomaly-induced actions. Such actions are
expected to reproduce the anomaly contribution to all orders
in the external gravitational field. Indeed, this has been veri-
fied in the case of 3-point functions for two special choices of
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the conformal decomposition of the background metric that
generate two different types of anomaly actions.

Indeed we have shown that, for 3-point functions, the two
actions of Riegert and FV type are both in agreement with
the perturbative analysis, once that we have isolated from the
perturbative correlator its anomaly contribution.

As explained in the previous sections, this separation is
uniquely defined since the anomaly part of a correlator is
identified by the condition that (1) it reproduces the anomaly
contribution in the hierarchy and (2) it is separately con-
served. In other words, such part satisfies anomalous CWIs
while the non anomalous part satisfies CWIs which are ordi-
nary (non anomalous), and both parts are separately con-
served.

As we move to 4-point functions, our analysis shows that
the conservation WI for the anomaly part should be modified
by an additional traceless contribution (that we have called
the “0-residue” part). In other words, at the level of 4-point
functions, the anomaly part of the correlator is not just iden-
tified by the sequence of pole-like contributions, which are
part of the trace WIs, but also by a traceless part. This allows,
again, to separate the correlator into two parts, separately
conserved and satisfying, again separately, anomalous CWIs
and ordinary CWIs, respectively, as for 3-point functions.

These analyses demonstrate the important role of free field
theory realizations in extracting such information, which is
not a priori predictable from general considerations in this
class of theories. This point has been first noticed in a previ-
ous analysis of the anomaly contribution to the T T T T (4T )
[3].

In the case of the 4T correlator, that we hope to investigate
in the future by similar methods, such (0-residue) part could
be identified by the ε expansion of the counterterms 1

ε
VE and

1
ε
VC2 , without the need to determine the entire structure of

the correlator. Indeed, one only needs to perform a consistent
decomposition of the counterterms up to O(1) in ε to achieve
the goal.

We recall that the anomaly, in DR, comes for the
expansion of VE/C2/F2 up to O(ε), which in flat space
is polynomial in the momenta. The application of the
transverse-traceless/longitudinal/trace decomposition, intro-
duced in [7], has allowed extracting such 0-residue term
from the finite part of the counterterms, indicating that such
terms are essential in the definition of an anomaly action
defined directly from the perturbative expansion. Therefore,
the anomalous CWIs and the conservation WI are both sat-
isfied only if we add to the pole-term contributions such 0-
residue term. The perturbative analysis of the T T J J that we
have discussed is similar to the case of the 4T discussed in
previous work, and exhibits the same features.

On the other end, our analysis shows that the anomaly-
induced actions that we have investigated fail – at the level

of 4-point functions – to generate conserved anomaly parts,
while they succeed in 3-point functions. At the same time,
as we have shown, they do not satisfy the hierarchical CWIs
that we expect.

The result is puzzling – but rather interesting – since it may
bring under even closer scrutiny this class of actions, origi-
nally introduced as formal solutions of a variational problem.

We also remark that conservation WIs are associated with
the diffeomorphism invariance, and one indeed expects that
the conservation of the stress energy tensor should hold.
Indeed it does, at least for the correlators of rank 2 and 3.

10.1 Possible resolutions

Our conclusions, given these findings, are open-ended and
call for further investigations of such correlation functions.
One crucial issue that needs to be addressed is if such actions
can be consistently expanded around a flat spacetime – in the
absence of any physical scale in their expressions – beyond a
specific order, without encountering the puzzling behaviour
that we have identified in our analysis. The need to introduce
an extra scale μF in the expression of the T T J J vertex using
Riegert’s conformal decomposition, is an indication that the
action cannot be correctly Fourier transformed to momentum
space. This is in clear contradiction with the result we have
obtained for the anomaly part of the perturbative T T J J and
corresponding WIs, which are, obviously, free of any log-
arithmic term. In Riegert’s action, this point is, in a way,
expected, given that the �4 operator is quartic and it has
been noticed before [5].

It is nevertheless remarkable that the action successfully
predicts the behaviour of the T T T , as shown in [2]. On the
other hand, the FV action does not suffer from such short-
comings since it can be transformed in momentum space.
However, the gauge choice (�FV ) used for its definition is
formally very involved, being defined as a logarithmic expan-
sion of a curvature dependent Green function. Even though
no scale is present in the logarithm, one may ask if the expan-
sion is justified in the flat spacetime limit, and R �−1 is a rea-
sonable variable that can appear in an expansion. The issues
that we have identified could be related to such intrinsic limi-
tations. The answer to this question may be found by extend-
ing these types of analysis to a curved space, to begin with,
such as to a maximally symmetric space or to other spaces
where dimensionful constants are naturally present.

Finally, one possibility is to proceed with a modification of
such anomaly induced action by the inclusion of Weyl invari-
ant terms. These extra terms can be identified, by investigat-
ing more closely the mismatch between the perturbative anal-
ysis and the predictions of such anomaly-induced actions, as
done in this work for the T T J J .

In all these analyses, it is obvious that the safest way to
deal with these problems is to proceed with perturbative tests,
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that provide a safe reference for any further investigation of
these issues. In principle, the strategy we have presented can
be extended any n-point function. These important aspects
are currently being investigated.
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A: Ward identities

A.1 Diffeomorphism invariance

In this section, we derive the conservation and trace Ward
identities for the T J J and T T J J . We start from the invari-
ance under diffeomorphism, for which the energy momentum
tensor has to satisfy

∇μ1〈Tμ1ν1〉 + F ν1
μ1

〈Jμ1〉 = 0, (A.1)

that can be re-written as

2 ∂μ1

δS
δgμ1ν1

+ 2 �
ν1
μ1λ

δS
δgμ1λ

+ F ν1
μ1

δS
δAμ1

= 0. (A.2)

Taking functional variations with respect to the gauge
fields we find

2 ∂μ1

(
δ3S

δgμ1ν1δAμ3δAμ4

)
+ 2 �

ν1
μ1λ

(
δ3S

δgμ1λδAμ3δAμ4

)

+ δF ν1
μ1

δAμ3

δ2S
δAμ1δAμ4

+ δF ν1
μ1

δAμ4

δ2S
δAμ1δAμ3

= 0, (A.3)

where we have discarded the terms that in the limit A → 0
does not contribute. Taking one more functional derivative
with respect to the metric and neglecting terms that vanish in
the limit g → δ we have

2 ∂μ1

(
δ4S

δgμ1ν1δgμ2ν2δAμ3δAμ4

)

+ 2

(
δ�

ν1
μ1λ

δgμ2ν2

)(
δ3S

δgμ1λδAμ3δAμ4

)

