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Abstract We present an analysis of the perturbative real-
ization of the TT J J correlator, with two stress energy ten-
sors and two conserved currents, using free field theory, inte-
grating out conformal sectors in the quantum corrections.
This allows to define, around flat space, an exact perturba-
tive expansion of the complete anomaly effective action —up
to 4-point functions — whose predictions can be compared
against those of the anomaly induced action. The latter is
a variational solution of the conformal anomaly constraint
at d = 4 in the form of a nonlocal Wess—Zumino action.
The renormalization procedure and the degeneracies of the
tensor structures of this correlator are discussed, valid for a
generic conformal field theory, deriving its anomalous trace
Ward identities (WIs). In this application, we also illustrate
a general procedure that identifies the minimal number of
tensorial structures and corresponding form factors for the
TTJJ and any 4-point function. The approach is imple-
mented for three, four and five dimensions, addressing the
tensor degeneracies of the expansion in momentum space.
We show that the renormalized 7T J J can be split into two
contributions, a non anomalous and an anomalous part, each
separately conserved. The first satisfies ordinary trace WIs,
while the second satisfies anomalous trace W1s. The result of
the direct computation is compared against the expression of
the same 4-point function derived from the nonlocal anomaly
induced action. We show that the prediction for the anoma-
lous part of the TT JJ derived from such action, evaluated
in two different conformal decompositions, the Riegert and
Fradkin—Vilkovisky (FV) choices, differ from the anomaly
part identified in the perturbative 77 J J, in the flat space-
time limit. The anomaly part of the correlator computed with
the Riegert choice is affected by double poles, while the one
computed with the FV choice does not satisfy the conserva-
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tion WIs. We present the correct form of the expansion of the
anomaly induced action at the second order in the metric per-
turbations around flat space that reproduces the perturbative
result.

1 Introduction

The study of multi-point tensor correlators in conformal field
theory (CFT) plays a significant role in several contexts, with
applications to nonlocal cosmology, condensed matter theory
and particle phenomenology.

Conformal symmetry describes the properties of systems
at energy scales at which the dynamics of the correlation
functions are constrained by the generators of the confor-
mal group, whose number varies according to the spacetime
dimensions (d). In d = 4, a conformally invariant theory
is characterized by a partition function that satisfies all the
15 constraints coming from the conformal group SO (2, 4),
modulo the presence of conformal anomalies.

Conformal anomalies [1] are associated, for a given CFT,
with the need to renormalize the theory, according to a reg-
ularization procedure which, at least around a flat space-
time, can be implemented directly using ordinary Dimen-
sional Regularization (DR). Indeed, all the conformal con-
straints can be derived, for Lagrangian CFTs, by resorting
to the formalism of the effective action via its functional
expansion with respect to the external background metric
[2,3]. In the pure gravity sector, its renormalization can be
performed using only two counterterms: the Euler—Poincare
density (E) (Gauss—Bonnet) and the Weyl tensor squared
(C?). Both terms will play an important role in our analysis.
All the quantum corrections and the conformal constraints
can be generated by investigating such renormalized partition
functions in the form of trace and special conformal Ward
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identities either in coordinate [4,5], or in momentum space
[6-9]. The breaking of scale invariance by the renormalized
correlator is present in its traceless part.

The derivation of such constraints is general and formulated
in curved spacetime, and subsequently can be specialized
around flat Minkowski space. This approach bypasses the
traditional operator formalism used in deriving the same con-
straints in the standard CFT literature.

The analysis around flat space allows to address quite clearly
several issues left open by the renormalization procedure,
such as the breaking of scale invariance due to the inclusion
of arenormalization scale, which is missing in both local and
nonlocal effective actions [10] of Wess—Zumino forms, com-
monly discussed in the anomaly literature. Scale violations
are expected to be part of the complete effective action, which
is at the centre of our work. However, they are not present
in those actions identified as possible variational solutions
of the anomaly constraints. These do not necessarily include
the quantum corrections discussed in this work, that will be
taken into account for the TT J J correlator.

While all the correlators of a certain CFT are of interest, some
play a crucial role in the possible implications of such theories
in realistic physical contexts. Conformal anomaly actions,
investigated in their Weyl-invariant and anomaly terms, pro-
vide definitive information about the correct effective field
theory description that results once a conformal sector is inte-
grated out of a specific partition function. This procedure
modifies the background gravitational metric in a very spe-
cial way. The extra terms induce a gravitational backreaction
that can be studied around flat space with great accuracy and
quite explicitly in specific renormalization schemes [10].

1.1 Implications for topological matter and nonlocal
cosmology

Among all the correlators, those containing stress-energy
tensors and classically conserved vector and chiral currents,
besides the scalar CFT primaries, for the reasons mentioned
above, are certainly among the most important ones. They
can be studied in ordinary field theories of conformally cou-
pled scalars, fermions and spin-1 gauge fields in free field
theory realizations [11-15]. Such realizations match exactly,
at least for those correlators containing stress energy tensors
(T) and conserved currents (J), the general tensor structure
predicted for them by the conformal Ward Identities (CWIs)
of a CFT, with significant simplifications [16—18]. In con-
densed matter theory, they find application in the study of
topological materials, such as Dirac and Weyl semimetals,
where anomalies are expected to play an important role. Due
to the presence of an effective linear dispersion relation in
the band structure of such materials and to their topolog-
ical character (see [19-24]), chiral [25,26] and conformal
anomaly actions can be used to describe their response func-
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tions and anomalous transport under external sources. One
link, for example, is provided by Luttinger’s formula, that
relates a thermal solicitation of such materials to an external
gravitational field [23,27].

A second important sector in which these analyses play arole
is in the physics of the early universe and the production of
gravitational waves for defining special corrections to gravity
which may either take the form of local scalar tensor theories
or a nonlocal form (see for instance [28,29]).

1.2 Momentum space analysis

The constraints imposed by the conformal group for d > 2,
up to 3-point functions, are sufficient to identify the correla-
tion functions of a certain CFT only modulo few constants
[4]. The constants appearing in the general solutions of corre-
lation functions, such asthe TTT or T J J, are reproduced by
combining a certain number of sectors with arbitrary particle
multiplicities (ng,n s, ny) of scalars, fermions and gauge
fields, respectively.

We recall that for higher point functions, CWIs do not predict
the exact form of such correlators, since arbitrary functions
of the conformal invariant ratios — which depend on their
coordinate points —are part of their general expressions. This
arbitrariness has also been discussed in momentum space
[30], at least for scalar correlators. The analysis of tensor
correlators is far more involved and has been formulated in
momentum space for 3-point functions of 7”’s J’s and scalar
operators in [7]. However, it remains valid also for n-point
functions [3,31] (see [8,32]), covering also the Minkowski
signature [33-35] as well as applications to cosmology [36—
39].

We will also be using the same approach in our case, sim-

ilarly to the case discussed in [3], but working directly with
a free field theory realization.
A lot of insight and essential information about the structure
of correlation functions can be uncovered by working directly
in momentum space [16]. Indeed, one of the limitations of
CFT in coordinate space is the difficulty of describing the
implications of the conformal anomaly in a complete way
and, in particular, the anomaly action. In this approach, the
anomaly is introduced by hand, in each correlation function,
by extending the solutions of the (non anomalous) CWI’s
with the addition of ultralocal terms. For the rest, the anomaly
contributions are absent in any application based on the oper-
ator product expansion (OPE). The OPE is an operatorial
expansion at short distances that necessarily avoids space-
time regions where all the points of a certain correlator coa-
lesce. On the other end, the momentum space analysis allows
us to derive the anomaly contributions of a certain correla-
tor in a very natural way since integration over momentum
space obviously also covers the contact regions in the exter-
nal coordinate points of the correlator.
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2 The partition function

We start our discussion by defining the unrenormalized par-
tition function of the theory Zp(g), identified by the bare
functional

Z5(g) =N/Dx e~ 50X Q.1
where A\ is a normalization constant. We have denoted by y,
a collection of conformal fields that in d = 4 correspond to
scalars, fermions. Our analysis is set in the Euclidean case.
The transition to Minkowski space can be performed by a
simple analytical continuation of the correlation functions,
since we will be dealing with free field theory realizations.
The bare effective action will be defined as

eS8 = Zp(g) < Sp(g) = —log Zp(g). (2.2)

Quantum matter fields are assumed to be in a conformal
phase at d = 4. The bare effective action Sp(g) includes
all the multiple insertions of the stress energy tensor (pure
gravity sector) and mixed graphs with photons and gravitons.

As usual, Zp(g), which is the semiclassical effective
action (see for instance [40]) in the Feynman diagrammatic
expansion, will contain both connected and disconnected
graphs, while Sg(g) collects only connected graphs. In the
gravitational sector, the expansion provides all the pure gravi-
ton vertices, the mixed graviton/gauge and pure gauge ver-
tices, defined by the insertions of the stress energy tensor and
of the gauge current J#. For instance, the quantum averages
of 1-point functions are defined as

2 88 1 8S
= ==
IR V& 38A,

where the metric is taken to be flat after the variation. Sim-
ilarly, correlation functions of higher order are defined in a
metric background g and with a vanishing gauge field A,
by varying both external fields

() =

(2.3)
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where the dots refer to contributions from the pure gauge
sector in the expansion. The covariant normalization of the

correlation functions is given by
(TH o) oo THY ()
2 2 8"Sp(g)
B /81 o / 8n 88 v (X1)88150, (X2) - . . 881, (Xn)
(2.5)

for the n-graviton sector, with \/—g1 = \/—|det g, (x1)]

and so on, and by

(TR () o TR o) TP (xppt) - TR (X)) =

2 2 1
I/ TN
1 8"Sp(g)
o N/ 8n+k ‘ngvl (x1)... ‘Sg/L,,v,, (xn)‘SA;L,,H (Xp41) .. ‘SA/LHk (Xn+k)

(2.6)

for the graviton/gauge sector.