+
(

δ2F ν1
μ1

δAμ3δgμ2ν2

)(
δ2S

δAμ1δAμ4

)

+
(

δ2F ν1
μ1

δAμ4δgμ2ν2

)(
δ2S

δAμ1δAμ3

)

+
(

δF ν1
μ1

δAμ3

)(
δ3S

δAμ1δAμ4δgμ2ν2

)

+
(

δF ν1
μ1

δAμ4

)(
δ3S

δAμ1δAμ3δgμ2ν2

)
= 0. (A.4)

Then by using the explicit expressions of the functional
derivatives written as

δF ν1
μ1 (x1)

δAμi (xi )

∣∣∣∣
g=δ,A=0

= (
δν1μi ∂μ1 − δμi

μ1
∂ν1
)
δx1xi (A.5)

δ2F ν1
μ1 (x1)

δAμi (xi )δgμ2ν2 (x2)

∣∣∣∣
g=δ,A=0

= −δx1x2δ
ν1(μ2δν2)λ

(
δ
μi
λ ∂μ1

− δμi
μ1

∂λ

)
δx1xi (A.6)

δ�
ν1
μ1λ(x1)

δgμ2ν2 (x2)

∣∣∣∣
g=δ

= 1

2

(
δν1(μ2δν2)

μ1
∂λ + δν1(μ2δ

ν2)
λ ∂μ1

− δ
(μ2
λ δν2)

μ1
∂ν1

)
δx1,x2 (A.7)

with δxi x j = δ(d)(xi − x j ), we rewrite (A.3) to obtain the
conservation Ward identities for the 〈T J J 〉 as

∂μ1〈Tμ1ν1(x1)J
μ3(x3)J

μ4(x4)〉
= −[(δν1μ3∂μ1 − δμ3

μ1
∂ν1
)
δx1x3

]〈Jμ1(x1)J
μ4(x4)〉

− [(
δν1μ4∂μ1 − δμ4

μ1
∂ν1
)
δx1x4

]〈Jμ1(x1)J
μ3(x3)〉,

(A.8)
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and from (A.4) the conservation Ward identities for the
〈T T J J 〉 reads as

∂μ1 〈Tμ1ν1 (x1)T
μ2ν2 (x2)J

μ3 (x3)J
μ4 (x4)〉

= −[(2δν1(μ2 δν2)
μ1

∂λ − δ
(μ2
λ δν2)

μ1
∂ν1
)
δx1,x2

]〈Tμ1λ(x1)J
μ3 (x3)J

μ4 (x4)〉

+
{

2δx1x2

[(
δν1(μ2 δν2)μ4 ∂μ1 − δμ4

μ1
δν1(μ2 ∂ν2)

)
δx1x4

]〈Jμ1 (x1)J
μ3 (x3)〉

− [(
δν1μ4 ∂μ1 − δμ4

μ1
∂ν1
)
δx1x4

]〈Jμ1 (x1)J
μ3 (x3)T

μ2ν2 (x2)〉
}

+ {
3 ↔ 4

}
. (A.9)

In momentum space, these conservation Ward identities are
written as

p1μ1
〈Tμ1ν1(p1)J

μ3(p3)J
μ4(p4)〉

=
[ (

δμ3ν1 p3μ1
− δμ3

μ1
p3

ν1
) 〈Jμ1(p1 + p3)J

μ4(p4)〉
]

+ [
3 ↔ 4

]
, (A.10)

p1μ1
〈Tμ1ν1(p1)T

μ2ν2(p2)J
μ3(p3)J

μ4(p4)〉
=
(

2δν1(μ2δν2)
μ1

p2λ1
− δ

(μ2
λ1

δν2)
μ1

p2
ν1
)

〈Tμ1λ1(p1 + p2)J
μ3(p3)J

μ4(p4)〉
+
{

2
(
δμ3
μ1

δν1(μ2 pν2)
3 − δν1(μ2δν2)μ3 p3μ1

)

〈Jμ1(p1 + p2 + p3)J
μ4(p4)〉

+ (
δν1μ3 p3μ1 − δμ3

μ1
pν1

3

)
〈Jμ1(p1 + p3)J

μ4(p4)T
μ2ν2(p2)〉

}
+ {

3 ↔ 4
}
. (A.11)

A.2 Gauge invariance

The invariance under gauge transformation implies the con-
servation of the current

∇μ〈Jμ〉 = 0. (A.12)

By taking functional derivatives with respect to the metric
and the gauge fields and considering the flat spacetime limit,
we find the conservation Ward Identities for the 3- and 4-
point functions

∂μ3〈Tμ1ν1(x1)J
μ3(x3)J

μ4(x4)〉 = 0, (A.13)

∂μ3〈Tμ1ν1(x1)T
μ2ν2(x2)J

μ3(xx3)J
μ4(x4)〉 = 0, (A.14)

that in momentum space become

p3μ3〈Tμ1ν1(x1)J
μ3(x3)J

μ4(x4)〉 = 0, (A.15)

p3μ3〈Tμ1ν1(x1)T
μ2ν2(x2)J

μ3(xx3)J
μ4(x4)〉 = 0, (A.16)

and similar equations for the contraction of p4μ4 .

A.3 Weyl invariance

The invariance under Weyl transformation implies that the
energy momentum tensor has zero trace, mainly

gμν〈Tμν〉 = 0, (A.17)

in general d dimensions. Taking functional derivatives of the
previous equation we have the trace Ward identities

δμ1ν1〈Tμ1ν1(p1)J
μ3(p3)J

μ4(p4)〉 = 0, (A.18)

δμ1ν1〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉

= −2〈Tμ2ν2(p1 + p2)J
μ3(p3)J

μ4(p4)〉. (A.19)

In d = 4, due to the quantum effect, the trace of the energy
momentum tensor acquires a non-zero trace contribution

gμν〈Tμν〉g =
[
b C2 + b′ E + βC F2

]
, (A.20)

leading to the anomalous trace Ward identities for the corre-
lation functions

δμ1ν1〈Tμ1ν1(p1)J
μ3(p3)J

μ4(p4)〉 = βC

[
F2
]μ3μ4

(p3, p4),

(A.21)

δμ1ν1〈Tμ1ν1(p1)T
μ2ν2(p2)J

μ3(p3)J
μ4(p4)〉

= 2βC

[√
gF2

]μ2ν2μ3μ4
(p2, p3, p4)

− 2〈Tμ2ν2(p1 + p2)J
μ3(p3)J

μ4(p4)〉, (A.22)

where the functional derivatives of the field strength F2 with
respect tot he gauge field are expressed in (F.7) and (F.8).