Diagrammatically, the pure gravitational sector is identi-
fied, in free field theory realizations, by an infinite sum of 1-
loop diagrams with an arbitrary number of external graviton
lines. The mixed sector will include the TT J, the T JJ and
the TT JJ correlation functions. The diagrammatic expan-
sion of the (T'T JJ) for the fermionic and scalar cases are
given below in Figs. 6 and 7. In Dimensional Regulariza-
tion (DR) the renormalized effective action is defined by the
inclusion of three counterterms

Zr(e) = N/D(I)e—So(gaX)‘Fh?/VE(g,d)"'];)VC2(g,d)—Smum(gaA)v

2.7
where N is a normalization constant, € = d — 4, and
Vea(g,d) = ,ﬁ/ dx /g C?,

Ve(g. d) = /ff d'x JZE, (2.8)

are the counterterms corresponding to the Gauss—Bonnet
E =R?>—4R"™ Ry, + R*™P° Rvps (2.9)

and Weyl tensor squared densities

(d)
Cozﬂy& = Rapys
1
T4d_ Q(g“V Rsg + 8as Ryp — 8y Rsa — 8ps Rya)
T 1(d— - R, 2.10
+(d_ D —2) (8ay 858 — 8as &yp) ( )

and the Weyl terms respectively. In order to remove these
divergences of the mixed graviton/gauge correlators we add
to the action the counterterm

1
Scount (g, A) = —;sz(g, d)

E—‘g 3 n,/ddxﬁ(ﬂc(I)Fz), @.11)
I=fs
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corresponding to the field strength F2 = FAVF, v Where the
coefficients B.(I) refer to the scalar and fermion contribu-
tions.

2.1 Local and nonlocal actions and the 77T J J test

Most of the analysis of anomaly actions in the literature deals
with the problem of the identification of a functional whose
variation with respect to the metric generates the conformal
anomaly. The correlation functions extracted from the renor-
malized action satisfy hierarchical CWIs that allow the iden-
tification of two contributions, denoted as the Weyl variant
and the Weyl invariant parts, respectively.

As just mentioned, in the case of pure graviton vertices,
the Weyl variant part of the renormalized effective action
is related to the two counterterms Vg and V2, while in the
TTJJ athird counterterm, V2, is needed. Their variations
reproduce the anomaly since

)
zglu)(s_VE(gv d) = 6«/§E
8uv

b))
28 5— Va8, d) = €y/gC?
8pv

B
28y ——Vr2(g, d) = e /gF?, (2.12)
3guv

while the bare effective action, corresponding to the Weyl
invariant part, in d dimensions satisfies the condition

1)
2guw—3Sp(g,d) =0.

(2.13)
3guv

The Weyl variant part can be summarized by the functional

Bc b b
S, = ?sz(g, d) + :VE(g, d)+ EVCz(g, d), (2.14)
i.e. the counterterm action (with Bc = >, _ fs 1Bc(1)) and

this separation between Sp and S,,, with

Sr =8+ Sy, (2.15)

is perfectly well defined as far as d # 4. Sp becomes singu-
lar at d = 4 and the renormalization procedure consists in
expanding around four spacetime dimensions both Sg and
the counterterm. The expansion is performed using a fidu-
cial metric g and its fluctuations, with g taken to be the
Minkowski metric. Using the fact that the singularities of
Sp are removed by the singular parts of the counterterms,
Sk gets effectively re-expressed in the form

/

. b
Sr@) = L}IE‘ (SB(g, d) + ;VE(g, d)

b
+ EVCZ(g, d) -+ ﬂE—CVFQ(g, d)>
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=Sf@+b0' Vp(g. 9. M) +bV/1(3.¢.4)

+Bc Vi (8. 9.4 (2.16)
with
V'@ 9.4 = Jim <é (V(g.d) = Vg, 4)))
= lim G (V(g.d) = V(g, d))) 2.17)

and the finite contribution coming from the loops contained
in Sy
/

. b b
S = ;1_)m4 (33(61) + :VE(g, 4) + EVCZ(g, 4)

+ﬁ?c Ve (g, 4)) . (2.18)
The anomaly action generated by this regularization can then
be defined in the form

Sa=b'Vp(§, 0.4 +bV/1(8 0,4+ Bc Vi (3, ¢, 4).
(2.19)

In standard approaches in which one tries to solve the con-
straint
8Sg N

gk = Y& [bc2 +VE+ ﬂch] ,

= (2.20)
88 uv 2

ignoring the renormalization process implicit in the extrac-
tion of the effective action at d = 4, which requires to take
a singular limit, the classification of Sg in terms of the two
parts does not introduce any extra scale.

Obviously, this simply implies that we are focusing only
on S, in (2.15), neglecting, at the same time, the presence
of extra scales generated by the virtual quantum corrections,
due to the renormalization procedure. The idea of using the
realizations of free field theory in flat space, as already men-
tioned, allows us to have a firm grip on the structure of the
expansion, although this is only possible for a simpler back-
ground, compared to a curved one For these reasons, it is
not surprising that a functional solution of the anomaly con-
straint, which corresponds to an anomaly induced action, may
not reproduce the perturbative result and the Ward identities
that come with it.

As we are going to show by an explicit computation, there
is a perfect agreement between the complete effective action
derived by a free field theory realization and the anomaly
induced actions that we are going to discuss next, up to
3-point functions. The two actions are derived by select-
ing two different conformal decompositions, usually termed
“gauge choices” in the literature, in which the dilaton field is
expressed in terms of the metric g by two different functional
constraints. In our example, they correspond to the Riegert
(XR) and the Fradkin—Vilkovisky (Xry) choices. We are
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going to investigate this point performing a direct computa-
tion on the two actions, showing that as we move to 4-point
functions, the correlators do not satisfy the hierarchical Ward
identities of the case.

3 Ward identities

The symmetry constraints on Sg, induced on the coefficients
of the expansion (2.4) take the form of WIs which are hier-
archical. The conformal constraints, for instants, are linked
to the Weyl invariance of the renormalized effective action
and to its breaking and a derivation of the corresponding WIs
can be performed directly from either Sp or Sg, as shown
in [2,3]. We recall that in a curved background, for a certain
action S(g), Weyl invariance is expressed as a symmetry of
the form

S(g) =S(3) when gy, = guve®. (3.1)

The relation between g and g defines a conformal decompo-
sition, which remains valid under the gauge transformation

g8, ¢9—>p—o, (3.2)

where o (x) is a local shift. The renormalization of the quan-
tum corrections, via the counterterms above, breaks this sym-
metry. In the case of a flat background, one is essentially
performing the ¢ — O limit of Sk after performing the
metric variations, with the dilaton variation % replaced by
28y ﬁ A study of the semiclassical effective action in the
presence of a dilaton background is in [41]. In general, on
the bare functional Sg(g), one derives the relation

and its invariance under Weyl

8p&uv = 28,0089, 34
and diffeomorphisms

Seguv = —Vyu€y — Viey, (3.5
are summarised by the constraints

86Sp =0 6.5 =0, (3.6)

leading to trace and conservation conditions of the quantum
averages of T

(TH) =0 V,(T")=0. (3.7)

Ordinary trace and conservation WI’s can be derived from the
equations above by functional differentiations of Sp(g) with
respect to the background metric. As far as we stay away from
d = 4 and include in the classical action Sy conformal fields,
we have exact CWI which are derived from the condition of

invariance of the generating functional Sp with respect to dif-
feomorphisms and Weyl transformations. Anomalous CWIs
are derived by replacing the effective action Sp with the
renormalized one Sg. Non conformal sectors, such as spin-
1 contributions, modify the CWIs by inhomogeneous terms
unrelated to the anomaly, which is a pure 4d phenomenon.

We move to discuss the derivation of the conformal and
conservation WIs for the correlator. This allows us to illus-
trate its decomposition, following the approach of [7], in
terms of a transverse traceless sector, a longitudinal sector
and a trace sector. Only the trace and conservation WIs will
play arole in our analysis.

Assuming that the generating functional of the theory is
invariant under the action of some symmetry groups, then the
correlation function (T'T J J) satisfies

4
Z G (xj)(TH™ (x)TH2Y2 (x2) I3 (x3) T4 (x4)) = O,
j=1

(3.8)

with G the generators of the infinitesimal symmetry trans-
formations. These constraints come from the invariance of
the generating functional under symmetry transformations

Splg’, A'l = Splg, Al, (3.9
that can be expressed equivalently as
3Sp 3SB
d! 8 ——3§A% | =0. 3.10
f <8g,w 8w 5 g “> G0

Among these constraints, the conservation Ward Identity
(WD) in flat space of the energy momentum tensor can be
obtained by requiring the invariance of Sg[g, A] under dif-
feomorphisms x#* — x* 4 e€(x) for which the variation
of the metric and the gauge fields are the corresponding Lie
derivatives. In the case of a nonabelian SU(N) gauge field

AZ (a=1,2,..., N2 — 1), for instance, we get
(SAZ = —e”‘VaAfL — Ag V€, 3.11)
dguy = —Vyu€ey — Viey. 3.12)

Inserting these variations into (3.10) and integrating by parts,
we obtain the conservation WI

Vi (TH) + (8" A% — 9V AM) (J ) + A®" V. (J®H) = 0.

(3.13)

Similarly, the requirement of invariance under a gauge trans-
formation with a parameter 8¢ (x) gives

SAY = 0,0+ g U ALOC, (3.14)

8gun =0, (3.15)
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and the invariance of the generating functional under gauge
transformations gives

V(T = gf*PeAS (0. (3.16)

Inserting this equation into (3.13) we obtain the conservation
WI's

Viu(TH) + FOR (IS5 =0,
VilJ ) = g f AL (I = 0.

(3.17a)
(3.17b)

In the Abelian case, which is the case of our interest, diffeo-
morphism and gauge invariance give the relations

(3.18a)

Vu,(TMU) + Fu.u(JM) =0,
v, (3.18b)

(JHy = 0.

By functional differentiations of (3.18) we derive ordinary
WIs for the various correlators involving energy-momentum
tensors and conserved currents. In the (TTJJ) case we
obtain, after a Fourier transform, the conservation equation

P1 ATH (p1) TH2 (p2) I3 (p3) T4 (pa))

= [2 P25, 8" 2(TYDM (py + p2)JH3 (p3) T4 (pa))
— p2"N(TH22(p1 + p2)JH? (P3)J“4(P4)>}

+ 2{ [5V1(M2P§2)<J“3(1)1 + p2+ p3) " (pa))
— 81028 p, (TH (P + pa + p3) T (pa)

1
+ 58" pas, (JM(p1 + p3)TH2"2(p2) J ™ (pa))

1, )
- 51?3‘ (J'3(p1 + p3)TH? 2(1!72)1"“(174))}

+ [(3 < 4)“,

where the notation (3 <> 4) means the exchange of the sub-
script 3 with 4, and the vector current Ward identities

(3.19)

Pi i (TH" (p)TH22 (p2) JH3 (p3) J P4 (pa)) =0

i=3,4. (3.20)

In our conventions, all the momenta, in a given correlator,
are incoming. Furthermore we consider the invariance of the
generating functional under Weyl transformations for which
the fields transform as in (3.4) and

55 A% =0 (3.21)

@ Springer

giving the naive trace Ward identity

gu(TH") = 0. (3.22)
The functional differentiation of (3.22) gives the (non-
anomalous) condition

8o (T (p)TH22 (p2) T3 (p3) JH4 (pa))

= =2(T"*"(p1 + p2) 7" (p3) I (p4)), (3.23)
that is preserved for d # 2n, n € N. In Appendix A we offer
more details on the conservation WI’s.

4 Decomposition of the correlator

As already mentioned, the general form of the (777" J J) cor-
relator can be constructed by a decomposition into transverse,
longitudinal and trace terms [7], exploiting its symmetries.
We start by decomposing the operators 7 and J in terms
of their transverse traceless part and the longitudinal (local)
ones

THY (pi) = 7Y (pi) + 1o (i), 4.1)
U (pi) = jM(p) + Jle(pi) 4.2)

where

4V (pi) = T (pi) TP (i),

o (pi) = T4 (p) TP (i), 4.3)

J"i(pi) = n’“(pi) JY(pi)s

[y p fr %

e (pi) = == 1% (po), 4.4)

i

having introduced the transverse-traceless (IT), transverse
(), longitudinal (%) projectors, given respectively by

o =0 — p;f“’ 4.5)
Map = ; (wtmp + ) - d]_ T e, 4.6)
Tuip = 17[7'3 [253" - s (8“‘“' +d-2) p;:)p;t )}
i i
n(’;iw (’S) o = T pig, + %sa,ﬁ,. 4.7)

By using the projectors introduced above, the correlator can
be written as

(THYY(p) TP (p2) I3 (p3) I (pa))
= (""" (ptH22 (p2) j13 (p3) j* (pa))
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+ (" ()22 (p2) j13 (p3) 7 (Pa))ioe (4.8)
where
v (tH N (P22 (p2) j13 (p3) j*4 (pa)) =0, i =1,2,
“4.9)
P (1 (p)H272 (p2) j12 (p3) j*4 (pa)) = 0,
i=1,....4, (4.10)
and
(1 (p)t" 22 (p2) j*3 (p3) j** (Pa))ioe
— (lll;lc‘)l TH2v2 13 JV-A) + (TM]VI t]#;iUZ JH3 ju4>
_ <tll““1 tlf‘z"z JH3 JM4)
oc oc
TRV (py) , )
= [(Iéflmpl pr+ Tf;%m) 8h2dg + (27 2
22 (po) v
rETREORL
; T (p1) v
- <I¢§fll 'pip+ ﬁ801ﬂ1> (Z82"p2ps
U212
%Sazﬂz) :| (TP T02b2 13 gy, (4.11)

It is clear now that only the second term in (4.8), expressed
explicitly in (4.11), will contain the entire trace and longi-
tudinal contributions, with these two sectors constrained by
the conservation WIs (3.19), (3.20) and (3.23). Thus, the
unknown part of the correlator is contained in its transverse-
traceless (¢¢ ), since the remaining longitudinal + trace con-
tributions — the local terms — are related to lower point func-
tions by conservation and trace WIs. Therefore, we can pro-
ceed by studying the general decomposition of the transverse-
traceless part (¢7jj) into a product of form factors and tensor
structures.

Due to conditions (4.9) and (4.10), such sector, using the
transverse and traceless projectors, can be written in the form

(tM (pt" 22 (p2) 13 (p3) j1*4 (pa))
= T (T ()l (ps) el (pa) X Preapeses,
(4.12)

where X*!--*4 is a general rank six tensor built out of products
of metric tensors and momenta with the appropriate selection
of indices. Note that due to the presence of the projectors in
(4.12),theterms8“iﬂi,i =1, 20rp?i,i =1,...,4cannotbe
used as fundamental tensors and vectors to build the X1--*4
tensor. In addition, the conservation of the total momentum

i +py +py +ps =0, (4.13)

allows to select for each index «; a pair of momenta out of the
four, to be used in the general construction of X. The choice
of the independent momenta of the expansion, similarly to

the case of 3-point functions discussed in [7], can be different
for each set of contracted tensor indices. We will choose

{(a1, B1), (a2, B2)} <> p3, p4,

{az, as} < p1, p2, (4.14)

as a basis of the expansion, for each pair of indices shown
above. Once the decomposition has been performed accord-
ing to this scheme and the number of form factors identified,
one momentum, for instance p4, can be chosen as the depen-
dent one.

This approach is rather economical, since it allows to reduce
the number of form factors to a minimum, exploiting the
presence of a single ## projector for each external momentum.
Regarding the tensor structures built out of metric §s, the only
non vanishing ones appearing in X*!-*4 are

50!10!2’ 8a1a3’ 8011(14’ 8a2a3’ 80{;0{4’ §9304 (415)
together with the similar ones obtained by the exchange
o <> Bi, i = 1,2. This strategy has been introduced in [7]
for 3-point functions and applied also to the case of 4-point
functions in [3]. In the next section, we are going to describe
the procedure in order to write explicitly the expression of
X% in terms of the minimal number of tensor structures
and form factors, in general d dimensions [31].

4.1 Orbits of the permutations

X124 g expressed in terms of tensor structures and form
factors using the symmetry of the correlator. The (T'TJJ)
manifests two types of discrete symmetries related to the
permutation group: it must be symmetric under the exchange
of the two gravitons (1 < 2), of the two conserved J currents
(3 < 4), and the combination of both transformations. We
label such transformations respectively as Pj2, P34 and Pc =
P12 P34. It is worth mentioning that P> exchanges the pair
of indices of the two gravitons and the momenta associated
with them, and analogously for the two currents J'’s.

The tensorial structures in X%!*-*4 will be constructed by
using the metric tensors and the momenta with the choices
(4.15) and (4.14). Then, in X%!--*4  there are structures of
four different type, depending on the number of metric ten-
sors and momenta used to saturate the number of free indices.
We consider the general terms

388, 8dpp, Spppp, pppppD; (4.16)

observing that these sectors do not mix when the permutation
operator P;; is applied. This property allows us to construct
the general symmetric form of each sector separately.

As afirst step, we determine the orbits of the P operators act-
ing on the tensor structures belonging to each tensorial sector
(4.16). This can be achieved by applying all the P transfor-
mations to a tensor structure and following the “trajectory”
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(orbits) in the sector generated by this process. For instance,
in the sector §6pp, we encounter the two orbits

s2h 8"‘4/32p§”p‘f3 P2y sapr gaapy PSPy

Pl \Pc) L 4.17)

ay a4

se2Bi 3ot3/32p2‘1p‘f4 W sa1B2 523 Peps

o3 a4

P
80110(2851/32p(113p‘114 T‘Z> 5a1a23ﬂ1/32p2 Py

J -

P34 P34

(4.18)

In this way we decompose every sector (4.16) into orbits.

Every P transformation acts on an orbit irreducibly, i.e. it
connects every element on the orbit. The number of orbits
for all the sectors equals the number of independent form
factors representing the correlator. In fact, a representative
can be selected for each orbit to which an independent form
factor can then be associated. The orbit provides a visual
realization of the symmetry properties of the form factors
that belong to it.
For clarity, let’s clarify this statement with an explicit exam-
ple, using the sector §38. With the choices (4.15) and (4.14)
we construct the three possible tensor structures in X*1--*4
as

50110125()631145;‘31/327 50510(35012&45/31132, s gz sfipy

(4.19)

This sector can be decomposed into two orbits as

§a1as gaaas sP1 A2 Pia s §U104 50203 58152 §a1az gasag sB1 B2
P34 ’

- - -

Pc Pc P34, P12, Pc

(4.20)

from which we can conclude that for this sector there exist
just two independent form factors related to the representa-
tives of the orbits. Then the general form of X for the sector
with three ds (denoted as zero momentum or “Op”) can be
directly written as

X‘(x(; /3)1 azBrazay — Agop) 80{10!28013(148/51/32
4

+ AéOP)Salas s sB1P2

+A;Op)(p1 < p2)5a1a45a20¢38ﬁ1/32’ 42D

where the two independent form factors satisfy the symmetry
conditions

0 0 0
AP (pr < p2) = ALY (p3 < pa) = AP, (4.22)

0 0
AP (p3 < pa) = AP (p1 < pa),
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0 0
AP (p1 < pa, p3 o pa) = AYP.

(4.23)

The properties of the orbits within the tensorial sector are
directly reflected in the symmetry conditions of the form
factors.