B: Orbits representatives of the permutations

B.1 General d dimensional case

In this section we list the representative of the orbits for each
sector of tensor structures used to construct the transverse
traceless part in general d dimensions. In particular for the
δδδ sector we have chosen the two representative

δμ1μ2δν1ν2δμ3μ4 , δμ1μ2δμ3ν1δμ4ν2 . (B.1)

Moving forward, for the δδpp sector we find the following
representatives

p1
μ3 p1

μ4δμ1μ2δν1ν2 , p1
μ3 p2

μ4δμ1μ2δν1ν2 ,

p3
μ1 p1

μ3δμ2ν1δμ4ν2 , p3
μ2 p1

μ3δμ1ν2δμ4ν1 ,

p3
μ1 p1

μ4δμ2ν1δμ3ν2 , p3
μ2 p1

μ4δμ1ν2δμ3ν1,

p3
μ1 p3

ν1δμ2μ3δμ4ν2 , p3
μ1 p3

μ2δμ3μ4δν1ν2 ,

p3
μ1 p3

μ2δμ3ν1δμ4ν2 ,
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p3
μ1 p4

ν1δμ2μ3δμ4ν2 , p3
μ1 p4

μ2δμ3μ4δν1ν2 ,

p3
μ1 p4

μ2δμ3ν1δμ4ν2 ,

p3
μ1 p4

μ2δμ3ν2δμ4ν1 , (B.2)

and for the δpppp sector we have

p1
μ3 p1

μ4 p3
μ1 p3

μ2δν1ν2 , p1
μ3 p1

μ4 p3
μ1 p4

μ2δν1ν2 ,

p1
μ3 p2

μ4 p3
μ1 p3

μ2δν1ν2 ,

p1
μ3 p2

μ4 p3
μ1 p4

μ2δν1ν2 , p1
μ3 p2

μ4 p3
μ2 p4

μ1δν1ν2 ,

p1
μ3 p3

μ1 p3
μ2 p3

ν1δμ4ν2 ,

p1
μ3 p3

μ1 p3
μ2 p3

ν2δμ4ν1 , p1
μ4 p3

μ1 p3
μ2 p3

ν1δμ3ν2 ,

p1
μ4 p3

μ1 p3
μ2 p3

ν2δμ3ν1 ,

p1
μ3 p3

μ1 p3
ν1 p4

μ2δμ4ν2 , p1
μ3 p3

μ1 p3
μ2 p4

ν1δμ4ν2 ,

p1
μ3 p3

μ1 p3
μ2 p4

ν2δμ4ν1 ,

p1
μ3 p3

μ2 p3
ν2 p4

μ1δμ4ν1 , p1
μ4 p3

μ1 p3
ν1 p4

μ2δμ3ν2 ,

p1
μ4 p3

μ1 p3
μ2 p4

ν1δμ3ν2 ,

p1
μ4 p3

μ1 p3
μ2 p4

ν2δμ3ν1 , p1
μ4 p3

μ2 p3
ν2 p4

μ1δμ3ν1 ,

p3
μ1 p3

μ2 p3
ν1 p3

ν2δμ3μ4 ,

p3
μ1 p3

μ2 p3
ν1 p4

ν2δμ3μ4 , p3
μ1 p3

ν1 p4
μ2 p4

ν2δμ3μ4 ,

p3
μ1 p3

μ2 p4
ν1 p4

ν2δμ3μ4 . (B.3)

Finally, the last sector pppppp is described by the represen-
tatives

p3
μ1 p3

μ2 p1
μ3 p1

μ4 p3
ν1 p3

ν2 ,

p3
μ1 p3

μ2 p1
μ3 p1

μ4 p3
ν1 p4

ν2 ,

p3
μ1 p3

μ2 p1
μ3 p1

μ4 p4
ν1 p3

ν2 ,

p3
μ1 p4

μ2 p1
μ3 p1

μ4 p3
ν1 p4

ν2 ,

p3
μ1 p3

μ2 p1
μ3 p1

μ4 p4
ν1 p4

ν2 ,

p3
μ1 p3

μ2 p1
μ3 p2

μ4 p3
ν1 p3

ν2 ,

p3
μ1 p3

μ2 p1
μ3 p2

μ4 p3
ν1 p4

ν2 ,

p3
μ1 p3

μ2 p1
μ3 p2

μ4 p4
ν1 p3

ν2 ,

p3
μ1 p4

μ2 p1
μ3 p2

μ4 p3
ν1 p4

ν2 ,

p3
μ1 p3

μ2 p1
μ3 p2

μ4 p4
ν1 p4

ν2 ,

p4
μ1 p3

μ2 p1
μ3 p2

μ4 p4
ν1 p3

ν2 . (B.4)

As already mentioned in Sect. 4.1, we directly obtain the
structure of the transverse traceless part through these repre-
sentatives of the orbits. Indeed, one has to consider indepen-
dent form factors times each representative. Then, applying
the permutation operator, one finds the entire structure of
Xα1...α4 with the symmetry condition on the form factors.

B.2 The case of d = 4

In this section we list the representatives of the orbits for each
sector of tensor structures used to construct the transverse
traceless part when d = 4 and we use the n-p basis. In
particular for the nnnnpp sector we have chosen the two

representatives

p3
μ1 p3

μ2nν1nν2nμ3nμ4 p3
μ1 p4

μ2nν1nν2nμ3nμ4; (B.5)

and for the nnpppp sector we have

p1
μ3 p1

μ4 p3
μ1 p3

μ2nν1nν2 , p1
μ3 p1

μ4 p3
μ1 p4

μ2nν1nν2 ,

p1
μ3 p2

μ4 p3
μ1 p3

μ2nν1nν2 ,

p1
μ3 p2

μ4 p3
μ1 p4

μ2nν1nν2 , p1
μ3 p2

μ4 p3
μ2 p4

μ1nν1nν2 ,

p1
μ3 p3

μ1 p3
μ2 p3

ν1nμ4nν2 ,

p1
μ3 p3

μ1 p3
μ2 p3

ν2nμ4nν1 , p1
μ4 p3

μ1 p3
μ2 p3

ν1nμ3nν2 ,

p1
μ4 p3

μ1 p3
μ2 p3

ν2nμ3nν1 ,

p1
μ3 p3

μ1 p3
ν1 p4

μ2nμ4nν2 , p1
μ3 p3

μ1 p3
μ2 p4

ν1nμ4nν2 ,

p1
μ3 p3

μ1 p3
μ2 p4

ν2nμ4nν1 ,

p1
μ3 p3

μ2 p3
ν2 p4

μ1nμ4nν1 , p1
μ4 p3

μ1 p3
ν1 p4

μ2nμ3nν2 ,

p1
μ4 p3

μ1 p3
μ2 p4

ν1nμ3nν2 ,

p1
μ4 p3

μ1 p3
μ2 p4

ν2nμ3nν1 , p1
μ4 p3

μ2 p3
ν2 p4

μ1nμ3nν1 ,

p3
μ1 p3

μ2 p3
ν1 p3

ν2nμ3nμ4 ,

p3
μ1 p3

μ2 p3
ν1 p4

ν2nμ3nμ4 , p3
μ1 p3

ν1 p4
μ2 p4

ν2nμ3nμ4 ,

p3
μ1 p3

μ2 p4
ν1 p4

ν2nμ3nμ4; (B.6)

and finally the last sector pppppp is identified, as in the
general case, by the representatives

p3
μ1 p3

μ2 p1
μ3 p1

μ4 p3
ν1 p3

ν2 , p3
μ1 p3

μ2 p1
μ3 p1

μ4 p3
ν1 p4

ν2 ,

p3
μ1 p3

μ2 p1
μ3 p1

μ4 p4
ν1 p3

ν2 ,

p3
μ1 p4

μ2 p1
μ3 p1

μ4 p3
ν1 p4

ν2 , p3
μ1 p3

μ2 p1
μ3 p1

μ4 p4
ν1 p4

ν2 ,

p3
μ1 p3

μ2 p1
μ3 p2

μ4 p3
ν1 p3

ν2 ,

p3
μ1 p3

μ2 p1
μ3 p2

μ4 p3
ν1 p4

ν2 , p3
μ1 p3

μ2 p1
μ3 p2

μ4 p4
ν1 p3

ν2 ,

p3
μ1 p4

μ2 p1
μ3 p2

μ4 p3
ν1 p4

ν2 ,

p3
μ1 p3

μ2 p1
μ3 p2

μ4 p4
ν1 p4

ν2 ,

p4
μ1 p3

μ2 p1
μ3 p2

μ4 p4
ν1 p3

ν2 ; (B.7)

B.3 The case of d = 3

In this section we list the representatives of the orbits for each
sector of tensor structures used to construct the transverse
traceless part when d = 3.

p1
μ3 p1

μ4 p3
μ1 p3

μ2 p3
ν1 p3

ν2 , p1
μ3 p1

μ4 p3
μ1 p3

ν1 p4
μ2 p4

ν2 ,

p1
μ3 p2

μ4 p3
μ1 p3

μ2 p3
ν1 p3

ν2 ,

p1
μ3 p2

μ4 p3
μ1 p3

ν1 p4
μ2 p4

ν2 ,

p1
μ3 p2

μ4 p3
μ2 p3

ν2 p4
μ1 p4

ν1 . (B.8)
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C: More on the reconstruction

In this section we derived the anomalous part of the correlator
after the renormalization in more detail. From (7.36) we have
computed the 〈tlocT J J 〉anom part of the correlator after the
renormalization as

〈tμ1ν1
loc Tμ2ν2 Jμ3 Jμ4 〉(d=4)

anom

= βC

{
I(d=4) μ1ν1

α1

[
2 p2λ1

δα1(μ2 πν2)λ1 (p1 + p2)

3

[
F2]μ3μ4

(p3, p4)

− p2
α1

πμ2ν2 (p1 + p2)

3

[
F2]μ3μ4

(p3, p4)

+ πμ2ν2 (p2)

3

(
δμ3α1 p3λ1

[
F2]λ1μ4

(p1 + p3, p4)

− pα1
3

[
F2]μ3μ4

(p1 + p3, p4)

)

+ πμ2ν2 (p2)

3

(
δμ4α1 p4λ1

[
F2]λ1μ3

(p1 + p4, p3)

− pα1
4

[
F2]μ3μ4

(p3, p1 + p4)

)]

− 2
πμ1ν1 (p1)

3

πμ2ν2 (p1 + p2)

3

[
F2]μ3μ4

(p3, p4)

+ 2
πμ1ν1 (p1)

3

[√
g F2]μ2ν2μ3μ4 (p2, p3, p4)

}

= βC

{
I(d=4) μ1ν1

α1

[
2 p2λ1

(
δα1(μ2 πν2)λ1 (p1 + p2)

3

− πα1λ1 (p2 + p1)

3

πμ2ν2 (p2)

3

) [
F2]μ3μ4

(p3, p4)

− p2
α1

(
πμ2ν2 (p1 + p2)

3
− πμ2ν2 (p2)

3

) [
F2]μ3μ4

(p3, p4)

]

+ I(d=4) μ1ν1
α1

πμ2ν2 (p2)

3
p1β1

(
2
[√

g F2
]α1β1μ3μ4

(p1, p3, p4)

− 2

3
πα1β1 (p1 + p2)

[
F2
]μ3μ4

(p3, p4)

)

− 2
πμ1ν1 (p1)

3

πμ2ν2 (p1 + p2)

3

[
F2]μ3μ4

(p3, p4)

+ 2
πμ1ν1 (p1)

3

[√
g F2]μ2ν2μ3μ4 (p2, p3, p4)

}
, (C.1)

where we have considered the relation

I(d=4) μ1ν1
α1

[
2 p2λ1

πα1λ1 (p2 + p1)

3

πμ2ν2 (p2)

3

[
F2]μ3μ4

(p3, p4)

− p2
α1

πμ2ν2 (p2)

3

[
F2]μ3μ4

(p3, p4)

+ πμ2ν2 (p2)

3

(
δμ3α1 p3λ1

[
F2]λ1μ4

(p1 + p3, p4)

− pα1
3

[
F2]μ3μ4

(p1 + p3, p4)

)

+ πμ2ν2 (p2)

3

(
δμ4α1 p4λ1

[
F2]λ1μ3

(p2 + p4, p3)

− pα1
4

[
F2]μ3μ4

(p3, p1 + p4)

)]

= I(d=4) μ1ν1
α1

πμ2ν2 (p2)

3
p1β1

(
2
[√

g F2
]α1β1μ3μ4

(p1, p3, p4)

− 2

3
πα1β1 (p1 + p2)

[
F2
]μ3μ4

(p3, p4)

)
. (C.2)

We consider here the other part, 〈tloctloc J J 〉anom , that is
explicitly given by

〈tμ1ν1
loc tμ2ν2

loc Jμ3 Jμ4 〉(d=4)
anom

= βC

{
I(d=4) μ1ν1

α1
I(d=4) μ2ν2

α2

×
[

1

3
p2λ1

p2β2
δα1α2πβ2λ1 (p1 + p2)