The method proposed in [31] is similar, but more involuted,
since it starts from the most general tensor structure with
a non-minimal number of form factors. By imposing the
symmetry conditions under the group of permutations, one
obtains the conditions that reduce the number of form fac-
tors and the symmetry constraints that they have to satisfy.
Indeed, applying the prescription of the example above, we
should identify its expression starting from the general ansitz
tholf)lazﬁzasm — F15a1a23ﬂ1ﬂ25a3ot4 + F25a1a35a2a45/31ﬂ2

+ P81 g2 ghihr, (4.24)

The invariance of the correlator under the permutation Pjp
reduces the number of independent form factors and gives
the symmetry conditions

Fiy = Fi(p1 < p2),
F3 = Fa(p1 < p2). (4.25)
The invariance of the correlator under the other symmetry
transformations P34 and Pc, turns into some symmetry con-
ditions on the independent form factors as

F1 = Fi(p1 < p2) = Fi(p3 < p4)
= Fi(p1 < p2, p3 <> pa)
Fy = F2(p1 < p2, p3 <> p4),

Fa(p1 < p2) = Fa(p3 < pa), (4.26)
obtaining again (4.21). It is now clear that the study of the
orbits of the tensor structures under the permutation group,
provides directly the answer about the minimal number of
independent form factors that are needed in order to describe
the general solution of any 4-point correlator. This proce-
dure can be simply generalized to higher point correlation
functions involving operators of any spin.

Once we identify and select representative of each orbit
for every sector, then the general structure of X“!--*4 can be
written down quite easily. In this way, we find thatind > 4
the general form of X*!--*4 related to (T'T J J) is written in
terms of 47 independent form factors. This number reduces
significantly when d < 4, as we are going to show in the
following sections.

The number of tensor structures and independent form
factors for the general d dimensional case is listed in Table 1
and the representative of each orbit are listed in Appendix B.
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Table 1 Number of tensor structures and independent form factors in
X* % forthe (TTJJ)

Sector # of tensor structures # of orbits
888 3 2

88pp 38 13

Spppp 73 21
pppPPP 36 11

Total 150 47

Table 2 Possible tensor identities depending on the relation n > 6 —
k—1

d=>5

k 1 n Tensor rank k l n Tensor rank
2 0 >4 10 5 0 > 1 7

1 1 4 1

3 0 >3 9 3 2

2 1 6 0 >0 6

4 0 >2 8 5 1

3 1 4 2

2 2 3 3

5 Dimensional dependent degeneracies of tensor
structuresind <5

In the previous section we have presented the method to con-
struct the general form of the correlator in order to obtain a
minimal number of form factors in the general d dimensional
case. Ind < 5, the structure of X*!~*4 changes, according to
the degeneracies of the tensor structures [3,9,42,43]. These
degeneracies cause a reduction in the number of indepen-
dent form factors and significantly simplifies the structure
of the correlator. In this section, we discuss the dimensional
reduction patterns for d < 5.

5.1 Caseofd =5

Following the argument presented in [42,43], for any ten-
sor in d-dimensional space there is associated a fundamen-
tal tensor identity obtained by antisymmetrizing over d + 1
indices. In particular let T%l_”akbl'”bl = f?almuk[fl“'bl] be
a trace-free tensor on all of its indices, where A denotes an
arbitrary number of additional lower and/or upper indices.
Then

A [b1...by ¢bit1 biynmy _
T [ay...ax 8ak+1 cee 8ak+n] - O’

(5.1

wheren >d —k—[+1andn > 0.

Ind =5, (5.1) admits a tower of tensor identities depend-
ing on the values of k and / with the conditionn > 6 —k —1
and n > 0 as showed in Table 2.

It is worth mentioning that for / 4+ k > 6 we obtain the
condition that the tensor itself vanishes for n = 0, and all the
other identities for n > 0 are trivially satisfied. In order to
clarify this point, let us consider the case with k =3,/ =3
for which, in d = 5, the relation (5.1) becomes

A [b1 by b3 8b4
ay

b3+n] _
laiaz a3 - 8 =0,

a3 ] n>0.

(5.2)
The first identity, depending on the values of n, is obtained
forn =0

A bybyby _
T ajazas _0’

(5.3)
which trivially satisfies all other identities for n > 0. For
example, using the fact that an anti-symmetrization on n
indices can be decomposed iteratively on a smaller number
of indices, in the case n = 1 one obtains

A [b1 b2 b3 8b4]

la1az a3 a4)
LA bbby byl A [bibabs bl
= Z (T [a1 a2 a3] 8“2 -7 [ay ap aa) Saf:
A [b1 b2 b3 oby] A [b1 b2 b3 oby]
+7 la1 as a3] Sa;‘ -7 las az a3] Sa? )

LA ibabsl b A [bababs] gb
= 42 ( la1 az a3] 8a:+'“+T[alaza3] 8“41

Tt 2o+ ) =0
3

[a1 az a4] G4
by means of (5.3).

After a meticulous investigation of all the tensorial identities
ind = 5, we present below only those that affect the form
of the tensorial structure of the 77 J J. In particular, all the
constraints from Table 2 are equivalent to only one. To show
which one is the constraint for the 77JJ ind = 5, we
consider the case with k = 3 and / = 3 that takes the form

T o ayal' 203 =0.

aiazasz (5 5)
In order to construct the antisymmetric tensor 7, we consider
the tensor

bibyby _
ayaas -

[b1 b2 D3]
t Pl P2,,P3,P1 P2 P3 > (5.6
and then the traceless and completely antisymmetric tensor
7 is directly written in the form

T bibyby _

[ag as ag ob1 by ob3]
aj az as - 8“18 8

a ~az *

a3 as ag 5.7
This is the only non-trivial tensor that can be constructed
using the three independent momenta of a 4-point function.
The use of the metric 6,2." in (5.6) gives a trivially zero result
in five dimensions. In order to find the dimension-dependent

@ Springer



427 Page 10 of 34

Eur. Phys. J. C (2023) 83:427

equation of the tensor structure of the transverse-traceless
partofthe (TT JJ), we apply to (5.7) the [T and 7 projectors

H“lV&lﬁ' Huzvézﬁz 7.[533 phaad (Tﬁl b m‘:" 2 "‘3) =0, (5.8

or explicitly

H#lvé“ﬂl Hﬂzvéth 71’533 4o {J123 5‘31 8528321 (5.9)
as]
=30 p% 05,0, P3g,)
@ so3]
+6J, 1192 P31315:50; P2, P
a1 002 ca3]
+6J 1p2 P3) 6/‘31806: Plg,) P3s
(13
+4p3, p!py' ps’ 5[a4pzﬂ]plﬂzl} 0,
where
123 = Piyg, P24, P3 gy P’ pz“zp”” (5.10)
J12:ij = Pl P2 4y e pj o Jijg=(pi-pj)-

From this analysis, we conclude that in d = 5 the number
of independent form factors is reduced by one according to
the constraint (5.10) on the tensor structures.

5.2 Caseofd =4

Analogously to the previous case, in d = 4 one has to con-
sider tensor identities derived from (5.1). However, in this
case, we are going to show that there is an even more effi-
cient way to identify the independent tensorial structures.
Indeed, in d = 4, the metric § is not an independent tensor
and one can construct a different basis in which it can be re-
expressed. For this purpose, we construct a new orthogonal
four-vector n** using the completely antisymmetric tensor
€114 and three of the four external momenta in the form

ntl — MR (5.11)

pl/j,z p2,u3 p3lt4'

Notice that this reduction is possible if one has in d dimen-
sions at least d — 1 independent external momenta in a cor-
relation function. The vector (5.11) is obviously transverse
with respect to pi, p2, p3, i.e. n - p; = 0. Having defined
such a vector, we use this new basis, that we call the n-p
basis, to construct all the tensorial structures that we use to
define the correlation function. In this new basis, the metric
tensor is expressed as

4
SILU — Z(Z_l)ji P[ﬂp]\f’
i=1

(5.12)

where Z~! is the inverse of the Gram matrix Z = [P; -
Pj]?{j:l and PJ’.L e {pl', Py, p§ . n*}. Inparticular, the Gram
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matrix in this case is written as

p} piop2piop3 0
pi-p2 pP3 p2-p3 0
pr-p3p2-ps p3 O

0 0 0 n?

Z= (5.13)

from which we obtain the expression of § as

3
MY = Z [(Pi“ “Pj—1)(Pi=1 " Pj+1)
ij=1
P
(it D D) | Pt

ntn?
7

(5.14)
n

where the indices i, j are labelled mod-3 and
2= —pipip3 + pi(p2-p3)* + p3 (p1 - p2)?
+p3(p1-p2)* —2(p1- p2) (p2- p3) (p1- p3). (5.15)

With the expression for the metric given in (5.14), and using
the constraint §%#i l'[“ _"v,‘ =0, we find

M43 (pi) n®inf = T (pi)

[(p,-zl pi— (pi- pi_l)Z) P i

+ (pi2+l pi — (pi 'Pi+l)2) P Plﬂ' 1

+ 2((17[ - pit1) (pi - pic1) — pP(pi-

pm)) pity plﬂjr]} i=1,2 (5.16)

with the indices labelled mod-3. With the conventions for
independent momenta and indices made in (4.14), the con-
straint can be explicitly rewritten as

! (pi) n®inf
=y <pf)[pg ps (p, (pi + P> — (pi - (pi + p4)>2>

+ P py (piz p3 — (pi -p3)2)

+2p5 py’ ((Pi ~(pi + p))(pi - p3)

o)) | =12 (5.17)
The previous constraints, occurring when at least two n vec-
tors are contracted with a transverse traceless projector, allow
us to write the decomposition of the transverse-traceless part
(4.12) in d = 4 in terms of just three sectors, i.e.

nnnnpp, nnpppp, pppppp. (5.18)

It is worth to point out that in this new basis the term
n® nPrpn®2pfrp* R cannot appear in the decomposition of
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Table 3 Number of tensor structures and independent form factors in
d = 4 with the n-p basis

Sector # of tensor structures # of orbits
nnnnpp 4 2

nnpppp 73 21
pPPPPP 36 11

Total 113 34

X4 since because of the constraints (5.17) it would be
rewritten as p; p’flpz‘zpﬂzn“*n”‘“ withi, j, k,1 =3, 4.
Furthermore, in this new basis we notice a drastic reduction
of the number of independent tensorial structures of (5.18).
By analysing the orbits of the tensor structures under the
permutation group, we select the representatives of each of
them (see Appendix B) and thus determine the number of
independent form factors in d = 4. The result is considerably
simplified respect to the general case. We conclude that in this
specific case the transverse traceless part of the (T7T JJ) is
parametrised by 34 independent form factors as summarized
in Table 3.