[
F2]μ3μ4

(p3, p4)

]

− 2

3
πμ1ν1 (p1)I(d=4) μ2ν2

α2
p2β2[

πα2β2 (p1 + p2)

3

[
F2]μ3μ4

(p3, p4)

− [√
g F2]α2β2μ3μ4 (p2, p3, p4)

]}

+
{
I(d=4) μ1ν1

α1

πμ2ν2 (p2)

3[
2

3
p2λ1

πα1λ1 (p1 + p2)
[
F2]μ3μ4

(p3, p4)

− p2
α1
[
F2]μ3μ4

(p3, p4)

+
(

δμ3α1 p3λ1

[
F2]λ1μ4

(p1 + p3, p4)

− pα1
3

[
F2]μ3μ4

(p1 + p3, p4)

)

+
(

δμ4α1 p4λ1

[
F2]λ1μ3

(p1 + p4, p3) − pα1
4

[
F2]μ3μ4

(p3, p1 + p4)

)]

− 2
πμ1ν1 (p1)

3

πμ2ν2 (p2)

3

[
F2]μ3μ4

(p3, p4)

}

= βC

{
I(d=4) μ1ν1

α1
I(d=4) μ2ν2

α2

×
[

1

3
p2λ1

p2β2
δα1α2πβ2λ1 (p1 + p2)

[
F2]μ3μ4

(p3, p4)

]

− 2

3
πμ1ν1 (p1)I(d=4) μ2ν2

α2
p2β2[

πα2β2 (p1 + p2)

3

[
F2]μ3μ4

(p3, p4)

− [√
g F2]α2β2μ3μ4 (p2, p3, p4)

]

− 2

3
πμ2ν2 (p2)I(d=4) μ1ν1

α1
p1β1[

πα1β1 (p1 + p2)

3

[
F2]μ3μ4

(p3, p4)

− [√
g F2]α1β1μ3μ4 (p1, p3, p4)

]

− 2
πμ1ν1 (p1)

3

πμ2ν2 (p2)

3

[
F2]μ3μ4

(p3, p4)

}
(C.3)

where we have considered the relation (C.2). The trace
anomalous part of the correlator is then

〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4〉(d=4)
anom

= 〈tμ1ν1
loc Tμ2ν2 Jμ3 Jμ4〉(d=4)

anom + 〈Tμ1ν1 tμ2ν2
loc Jμ3 Jμ4〉(d=4)

anom
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− 〈tμ1ν1
loc tμ2ν2

loc Jμ3 Jμ4〉(d=4)
anom , (C.4)

or explicitly

〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4 〉(d=4)
anom

= βC

{
I(d=4) μ1ν1

α1

[
2 p2λ1

(
δα1(μ2πν2)λ1 (p1 + p2)

3

− πα1λ1 (p2 + p1)

3

πμ2ν2 (p2)

3

) [
F2]μ3μ4

(p3, p4)

− p2
α1

(
πμ2ν2 (p1 + p2)

3

− πμ2ν2 (p2)

3

) [
F2]μ3μ4

(p3, p4)

]

+ I(d=4) μ2ν2
α2

[
2 p1λ2

(
δα2(μ1πν1)λ1 (p1 + p2)

3

− πα2λ2 (p2 + p1)

3

πμ1ν1 (p1)

3

) [
F2]μ3μ4

(p3, p4)

− p1
α2

(
πμ1ν1 (p1 + p2)

3

− πμ1ν1 (p1)

3

) [
F2]μ3μ4

(p3, p4)

]

− I(d=4) μ1ν1
α1

I(d=4) μ2ν2
α2

×
[

1

3
p2λ1

p2β2
δα1α2πβ2λ1 (p1 + p2)

[
F2]μ3μ4

(p3, p4)

]

− 2

3
πμ2ν2 (p2)

(
πμ1ν1 (p1 + p2)

3

[
F2]μ3μ4

(p3, p4)

− [√
g F2]μ1ν1μ3μ4 (p1, p3, p4)

)

− 2

3

πμ1ν1 (p1)

3

(
πμ2ν2 (p1 + p2)

3

[
F2]μ3μ4

(p3, p4)

− [√
g F2]μ2ν2μ3μ4 (p2, p3, p4)

)

+ 2
πμ1ν1 (p1)

3

πμ2ν2 (p2)

3

[
F2]μ3μ4

(p3, p4)

}
. (C.5)

Using the relation

δ(μ2
α2

δ
ν2)
β2

= �
μ2ν2
α2β2

+ Iμ2ν2
(α2

p2β2) + 1

3
πμ2ν2δα2β2 (C.6)

on the first lines we obtain

〈Tμ1ν1Tμ2ν2 Jμ3 Jμ4 〉(d=4)
anom =

= βC

{
I(d=4) μ1ν1

α1
�

(d=4) μ2ν2
α2β2

(p2)

[
2

3
p2λ1

δα1α2πβ2λ1 (p1 + p2)

− 1

3
p2

α1πα2β2 (p1 + p2)

] [
F2]μ3μ4

(p3, p4)

+ �
(d=4) μ1ν1
α1β1

(p1)I(d=4) μ2ν2
α2[

2

3
p1λ2

δα1α2πβ1λ2 (p1 + p2)

− 1

3
p1

α2πα1β1 (p1 + p2)

] [
F2]μ3μ4

(p3, p4)

+ I(d=4) μ1ν1
α1

I(d=4) μ2ν2
α2

×
[

1

3
p2λ1

p2β2
δα1α2πβ2λ1 (p1 + p2)

[
F2]μ3μ4

(p3, p4)

]

− 2

3
πμ2ν2 (p2)

(
πμ1ν1 (p1 + p2)

3

[
F2]μ3μ4

(p3, p4)

− [√
g F2]μ1ν1μ3μ4 (p1, p3, p4)

)

− 2

3
πμ1ν1 (p1)

(
πμ2ν2 (p1 + p2)

3

[
F2]μ3μ4

(p3, p4)

− [√
g F2]μ2ν2μ3μ4 (p2, p3, p4)

)

+ 2
πμ1ν1 (p1)

3

πμ2ν2 (p2)

3

[
F2]μ3μ4

(p3, p4)

}
. (C.7)

From this equation, the identification of 〈T T J J 〉0−trace and
〈T T J J 〉pole is manifest in accordance with (7.39) and (7.42).