5.3 Caseofd =3

In the case of d = 3 the decomposition of the (tjj) reduces
significantly. Indeed, also in this case the § is not an inde-
pendent tensor but it can be written in terms of the external
momenta. Furthermore, contrary to the case of d = 4, there
is no need to introduce an additional orthogonal vector. The
three independent momenta pi, p» and p3 are sufficient to
span the new basis. The three dimensional version of (5.12)
and (5.14) is immediate and we have

3

Z [(Pi—l “Pj—1)(Pit1 - Pj+1)

zj:l

3(3)”“ Z(Z )jl pl pj —

— (Pi+1- Pj—1)(Ppi-1 - Pj+1)]m0d3pflp}{, (5.19)

where J is the determinant of the Gram matrix given as

J =pipipl—pi(p2-p3) —p5 (p1-p2)
—p3(p1-p2) +2(p1-p2) (p2- p3) (p1 - p3). (5.20)

The form of the § in three dimensions in (5.19) allows
us to conclude that the only structure present in (4.16) is
formed just by momenta, and we have to study a single ten-
sorial sector made of six momenta. Also in this case we
have some constraints coming from the contraction of (5.19)
with a transverse-traceless projector. Indeed, the property
§HPITILT = 0 gives

b o . 1
MU (o) P =Ttk (o) <[ (97 23 = (pi- p20?) !
1

Table 4 Number of tensor structures and independent form factors in
d=3

Sector # of tensor structures # of orbits

ppppPpp 16 5

Table 5 Number of independent form factors needed to characterize
the (T'T JJ) depending on the dimensions d

Correlator d=>6 d=>5 d=14 d=3

(TTJIJT) 47 46 34 5

+(1’,‘2(17i + pa)? — (pi - (pi + pa)) )p3 pf’] i=12

(521)

where

5 =2[p2 (ps - i+ p20) = i p9) (pi- i+ p0)) |, 1= 1,2,
(522)

By using these constraints we find that atd = 3 the number of
tensor structures is smaller respect to the general case and that
of d = 4. Following the procedure described in the previous
sections, we find that the number of independent form factors
in this case is reduced to five, as shown in Table 4.

5.4 Summary

We are ready to summarize the results obtained in the previ-
ous sections.

By studying the orbits of the tensor structures under
the group of permutations, we have identified the minimal
tensor structures and form factors needed to construct the
transverse-traceless part of the correlator.

This study has been first performed in the case of d > 6.
For d < 5, because of degeneracies in the tensor structures,
one needs to take into account identity (5.1). In particular,
for d = 5, we find one independent constraint that reduces
the number of form factors by one. In d = 4, we have shown
how to rewrite the metric §,,,, in the basis n-p by introducing
an orthogonal vector n given by (5.11). This approach can
also be performed for d = 3, showing that the independent
tensor structures are considerably reduced, as is the number
of independent form factors.

It is worth mentioning that when it is possible to define a
new independent tensor base, the identities (5.1) are automat-
ically satisfied. This property has been checked in the case of
the 7T J. The generalization of this approach to any 3- or 4-
point correlator will be presented elsewhere. The number of
minimal form factors for specific dimensions is summarised
in Table 5.
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6 Divergences and renormalization

In the previous sections, we have shown how to decompose
the correlator in terms of a minimal number of form factors
and tensorial structures. In particular, we have seen that this
number depends on the specific spacetime dimensions d. In
particular, one has to consider the d-dependent degeneracies
in order to identify such minimal decomposition, which may
be divergent.

Working in DR with the minimal subtraction (MS)
scheme, the tensor degeneracy identities in the n-p basis
should be carefully analyzed in the ¢ — O limit, with
& = d — 4. This is clear if we consider the case where d = 4,
where the new vector n is defined using the Levi Civita tensor
in four dimensions. This tensor does not allow extending the
basis n — p outside the four dimensions, which is necessary
in DR. The procedure we then use is to consider the general
decomposition in d dimensions, extract the divergences as
poles in 1/¢ around the target dimension, then renormalize
the correlator with an appropriate counterterm, and once we
have the finished result for ¢ — 0, then consider the change
of basis to obtain a minimal decomposition.

Let us now consider the possible cases in which diver-
gences may occur, and make use of the scaling behaviour of
the entire correlator. The scale invariance of the correlator is
expressed through the dilatation Ward identity which for a

specific form factor Aﬁ.d; No) takes the form

3
Z 0 (d: Np)
l

i=1

where N, is the number of momenta multiplying the form
factor in the decomposition. This equation characterizes the
scaling behaviour of A-Nr and allows to identify quite eas-
ily those among all which will be manifestly divergent in the
UV regime. In general, their behaviour is summarized in
Table 6.

In all the cases, whenever divergences are present, they
will show up as single poles in the regulator €. The pro-
cedure of renormalization, obtained by the inclusion of the
counterterm, will remove these divergences and will gener-
ate an anomaly. In the next section, we are going to discuss
the appearance of the conformal anomaly after the renormal-
ization procedure, for the d = 4 case.

7 Perturbative analysis in the conformal case

In this section we direct our attention towards an important
aspect of our analysis, which will allow us to extend the result
of the T J J correlator presentedin [18,44]tothe TT J J. The
two correlators are connected via the hierarchical structures
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of the trace and conservation WIs and the renormalization
procedure.

We use the free field theory realization of the 7T JJ in
order to study the structure of the anomalous Ward identities
once the conformal symmetry is broken after its renormal-
ization. After the renormalization, the vertex will separate
into a renormalized part of the form (4.8) and an anomaly
part, following the same pattern of the 7'JJ. This anomaly
part will be compared directly with the result coming from
the variation of the anomaly effective action.

We start our analysis by defining our conventions for the
perturbative sectors. The fundamental classical action Sp can
be defined as a sum of two sectors, the scalar and the fermion
sectors, which will be considered separately. It can be defined
in the form

So = Stscatar + Y _ S, fermion (7.1)
! 4

where I = 1,2...Ny and !’ = 1,2... Ny enumerate the
conformally coupled scalars and fermions in the total action.
We will consider the case of a single scalar and a single
fermion, correcting the results for their multiplicities at the
end.

The action for the fermion field in a gravitational back-
ground is

Sfermion = f ddx Vv

x [% VD (Duw) =5 Vi (D) v w] a2

where V! is the vielbein and V its determinant, D,, is the
covariant derivative defined as

1
Dulllz (VM—FleAM)I//: (8M+ieAM+§wuab2“b) l//,
(7.3)

- . - . 1 ab
Duw:(vﬂ—zeAM)w:(au—teAu—EwuabZ )w,
7.4)

where £ are the generators of the Lorentz group in the case
of a spin 1/2-field, and
— v A

wuab = Vg (30 Voo — Ty Van) (7.5)
being the spin connection in the holonomic (metric) defini-
tion, with the antisymmetric property @, o»p = —®y pa- The
Latin and Greek indices are related to the (locally) flat basis
and the curved background respectively. Using the explicit

expression of the generators of the Lorentz group one can
re-expresses the action as follows
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Table 6 UV scaling behaviour

0.f A;d;l,vp) depending on the Form factor A;dZin ~ A;d’Np B A;'dYNp:Z) Ai'd’Np -
dimensions Degree d-3 d—6 d—4 d—2
UV divergentind > 8 4 4 v v
UV divergentind = 6,7 X 4 v v
UV divergentind = 4,5 X X v v

Gy

Fig. 1 Vertices with fermions for the construction of the 77 J J correlator

1 -
Sfermion = f ddx Vv |:§ Y Va,uya (auW)
i

2
i w7 . ,abc
_Zwuab VC ¥y W]

(b)) VI Yy — ey VIiy Au

(7.6)

where y“¥¢ is a completely antisymmetric product of gamma

matrices defined as

1 , . .
yabe = 3 (y"yby‘ + antlsymmetrlc> . (7.7)
We recall the property
)/C Eab + Zab )/C — _yabc (7.8)
where % = —4—1‘[)/“, ¥?]. Taking a first variation of the

action with respect to the metric one can construct the energy
momentum tensor as

THY — —%|:1/_f V(MVU)III _ v(#«& yv)w

— " (Y Yy = Vg V“//)}

—ev (8"v" Ay —ya”) . (7.9)
The computation of the vertices can be done by taking func-
tional derivatives of the action with respect to the metric and
the gauge field and Fourier transforming to momentum space.
They are given in Fig. 1 and their explicit expressions have
been collected in Appendix E.

The action of a scalar coupled to a gauge field in a curved
background is defined by the functional

MR|¢|2>, (7.10)

Sscalar

d 2
/d x¢§<|DM¢} t3d=D
where R is the scalar curvature and ¢ denotes a complex
scalar field and D¢ = V¢ +ie A, ¢, the covariant deriva-
tive for the coupling to the gauge field A, . The vertices for the
scalar interactions depicted in Fig. 2 are listed in Appendix E.
It is worth mentioning that we have not considered the vertex
with two gauge fields/two scalars and two gravitons because
it contributes as a massless tadpole at one-loop, and vanishes
in DR.