D: Metric variations involving the Vielbein

We present in this section all the useful relations related to
the metric variation of the vielbein. In particular we have that
the variation with respect to the metric tensor can be written
as

δ

δ gμν

≡ 1

4

(
Vμ
a

δ

δ Vν a
+ V ν

a
δ

δ Vμ a

)
(D.1)

δ Vμ
a

δ gμ1ν1

= −1

2
gμ(μ1V ν1)

a ,
δ V a

μ

δ gμ1ν1

= 1

2
δ(μ1
μ V ν1)

a δab,
δ Vμ

a

δ gμ1ν1
= 1

2
δ
μ

(μ1
V b

ν1)
δab (D.2)

and these relations are in accordance with the well known
variation of the curved metric

δ gμν

δ gμ1ν1

= ηab
δ (Vμ

a V ν
b )

δ gμ1ν1

= −1

2
ηab gμ(μ1V ν1)

a V ν
b

− 1

2
ηab gν(μ1V ν1)

b Vμ
a = −gμ(μ1gν1)ν (D.3)

δ gμν

δ gμ1ν1
= ηab

δ (Vμ
a V ν

b )

δ gμ1ν1

= 1

2
ηab δ

μ

(μ1
V c

ν1)
ηacV

ν
b

+ 1

2
ηab δν

(μ1
V c

ν1)
ηbcV

μ
a = δ

μ

(μ1
δν
ν1)

. (D.4)

Other useful relations in order to get the vertices are written
as
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δ
(
V Vμ

a
)

δ gμ1ν1

= V

2

(
gμ1ν1Vμ

a − gμ(μ1V ν1)
a

)
(D.5)

δ2
(
V Vμ

a
)

δ gμ1ν1δgμ2ν2

= V

2

(
−gμ1(μ2gν2)ν1Vμ

a + gμ(μ2gν2)(μ1V ν1)
a

)

+ V

4
gμ1ν1

(
gμ2ν2Vμ

a − gμ(μ2V ν2)
a

)

− V

4
gμ(μ1V ν1)

a gμ2ν2 + V

4
gμ(μ1gν1)(μ2V ν2)

a

(D.6)

and we observe that

δ2
(
V Vμ

a
)

δ gμ1ν1δgμ2ν2

	= δ2
(
V Vμ

a
)

δ gμ2ν2δgμ1ν1

. (D.7)

We can obtain the metric variation of the spin connection
starting from its definition

∇μVbν = ∂μVbν − ω a
μ bVνa − �λ

μνVbν = 0, (D.8)

ωμab = V ν
a (∂μVbν − �λ

μνVbλ). (D.9)

Then its variation under a metric variation is given as

δωμab = δV ρ
a V ν

c V
c
ρ︸ ︷︷ ︸

δν
ρ

(∂μVbν − �λ
μνVbλ)

+ V ν
a (∂μδVbν − �λ

μνδVbλ) − V ν
a Vbλδ�

λ
μν

= −V ρ
a δV c

ρ V ν
c (∂μVbν − �λ

μνVbλ)︸ ︷︷ ︸
ωμcb

+ V ν
a (∂μδVbν − �λ

μνδVbλ) − V ν
a Vbλδ�

λ
μν

= V ν
a (∂μδVbν − ω c

μ bδVcν − �λ
μνδVbλ) − V ν

a Vbλδ�
λ
μν

= V ν
a ∇μδVbν − V ν

a Vbλδ�
λ
μν. (D.10)

Then the variation with respect to the metric is obtained as

δωμab(x)

δgμ1ν1(y)
= δ(μ1

μ V ν1)
[a V λ

b] ∇λδ(x − y). (D.11)

It is worth mentioning that, since the spin connection always
appears contracted with the antisymmetric tensor �ab, we
can omit the antisymmetrization on the indices [a, b].

E: Vertices

We have presented in Fig. 1 a list of all the vertices which we
needed for the momentum space computation of the T T J J
correlator. They are obtained by taking functional derivatives
of the action. We consider all the momenta incoming into the
vertex. In the case of QED we consider the action

S =
∫

dd x V

(
i

2
ψ̄γ λ←→∂λ ψ − eψ̄γ λAλψ + i

4
ωμabV

μ
c ψ̄γ abcψ

)

(E.1)

where

ψ̄γ λ←→∂λ ψ = ψ̄γ λ∂λψ − ∂λψ̄γ λψ

γ ab ... c = γ [aγ b . . . γ c], (E.2)

and we use the Lorentz generator

�ab = 1

4
[γ a, γ b] = 1

2
γ ab. (E.3)

The variations of the action with respect to the metric in the
flat limit are given by

δS

δgμ1ν1 (x1)

∣∣∣∣
g=δ

= 1

2
Aμ1ν1ρλ

(
i

2
ψ̄γλ

←→
∂ρ ψ − eψ̄γα Aβψ

)
(x1),

δ2S

δgμ2ν2 (x2)δgμ1ν1 (x1)

∣∣∣∣
g=δ

= 1

4
(Bμ1ν1μ2ν2ρλ − Cμ1ν1μ2ν2ρλ

+ Dμ1ν1μ2ν2ρλ)

(
i

2
ψ̄γλ

←→
∂

∂xρ
1

ψ − eψ̄γλAρψ

)
δx1,x2

− i

8
δ(μ1
α δν1)(μ2δ

ν2)
β ψ̄ γ αβλ ψ

∂

∂xλ
1

δx1,x2 , (E.4)

where we have defined

Aμνρσ = δμνδρσ − δμ(ρδσ)ν

Bμνρσαβ = δμνδρσ δαβ − 2δμ(ρδσ)νδαβ

B̃μνρσ = δμνδρσ − 2δμ(ρδσ)ν

Cμνρσαβ = δμνδα(ρδσ)β + δρσ δα(μδν)β

C̃μνρσαβ = δμνδα(ρδσ)β

Dμνρσαβ = δα(μδν)(ρδσ)β + 2δα(ρδσ)(μδν)β

D̃μνρσαβ = δα(μδν)(ρδσ)β + δα(ρδσ)(μδν)β

Eμνρσαβ = δα(μδν)(ρδσ)β, (E.5)

and we have used the results in Appendix D. From (E.4) we
extract the vertices in direct space involving the fields ψ(y1),
ψ̄(y2), and Tμ2ν2(x2), Tμ1ν1(x1), Jα1(z) as

V α1

ψ̄ψ J
(y1, y2, z) = −eγ α1δy2,zδy1,z, (E.6)

Vμ1ν1

T ψ̄ψ
(x1, y1, y2)

= − i

4
Aμ1ν1αβγα

(
∂

∂yβ
1

− ∂

∂yβ
2

)
[δy1,x1δy2,x1 ], (E.7)

Vμ1ν1α1

T ψ̄ψ J
(x1, y1, y2, z) = − e

2
Aμ1ν1α1λγλδy1,x1δy2,x1 , (E.8)

Vμ1ν1μ2ν2

T T ψ̄ψ
(x1, x2, y1, y2) = − i

8
(Bμ1ν1μ2ν2αβ

− Cμ1ν1μ2ν2αβ + Dμ1ν1μ2ν2αβ)γα(
∂

∂yβ
1

− ∂

∂yβ
2

)
[δy1,x1δy2,x1δx2,x1 ]

− i

8
δα(μ1δν1)(μ2δν2)βγ λ

αβ

∂

∂xλ
2

[δy1,x1δy2,x1δx2,x1 ] (E.9)
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Vμ1ν1μ2ν2α1

T T ψ̄ψ J
(x1, x2, y1, y2, z) = 1

4
(Bμ1ν1μ2ν2α1λ

− Cμ1ν1μ2ν2α1λ + Dμ1ν1μ2ν2α1λ)γλδy1,x1δy2,x1δx2,x1δz,x1 .

(E.10)

In momentum space these vertices read as

Vμ3

J ψ̄ψ
(k1, k2, p3) = −eγ μ3 , (E.11)

Vμ1ν1

T ψ̄ψ
(p1, k1, k2) = 1

4
Aμ1ν1αβ γα (k1 + k2)β, (E.12)

Vμ1ν1μ3

T J ψ̄ψ
(p1, p3, k1, k2) = − e

2
Aμ1ν1μ3λγλ, (E.13)

Vμ1ν1μ2ν2

T T ψ̄ψ
(p1, p2, k1, k2) = 1

8
(Bμ1ν1μ2ν2ρλ

− Cμ1ν1μ2ν2ρλ + Dμ1ν1μ2ν2ρλ) γλ (k1 + k2)ρ

− 1

8
δα(μ1δν1)(μ2δν2)β γαβλ pλ

2 (E.14)

Vμ1ν1μ2ν2μ3

T T J ψ̄ψ
(p1, p2, p3, k1, k2) = − e

4
(Bμ1ν1μ2ν2μ3λ

− Cμ1ν1μ2ν2μ3λ + Dμ1ν1μ2ν2μ3λ)γλ, (E.15)

where k1 is outgoing.
In the case of scalar QED with the action

S =
∫

dd x
√
g
(
∂μφ†∂μφ

+ieAμ(∂μφ† φ − φ† ∂μφ) + e2AμAμφ†φ + χR φ†φ
)
,

(E.16)

the variations of the action with respect to the metric are
given as

δS

δgμ1ν1 (x1)

∣∣∣∣
g=δ

= 1

2
B̃μ1ν1αβ(∂αφ†∂βφ − ieAα φ†∂βφ

+ e2Aα Aβ |φ|2) − χ Aμ1ν1αβ∂α∂β |φ|2
δ2S

δgμ2ν2 (x2) δgμ1ν1 (x1)

∣∣∣∣
g=δ

=
(

1

4
Bμ1ν1μ2ν2αβ + D̃μ1ν1μ2ν2αβ − 1

2
Cμ1ν1μ2ν2αβ

)

(Dαφ)†(Dβφ)δx1x2

+ χ
[1

2

(
δμ1ν1 Aμ2ν2αβ + Cαβμ1ν1μ2ν2 − 2Eμ1ν1μ2ν2βα

)

× ∂α∂βδx1x2 |φ|2

− 1

2

(
δμ1ν1 Bμ2ν2α − C̃αβμ1ν1μ2ν2 − Eμ1ν1μ2ν2αβ

)
∂α∂β |φ|2δx1x2

+
(

1

2
Aμ1ν1αβδμ2ν2 + D̃μ1ν1μ2ν2αβ − Cαβμ1ν1μ2ν2

)

× ∂α |φ|2 ∂βδx1x2

]
. (E.17)

From the previous equation we extract the vertices in direct
space involving the fields φ(y1) and φ†(y2), and Tμ2ν2(x2),
Tμ1ν1(x1), Jμ3(x3), Jμ4(x4) as

Vμ3
Jφ†φ

= ie

(
∂

∂ y1μ3

− ∂

∂ y2μ3

)
δx3 y1δx3 y2 (E.18)

Vμ3μ4
J Jφ†φ

= 2e2δμ3μ4 . (E.19)

Vμ1ν1
Tφ†φ

=
[
−1

2
B̃μ1ν1αβ ∂

∂yα
2

∂

∂yβ
1

+iχ Aμ1ν1αβ

(
∂

∂yα
1

+ ∂

∂yα
2

)(
∂

∂yβ
1

+ ∂

∂yβ
2

)]
δx1 y1δx1 y2

Vμ1ν1μ3
T Jφ†φ

= − ie

2
Aμ1ν1μ3λ

(
∂

∂ y1
λ

− ∂

∂ y2
λ

)
δx3 y1δx3 y2

Vμ1ν1μ3μ4
T J Jφ†φ

= e2 B̃μ1ν1μ3μ4 (E.20)

Vμ1ν1μ2ν2
T Tφ†φ

=
(

1

4
Bμ1ν1μ2ν2αβ + D̃μ1ν1μ2ν2αβ

−1

2
Cμ1ν1μ2ν2αβ

)
∂

∂ y1
α

∂

∂ y2
β

(δx1 y2δx1x2 )

+ χ
[1

2

(
δμ1ν1 Aμ2ν2αβ + Cαβμ1ν1μ2ν2

−2Eμ1ν1μ2ν2βα
)
(∂α∂βδx1x2 )δx1 y1δx1 y2

− 1

2

(
δμ1ν1 Bμ2ν2α − C̃αβμ1ν1μ2ν2

−Eμ1ν1μ2ν2αβ
)
(∂αδx1 y1δx1 y2 ) ∂βδx1x2

]

+
(

1

2
Aμ1ν1αβδμ2ν2 + D̃μ1ν1μ2ν2αβ

−Cαβμ1ν1μ2ν2
)
(∂αδx1 y1δx1 y2 ) ∂βδx1x2

]
(E.21)

Vμ1ν1μ2ν2μ3
T T Jφ†φ

= ie

(
1

4
Bμ1ν1μ2ν2μ3λ + D̃μ1ν1μ2ν2μ3λ

−1

2
Cμ1ν1μ2ν2μ3λ

)(
∂

∂ y1
λ

− ∂

∂ y2
λ

)
δx1y1δx1y2

Vμ1ν1μ2ν2μ3μ4
T T J Jφ†φ

= −2e2
(

1

4
Bμ1ν1μ2ν2μ3μ4 + D̃μ1ν1μ2ν2μ3μ4

−1

2
Cμ1ν1μ2ν2μ3μ4

)
. (E.22)