7.1 Feynman diagrams

In order to find all the Feynman diagrams that will contribute
to the correlation function, we start from the definition of the
energy momentum tensor as givenin (2.3). The TT J J corre-
lator around flat space is extracted by taking four derivatives
of the bare effective action S with respect to the metric and
the gauge field, evaluated when the sources are turned off

(THV (1) T2 (x2) T4 (x3) T (x4))
) 5*Sp
88 pu1v1 (X1) 88 o1y (X2) 8 A5 (x3) 8 A, (x4) 8=, A:O‘
(7.11)

We will discuss the Euclidean case, with background metric
8. The analytic continuation of our results to Minkowski
space are pretty straightforward, since the basic master inte-
grals appearing in the computations are the scalar self-energy,
the triangle and the box diagram. Having denoted with Sy the
conformal invariant classical action in Sg, we have
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(TH(xp) TH2 (x2) J73 (x3) JH4 (xg)) = 4{ <

8250 880 5SO> <

525()
3g18A3 8g2 8A4

3g16Ay 8g2 8A;3
525() 5250

5350

880 6So 8So 650 828y  8Sy 850

381 822 843 m> - <— §4; _>
A S0 8250 880 S0
352 _>_<@ 88283 E>_<_

381882 0A3 8Ay
8250 880
51 882844 E>
535()

< 3250 525()

n n ) n S0
3g18A3 8gad0Ay 3g18A4 882043 3g108g20A3 8Ay 881882 8A4 SA3[ )’

(7.12)

where for sake of simplicity we have indicated for g; =
guivi(xi), i = 1,2 and for A; = Auj(xj), j = 3, 4.
In (7.12) the angle brackets denote the vacuum expectation
value and all the terms are referred to a particular topology
for the Feynman diagrams. In particular, we have the box
diagram topology, the first term in (7.12), then the triangle
diagrams topology expressed by the second term and the sec-
ond line of (7.12), and finally the bubble diagrams written in
the last line of the same equation. As we have already men-
tioned, we discard the term

84So
- (7.13)
8818828A48A3
in (7.12), because it generates a tadpole diagram at one-loop.
For the fermionic case, examples of diagrams are shown
in Fig. 3. For instance, the first in Fig. 3a, is summarized by
the expression

Y HIVIR2 V213
1, fermion

(p1, P2, P3, pa) =

All the diagrams computed in the fermionic and scalar
cases are given in Figs. 6 and 7. The perturbative realiza-
tion of the 77 J J will be written down as the sum of these
amplitudes, formally given by the expression

(T (P T (p2) M (p3) T4 (pa))

=4 ) 85 VRS () by p3, pa),
ieG
where G is the set of all the diagrams listed in Figs. 6 and 7,
and S; is the symmetry factor of each diagram.

This perturbative realisation of the 77 J J in d dimensions
satisfies the conservation and trace Ward identities (3.19),
(3.20), (3.23). However, around d = 4, some loop integrals
diverge and the renormalisation procedure of this correla-
tor will lead to the appearance of an anomalous part (the
trace anomaly). Scale-breaking contributions will be natu-

(7.17)

) @n)d

44 HD¢£ﬂ+pLHﬂn+m)U+pﬁVﬁz&l+mﬂDVﬁwU—pgyﬁ¢U+pf+hﬂ
2+ p2)* A+ p2+ py)* (L= p3)° ’
(7.14)

A few additional examples of triangle diagrams contribut-
ing to the 7T J J can be found in Fig. 4. The first diagram,
for instance, is expressed as

rally associated with the renormalization procedure, and they
are not accounted for by the trace anomaly condition, as we
will discuss in the next sections.

H1VL 42V Iz Iz

VMIV1H2V2M3H4( ) _ ddl Tr I:VT]{IZlI/fz 2(l + p3; l B p4) (l + p3) VJ‘;“// (l) VJ];‘// (l B p4):| (7 15)
2, fermion P1, P2, P3, P4) = (27T)d lZ(l + p3)2(l _ p4)2 . .
Other topologies are given by the bubble contributions.

Some examples of these are shown in Fig. 5. For instance,
for the first diagram we have

H1VI U2 V2 4 3

gl Te[VEER G pa 1) (14 py) VIS 1+ po)] |

VIIRRISES (b1 ), p. pa) = — / Y v . (7.16)

(2m)d

2+ p3)?
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Ian

(a) (b) (c) (d) (e)
Fig. 2 Vertices with scalars for the construction of the 7T J J correlator
D I+ps+p g
Trivt b L+p1+po il Jha THvy 28 [+pitp Jha
\st
l+ps l—p2
I+ po I —p3 I+ p2 l—py
l
o:
P2 b3 b2 2 P2 P3
Thzv2 ) JHs TH2v2 ! JH3 T
TH2v2 JHs
(a) (b)
()
Fig. 3 Examples of box diagrams that contribute to the 77 J J correlator
P4

Tmv Py . JH4 THivL P > -])4 Jra TH1vL pi 1 ]ji JHa
TH2v2 P2 JHs TH2vs ) Jrs Thr2v2
Fig. 4 Examples of triangle diagrams of the triangle topology
Fig. 5 Examples of bubble TH I+ ps JHs JHa

diagrams of bubble topology

Jlu

ThH2v2

From (7.17), by using the transverse 7 and transverse trace-
less IT projectors defined in (4.7) and (4.6), we obtain the
perturbative realization of the transverse traceless part

(tH (P22 (po) 1?3 (p3)th4 (pa))

= T1, o (P2 g2 (p2) 7l (p3) it (pa)

x |43 s VPR () gy by pa) |, (7.18)
ieG

and then identify the form factors described in Sect. 4.

The computation of all the diagrams has been performed
explicitly and the expression of the renormalized CWT’s sat-
isfied by the form factors of the 77 JJ will be discussed
separately for d = 4, since they are rather involved.

L+ p2+pa

s

THivy Th2v2

7.2 Divergences in d = 4 and renormalization

We have computed the explicit expressions of the form fac-
tors in Sect. 6 and classified the divergent ones, that coincide
with the list given in Table 6. As already mentioned, their
expressions are finite at d = 3. Here, in this section, we
focus on the analysis of the structure of their divergences in
DR atd = 4. Atd = 4, from Table 6, we expect that the form
factors multiplying the tensorial structures with (2§, 2 p) and
(39) are divergent. We actually find, form the perturbative
calculations, that the divergent part of the transverse trace-
less component is written, after some manipulation, as

(tll-l Vi gH2 Uzjm j;u )div

e 4Ny + Ny)

— 1-[(4—8);41V1
1272¢

(4—¢) pava
a1p1 Hotz

B2 a3

()
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T b l+pi+p2 bi g Tran iy 1+ ps+ps b1 Jha
l+p2 L=ps l—p2 l+p3
P: P3 P2 P3
Tuava 7 Ja THavs 7 Jhs
e [N I+ps+m L Jh T P l+p2+pa Ul s
I+ps L—p l=ps L+ p2
1 1
P2 s P2 Ps
T=
Tuava Jhs rzvz Jua

T

Trzve

T Jhas

T

v THzve

Travs ""
Fig. 6 Diagrams with fermions for the 77T J J correlator

x {5a1a25ﬂ1/32p§14pit3

_ 450250308 pfl)pgm + 48a1a28a3a4p§ﬁ1 PfZ)
_ 48a1a28a4(ﬁ2 pgl)pzm 28029 8a4ﬂ2pfl pgtl
+ 28193 5oabi pfz Py’

_ 21751 péiz sonas gy _ 2pf2 p§518a1a48a2a3

+(s— p% 4 pi) |:230!1(01430t3)¢125ﬂ1[52 _ %501025&}325&3&4] }’
(7.19)

where Ny and N; indicate the number of fermion and scalar
families respectively, that are arbitrary. The projectors IT are
expanded around d = 4 as

l—[(4—8)u1v1 — H(4)M1V1

a1 B a1 B (7.20)

e
_ 5 ”Mlvl”mﬁl + 0(82)

with TT® the transverse traceless projectors defined in (4.6)
with d = 4.
The counterterm vertex is

(T,LHVI TM2U2JM3 J’”)count

1
- Z Ny Bc(I) Vﬁz'vmvww“(m,l?z,p37p4), (7.21)
I=fs
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P I+p1+p2 g T 2% L+ps+pa Jua

b\l’i \1‘.1

l+py l—ps I=p2 L+

Y Pa =~ ¥
Travs ; s

Tmn T
Thava T

T T
iz Thave

et

THzvs

v
THn L+ps

where

4
V}{f;‘”“mm““(m, D2, P3, p4) = 4[ d%x Hddxk

k=1
84 (\/g Fz) (x) ei Zj DjXj
8g,LL1v1 (xl)agu.zvz (xZ)(SAua (x3)8A;l.4 (X4) 55
= [\/gFZ]ulvmszsM
(1, p2, p3, p4) 8(p1 + p2 + p3 + p4), (7.22)

where we will henceforth adopt the notation [. .. ]#*Vi- -
to indicate the functional variation with respect to metrics
8u;v; and gauge sources A, ; in the flat limit and transformed
in momentum space. From this counterterm we can extract
its transverse traceless part that can be written as

(tulvltuzvzju3ju4> (4*5)111”11—1(4*5)#2”2

= M3 o 4
count — Halﬁl 0(2/32 nag, T[om

8
x| = 2 SBN
I=s,f
_ 48a1£x28a3(52 pfl)pgm 4 484192 59304 pgﬂl pfz)
_ 450122 524 (Ba plgl)pf 425029 50!4/321,51 pgll

{5a1a25ﬂ1ﬂ2 pgﬂt PT

+ 280(10(3 80(4/31 pfz ng
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Fig. 7 Diagrams with scalars that contribute to the 77T J J correlator

_ 2pfl p3/32 80[10{3 80[20[4 _ zpf

Zpgl 80(10(48(120(3

+ (s — P% + pi) |:25a1(a48013)0125f31ﬂ2 _ %8“10‘2651}9280‘30‘4] }7

(7.23)

where s = (p1 + p2)*. From (7.19) and (7.23) we notice that
the divergences are removed with the choices

&2

Be(s) = 5e 3

e
Be(f) = A

(7.24)

It is worth mentioning, as expected, that these are exactly
the same choices that renormalize the 2-point function (J J)
and 3-point function (T T J) as well as all the other n-point
functions involving two conserved currents.
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Furthermore, the counterterm contribution satisfies the

constraints

Pluy (TM " (p1 YTH2"2 (P2)JM3 (PS)JM4 (P4))count

= [2 P23, 8" 2 (TYM (py + p2)J™3 (p3) T (pa)) count

— p2"N{(TH22 (p1 + pp) I3 (p3)JM4(p4)>counti|

+ 2{ |:5V1(M2p;2)<.]”3([71 + p2+ P3)Jﬂ4(p4)>count

— 828" pa; (M (1 + P2+ p3) T () count

1
+ 58" pa, (JM(p1 + p3)TH22(p2) J™ (D)) count
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1
— EP;I <JM3 (p1+ p3)TM2v2(p2)JM4(P4)>count:|

+ [(3 < 4)“,

where

(7.25)

<]M3 (P3)]M4 (p4))count

1
== > =N /ddxddx3ddx4
I=s,f €

( 82 F2(x)
8 A5 (x3)8 A, (x4)

) o' P3X3Fipaxs

4
=- > -BDN [8“3“4<p3~p4>—p53p§‘4]
I=s,f €

(7.26)

is the counterterm 2-point function of two photons when
p3 = —pa. It is the counterterm of the photon self-energy
at one-loop with intermediate scalars and fermions, as clear
from the sum over s and f present in the equation above.

It is worth mentioning that this counterterm renormalizes
the 2-point function (J J), perturbatively expressed as

2 2(d —2)Ns + Ny
(I (=pa) I (pa)) = ¢ 4;)2 a1 [8“3“4175
- pi“pi“‘} Bo(p}), (1.27)

with By( pi) denoting the scalar (bubble) 2-point function,
where the divergent part is extracted in DR as

e 4N;+ Ny
2472 P

2 3
x [8”3“4[74 _ pflnpff{l-

(J3 (= pa) T* (pa))aiv =

(7.28)

Coming to the trace Ward identities, we also have

8o (TP (p1)TH2V2 (po) JH3 (p3) J ™ (pa)) <™

=2[g F?]"*""" (pa, p3, pa)

—2(T"*" (p1+ PZ)JMS (173)-]“4 (P4)) count - (7.29)

At this point, having identified the anomalous conserva-
tion and trace WIs satisfied by the correlator, its renormalized
expression is given by

(T (p1)JH3 (p3)J"*(P4)) Ren
= (T (p) I3 (p3)I" (pa)) fin

+ (T (pl).//”(p3)JM4(p4))anomaly (7.30)

@ Springer

where the anomaly contribution is given by

<TM1 V] (pl)_]'“3 (p3).l'u4 (p4)>anomaly

Hivy
= Y a0 TSP g 03D
I=s,f

These direct computations are performed with no reference to
the reconstruction procedure into transverse/traceless, trace
and longitudinal sectors introduced in the previous sections,
that allows the identification of a minimal number of form
factors.

7.3 The reconstruction of the renormalized correlator from
the transverse-traceless sector

Once we have removed the divergences from the transverse
traceless part, we are able to reconstruct the entire correla-
tor. The transverse traceless part, after the renormalization,
acquires an anomalous contributions, with an anomalous
dilatation WI satisfied by the corresponding form factors.
The longitudinal part, instead, is affected by the presence of
the trace anomaly. In this section, we are going to discuss
this point in more detail.

The renormalized correlator is given by

(T (p)TH2%2 (p2) J*3 (p3) J*4 (pa)) Ren
= ((T’“”1 (pDT""2(p2) "3 (p3)J"4(pa))
(T ()T (p2)J ™ (p3) " (p4))count )

= (THY (p)TH22(p2) J*3 (p3) J*4(pa)) fin

+ (TM]V] (PI)TMUZ (PZ)JM (P3)J“4 (p4)>an0maly7
(7.32)

d—4

where the bare correlator and the counterterm are re-
expressed in terms of a finite renormalized correlator not
contributing to the trace Ward identity, and a second part
which accounts for the trace anomaly. In order to show this,
we consider the first term in the longitudinal part of the cor-
relator in (4.11), for which the divergent contribution is given
by

(tl’f)ivl TH2V2 JH3 JH4Y o

_ <Igllvll’lﬁ1 T ”/:;vi(ﬁl)aalm) (TU1BI TRV 13 Jay

=Zy" {[2 P23, 842 (TYDM (py + p2)TH3 (p3)J*4 (pa))ai
= p2%UTH22 (py + p2)JH3 (p3) 14 (P4)>a’iv:|

+ 2[<5"‘(“2p§2)<1“3 (p1+ P2+ P3)I"4 (P aiv

— 6412672013 pay (I (py + p2 + p3) T (p4)) div
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1
+ 583 (T (p1 + p3)TH22(p2) T4 (p))ain

1
- Epgl (JH3 (p1 + P3)T“2”2(P2)J“4(P4))div>

(o))

7-[//«1”1( )
—2 TPV piava () 4 p) I3 (p3) I (pa))aio-

e (7.33)

By adding the counterterm part, we are able to renormalize
this expression, and taking the limit d — 4 we find

v v
(tl;:zl' : TH2" JMS JH4>Ren = <<t[l:)1L ! TH2" JH} J’”)div

+ (tl/j)l‘w TH22 JHs JM4>(rount)

d—4
— (#P1VEpovy g3 pugy (d=4)
_<tloc T JET )fin

(T s e S (7.34)

anom »
where the anomalous part is explicitly given by
T

= {157:4) p [2 P23, 841 H(TM (py 4 p2) I (p3) M4 (P4)) anom

- pzal <T#2V2 (p1+ PZ)JM (P3)JM4 (p4))anom

+ <5/1.3a] P3x <J)L] (p1 + pS)TILZv2 (pZ)J#A (P4))anom
- P;l (]H3 (p1+ P3)T“2v2 (pZ)JM4 (p4))anam>
+ (8#4‘11 P4y (J)Ll ([71 + p4)Tﬂ2U2 (PZ)JM (p3)>an()m

- pz‘fl (J}M (p1+ I74)TMZU2 (pZ)JMB (P3)>anom>:|

T
3

PP
3

(T2 (py + p2) "™ (p3) ™ (P))anom

[V P55 i ) (735)

and where the (T'J J) 4nom 3-point function is given in (7.31).
We make this contribution explicit by using (7.31) to obtain

HIVirpovy g3 g4y (d=4)
<tloo T JHT >anam

§o1 (12 )i (p1 + p2)
3

= B¢ {Zédl=4)mm [2 P21,

w T2 (p1+ p2)
3

. 722 (pa) <8“3°“
3

[F2]"" (p3, pa)

-m [F2]" (p3, pa)

Py
pan [P (p1 + p3. pa)

— p$ [P (1 + s p4))

712" (pa) 2
— 844 pa [F21™" (p1 + pa. p3)
TP (s, o+ p4>)}

) TV (pr) T2 (p1 + pa)
3 3

[F2]"" (p3, pa)

T (p1)

+2 3 [Vg F2]"2" (py, ps, p4)}y (7.36)
where we have defined
Be=| D B (1.37)
I=s,f
Then, the second term in (4.11) is obtained from

(Trvigf 22 gus nay =3 ith the replacement (1 < 2).
Similarly, one writes the last term (#;o¢tj0cJ J )anom» aS pre-
sented in Appendix C, in order to write the entire anomalous
contribution given as

(THIVITH2V2 J13 Jﬂ4)(d=4) _ <IIF;ICV1 TH2V2 Ji3 J#A)gf;:l)

anom
2 i ) e g 4t
= (Tﬂlul TH2v2 13 JM4)O—residue
(TR g gy (7.38)
In this expression we have defined
<TM1V1 TH2v2 Ji3 JM4>pole

H1vy
= Bc {QJTT(M) ([\/g F2]M2”2H«3M4(p2’ D3, pa)

T2V (p1 + pa) U3M4
R [

7-[“2”2( 2)
— P ([\/§ F2)S by, ps, pa)

T (p1 4 p2) [k
) ]

THIV(py) TH2V2(p2)

+27— . [Fz]m’“(pz,m)} (7.39)

+2

with the properties

6#[”:‘ <TM1V1 TMZVZ JHS JlM)pole

=2B¢ ([«/? F2)Y 1 (p ), p3, pa)
it (pr + p2) Mt
TR [a] ),
pm<Tli1V1 TMZVZJMS J;M)pole

2Bc 7Y (pj) i
= S (VB P i s pa)

THVi(p1 + p2) 1344
—# [Fz] (p3. pa) ),

(7.40)

(7.41)

where i # j € {1, 2}, and the O-residue term, instead, is
written explicitly as

<TM1 VLT H2V2 JHS JH4 >07residue

- 2
= Bc {Ié‘f_4)ﬂlv' s (g P2, 812 (p1 + pa)
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1 K34
—3 P2 P2 (p + P2)> [FZ] (p3, p4)

2
—{—I(d 4) pava [HIVI (_ Pl Salaznﬂlkz(p] + p2)

afri \ 3

1 ey
—51?1“2 7P (py +pz)) [Fz] (P3, p4)

+I§?=4)MIWI‘§§=4) K2V gorion P2y P2oa
AA2
72 (p1 + p2) H3ma
x L [P (s, p4)}, (7.42)
with the property
Wi Vi (Tﬂ]vl TH22 JH3 Jﬂ4)07residue =0, (743)

1)
Pl <TM1U1 THav2 gis Jlu)O—residue
2
= Bc {Hgf,gi (5 P25, 81274 (p1 + p)
1
—3 2" P2 (py + Pz)) [F2]" (p3. pa)

THR (py A+ pa) Mk
— [F ] (1737114)},

Pluy P2us (THWITH2Y2 JH3 JR4) o osidue

MR (py + po) [ ]HaKe
f[l’} (P3, pa) -

+ s P2x; Plxy

= ﬂC {61}10{2 P2xy P2x,
(7.44)

These relations show that the anomaly part of the action sat-
isfies the conservation Ward identity

Pl (Tﬂlvl (PI)TMZVZ (pZ)JM3 (PS)JlM (P4))anom =

= [2 P2, 8" (T (py 4 p2) TP (p3) T () anom
— p2"(TH22 (p1 + p2)J 13 (p3)Ju4(p4)>an0mi|
+ {[5’“”1 P (M (p1 + P T2 (p2) ™ (pa)) anom
—p3 (I (1 + P3)T“2”2(Pz)J“4(P4))an0m]

H[a=])

and the anomalous trace Ward identity

(7.45)

;1.11)1 (TMIVI (PI)TMUZ (PZ)JM (P3)JM4 (P4))anom
= 8y (TP (p1) TH2"2 (p2) I3 (p3) T (p4)) pote

=2pc ([V& F1"™"" (p; p3. pa)

[7%3%
_w I:FZ:IMSM4 (p3, p4)) . (746)

3

Therefore, the anomaly part of the correlator satisfies the
conservation WI by itself. A direct, explicit computation of
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the diagrams allows to check these relations for d = 4. The
explicit anomalous conformal Ward Identities satisfied by the
single form factors of the decompositions will be discussed
elsewhere.