In momentum space these vertices are

Vμ3
Jφ†φ

(k1, k2) = −e(k1 + k2)
μ3 , (E.23)

Vμ3μ4
J Jφ†φ

= −2e2δμ3μ4 , (E.24)

Vμ1ν1
Tφ†φ

(k1, k2) = −1

2
B̃μ1ν1αβk1α

k2β − χ Aμ1ν1αβ(k1 − k2)α(k1 − k2)β, (E.25)

Vμ1ν1μ3
T Jφ†φ

(k1, k2) = − e

2
B̃μ1ν1μ3λ(k1 + k2)λ, (E.26)

Vμ1ν1μ3μ4
T J Jφ†φ

= −e2 B̃μ1ν1μ3μ4 (E.27)

Vμ1ν1μ2ν2
T Tφ†φ

(p2, k1, k2)

= −
(

1

4
Bμ1ν1μ2ν2αβ + D̃μ1ν1μ2ν2αβ
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−1

2
Cμ1ν1μ2ν2αβ

)
k1αk2β

− χ
[(1

2
Aμ1ν1αβδμ2ν2 + D̃μ1ν1μ2ν2αβ

−Cαβμ1ν1μ2ν2
)
(k1 − k2)α(k1 − k2)β

− 1

2

(
δμ1ν1 Bμ2ν2α − C̃αβμ1ν1μ2ν2

−Eμ1ν1μ2ν2αβ
)
p2α (k1 − k2)β

+ 1

2

(
δμ1ν1 Aμ2ν2αβ + Cαβμ1ν1μ2ν2

−2Eμ1ν1μ2ν2βα
)
p2α p2β

]
(E.28)

Vμ1ν1μ2ν2μ3
T T Jφ†φ

= −e

(
1

4
Bμ1ν1μ2ν2αβ + D̃μ1ν1μ2ν2μ3λ

−1

2
Cμ1ν1μ2ν2μ3λ

)
(k1 + k2)λ (E.29)

Vμ1ν1μ2ν2μ3μ4
T T J Jφ†φ

= −2e2
(

1

4
Bμ1ν1μ2ν2μ3μ4 + D̃μ1ν1μ2ν2μ3μ4

−1

2
Cμ1ν1μ2ν2μ3μ4

)
. (E.30)

F: Functional variations

We list some functional variations in momentum space
needed for the identification of the anomaly part of the cor-
relator 〈T T J J 〉.
[
Rμνρσ

]μ1ν1(p1) = 1

2

[
δμ(μ1δν1)ρ pν

1 pσ
1 + δν(μ1δν1)σ pμ

1 pρ
1

− δμ(μ1δν1)σ pν
1 pρ

1 − δν(μ1δν1)ρ pμ
1 pσ

1

]
(F.1)

[
Rμν

]μ1ν1(p1) = 1

2

[
δμ(μ1δν1)ν p2

1 + δμ1ν1 pμ
1 pν

1

− 2p(μ1
1 δν1)(μ pν)

1

]
(F.2)

[R]μ1ν1(p1) = p2
1

(
δμ1ν1 − pμ1

1 pν1
1

p2
1

)
= p2

1 πμ1ν1(p1),

(F.3)

[�1]μ1ν1(p1, p2) = −1

2
δμ1ν1(p1 · p2)

+ 1

2

[
pμ1

2 (p1 + p2)
ν1 + (p1 + p2)

μ1 pν1
2

]
(F.4)

[√
g�1

]μ1ν1(p1, p2) = −1

2
δμ1ν1 p2

2 + [
�1
]μ1ν1(p1, p2)

(F.5)

[R]μ1ν1μ2ν2(p1, p2) = 2(p1 + p2)
(μ1δν1)(μ2(p1 + p2)

ν2)

− p(μ1
2 δν1)(μ2 pν2)

1

− δμ1ν1 p(μ2
1 (p1 + p2)

ν2) − δμ2ν2 p(μ1
2 (p1 + p2)

ν1)

− δμ1(μ2δν2)ν1(p1 + p2)
2

+ 1

2

(
δμ1(μ2δν2)ν1 + δμ1ν1δμ2ν2

)
(p1 · p2) (F.6)

[
F2]μ3μ4(p3, p4) = 4

(
pμ4

3 pμ3
4 − δμ3μ4 p3 · p4

)
(F.7)

[√
g F2]μ1μ2μ3μ4(p1, p3, p4) = 1

2
δμ1ν1

[
F2]μ3μ4(p3, p4)

+ 4δμ(μ1δν1)ν

[
δμ3μ4 p3μ p4ν + δμ3

μ δμ4
ν (p3 · p4)

− δμ3
μ pμ4

3 p4ν − δμ4
ν pμ3

4 p3μ

]
. (F.8)

These results can be re-written using the projectors �, I and
π in the form

[�1]μ1ν1(p1, p2) = �
μ1ν1
α1β1

(p1) p
α1
2 pβ1

2

+ 1

2
Iμ1ν1

α1
pα1

2

(
p2

1 + 2(p1 · p2)
)

+ 1

3
πμ1ν1(p1)

(
p2

2 − (p1 · p2)
)

(F.9)

[R]μ1ν1μ2ν2 (p1, p2)

= �
μ1ν1
α1β1

(p1)�
μ2ν2
α2β2

(p2)
[−(p1 + p2)

2δα1α2πβ1β2 (p1 + p2)

+1

2
δα1α2δβ1β2 (p1 · p2)

]

+
[
Iμ1ν1

α1
(p1)�

μ2ν2
α2β2

(p2)
pβ2

1

2

(
− (p1 + p2)

2 πα1α2 (p1 + p2)

+p2
1 πα1α2 (p1) − p2

2 δα1α2
)

+ (1 ↔ 2)
]

+ Iμ1ν1
α1

(p1)Iμ2ν2
α2

(p2) [

−1

2
δα1α2

(
(p1 · p2)

2 − p2
1 p

2
2

)]

− 2

3

[
�

μ1ν1
α1β1

(p1)π
μ2ν2 (p2) p

α1
2 pβ1

2 + (1 ↔ 2)

]

+ 1

3

{[
Iμ1ν1

α1
πμ2ν2

(
− 1

2
pα1

2

(
4(p1 · p2) + p2

1

)

− pα1
1

(
(p1 · p2) + p2

2

))]+ [1 ↔ 2]
}

− 1

3
πμ1ν1 (p1)π

μ2ν2 (p2)

[
(p1 · p2) + 2p2

1 + 2p2
2

]
. (F.10)
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