8 4-Point functions from anomaly induced actions

In this section we turn our attention towards a study of the
same correlator using the formalism of the anomaly induced
actions. Actions of these type are variational solutions of the
anomaly constraint.

We denote by S4[g] the functional identified by the integra-
tion of the trace anomaly

8 Salgl
88w (x)
This functional is obtained by a Weyl rescaling of the metric
guv(x) = X g, (x), to give

Iy (8.1

=\/§[bC2+b’E+,3cF2]

Salgl = SIg1+ A S[4, g1, (8.2)
such that its conformal variation
2, 254181 _ 0 Sale] _ 8(ASI9,3])
M Sguw () T 80 () |, peeg 8 (x)
= va[bcr+5 B+ pe ] 83)
g=e¥3g

is the anomaly. The explicit expression for AS can be
obtained after the integration of (8.3) along a path ¢(x, 1) =
Ap(x)withO <A <1as

5 (AS[4. 8]
AS dx / dn ‘
[p. 8] = / Sp(X)  lpgn

/d4 / dk[ (bCZ—s—b/E-i-ﬁch)} ).
gzez‘/;(hz)g

(8.4)

dP(x, 1)
A

After the integration AS is written as
_ _ 2 - _

AS[¢, 31 = b’ f d*x \/§[2¢ Rugp + <E - §DR>¢]

+ / d'x \/E[b C?+ Be Fz}b,

8.5
up to terms which are o independent, i.e. conformally invari-
ant, and hence do not contribute to the variation (8.3). In (8.5)
we have defined the fourth order operator A4 as

2
A4 = Vﬂ- (V“V” + 2R#U - §R gl“})

V, =2 +2R* V,,V,
2 1

—SRO+ 3 VIRV, (8.6)
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In order to obtain a nonlocal form of the anomaly induced
action, one can impose a condition x (g) = 0, such that the
relation x (g e~2%) = 0 is satisfied. From this condition one
solves for ¢ in terms of a function of the metric, mainly
¢ = X(g), such that

- _ § .
guy =€ 228 8uvs gaﬂ(S_ guwlgl=0. (8.7)
8ap
Thus the conformal decomposition is expressed as
Slgl = Slgl + Salg. B(g)] (8.8)

Salg, =(9)] = fd%@[b’(/;—%ﬂk)ﬁ

+ <b C? + Be FZ)E —20'% A4E] (8.9)

where S [g]and Salg, £(g)] are its conformal-invariant and
anomalous parts respectively. There are two distinct exactly
solvable conformal choices in4 D, in which the gauge param-
eter X (g) can be calculated in a closed form, as a functional
of g. They are discussed in [45]. One is due to Fradkin and
Vilkovisky (FV) [46]

xFrv(g) = R(g) (8.10)
with
Try = —In <1+é(D—R/6)1 R) (8.11)

where (CJ — R/6)! is the inverse of the operator (] — R/6,
playing the role of the corresponding Faddeev—Popov oper-
ator. Another choice is due to Riegert [47] with

2
xr(g) = E(g) — §D R(g), (8.12)
for which

1 2
SR=7 (Ag)~! <E — gm R) , (8.13)

with (A4)~! the inverse of the operator in (8.6).

8.1 Variation of the anomaly effective action

In general, the two choices of ¥ should be equivalent, giv-
ing the same result when the action is varied with respect
to the metric. In order to see if this is the case, we expand
Salg, X(g)] around flat space by the simultaneous expan-
sions of the metric g,., the gauge field A,, and the local

factor X
v =gl(93+gl§1v)+g,(123+-~Emv+hw+hﬁ)+'~
(8.14a)
A, = A,E?) + A/(j) + AEE) + .. (8.14b)
=3O y®O @4 .. (8.14¢)

The local effective action from (8.9) is then written at the
first order in h ), as

SVg, 2(e)] = Be f d*x F2 M (8.15)

neglecting the terms that are pure gravitational. We are
assuming that £© = 0 as we will prove it in the next sec-
tions for the two choices of the parameter X. The first order
in the fluctuation h,, of the expansion is related to the struc-
ture of the 7' J J anomaly contribution. In order to extract the
contribution to the 77T JJ we need the second order in £,
given as

SPlg. £(9)] =ﬂC/ d4x{F22(2) +(¢§F2)(1>2<1)}.

(8.16)
8.2 The Riegert action
We consider first the Riegert choice, for which
1 2
@A42R=Z(E—§DR), (8.17)

where we have used the relation on the Green function of the
Ay4. Expanding (8.17) and taking order by order in the power
of the fluctuations we determine the relations

=0 =0,

11
1 _ (1)

2 =—— — RD,

R 6 O

11 11 1

@ _ ®) %) M)
2 - —_F - — A — R
11

L1 0; RD — -~ — R,

8.18
63 6 Do ®19)

Substituting this expression into (8.15) we obtain the contri-
bution to the T J J as

SVle. Tr()] = Be / ity P2z

/30/ a2 L op
=—— [ d°xF*— R,
X |:|0

. (8.19)
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while the second order term is expressed as

SVl Zr(@) = fe [ d'x ((ﬁ PO + P ED)

=,3C/d4x(

1
FZ E(Z) FZ
it Emt s

([ FZ)(l) R(l)

(\FA )(1) R(l)

1 1 1

2 (1)
— OyRY - ZF?2 —
! 6 Oo

1
4
1
g (8.20)

R<2>)’

and by using the expansion of the Paneitz operator A4

1 M

(VEhn" = (/gD + 29, (R™ - Je R) 9,
(8.21)

with

(VgD = (g P0y 4+ Ty Oy (8.22)

and integrating by parts we obtain

SP1e. Za1 = - [ ats [aty
1 1 1 1
_ FHM [ R(l) _ - F2 E(%)
{ 3 (\/é7 )X DO ! 2 D2 ) X
- XX
1 / 4. n |: 2 ( 1 )
-5 | dX"|2F | = Au | R
3 5 o (
1 [¢)) 1
—ZptvR 9 R(g/)
377 >x Y <Do) e
1 1 1
w7 (5), o (5).. ]
*\Oo xx! “\ Oy o
1 P2

Lol @ 1o M (1)
3 X<Do>“R t3h (Do) (Ve) "Ry }
(8.23)

J’_

In the expression above, the three terms affected by the Green
function of [J? identify logarithmic contributions which can
be correctly defined only by the inclusion of a scale ur, in
order to define their Fourier transform to momentum space.
Indeed they can be correctly transformed to momentum space
only in the presence of such cutoff. Obviously, one would
expect such cutoff to disappear from the final expression, in
such a way that the correlator satisfies, in its anomaly part,
the same WIs valid for the anomaly part of its perturbative
realization.
In momentum space, we obtain

(THY (p) T2 (p2) I3 (p3) T (P4)) Mo

1
= 2/30{ 3 [Vg F2)“""" " (py, p3, pa)m#2”2(pa)

1
+ 5 [VE P o, pa, pa)at ™ ()
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1
[F2)" (p3, pa)G(p1 + p)[ET“12"2 (py, p))

1
(p1+ p2)?

— Z[F?)"" (3, PG (p1 + p2) (p1 + P2)u

2
1
+3 [F2)" (3. pa)
2
3
2
3
1

[R]:LLIVIMZVZ (p] , p2)

1 H1vy
R — <R[ (p1) pay w2 ()
[F2]*"*(p3, p)G (p1 + p2) (P1 + P2

1 2V
x | RMY — —n’”R] (p2) prv 7" (p1)

1
_ F2 M3u4( , pa)——————
[+ P3P+ )2

3
[[51]“”1 (p1, p2)7"2"2 (p2)
+ (O] (p2, pr)mt™ (pl)}

+ [FZ]MSM4 (p3’ P4) |:P2 SHIVL nll«zvz(pz)

(p1+ p2)?

2
+%5M2V2 VI (Pl):| } 5@ (Z Pi)
i

W =

(8.24)

where G (p) = clog(p?/ ,u%) as pointed out also in [48-50]
and we have used the relations in Appendix F.

One can easily figure out that the wr dependence in the
sum logarithmic correlators does not cancel. As we are going
to discuss next, a similar problem emerges in the case of the
FV gauge. This, as we are now going to clarify, indicates
an inconsistency of the expansion around the flat spacetime
limit.

Indeed, a closelndeed, a close look at (7.45), the hierar-
chical equation of the conservation WI, relates on the lhs a 4-
point function which remains logarithmic even after an ordi-
nary differentiation, to 3-point functions on the r.h.s. which
are not, and are correctly described by the two anomaly-
induced actions that we have considered.

In the case of the Riegert action, therefore, this shortcom-
ing appears to be related to 1/J% terms.

This could provide an indication that these types of action
do not allow a consistent expansion starting from the quartic
order.

8.3 Fradkin—Vilkovisky gauge
We consider then the Fradkin Vilkoviski choice for which

1
EFV = —IOg <1 + 6GD_R/6 R)

oo
1
k=1
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In order to obtain the first and second order contributions in
hy,» with this choice we need the relations of expansion of
the Green function of the conformal Laplacian. These are
obtained considering

R f 8 —x")
<D — g)x GE_R/ﬁ(x,x ) = —m s (826)

and expanding and collecting the terms order by order we
obtain

1 1 1

1
1) — ()] 1
G =—— [JgOW® — R

) (8.27)
where the dependence on variables has been omitted for clar-
ity. Still, it will be written explicitly later when we consider
the explicit expressions of the expansion of the effective
action order by order around the flat metric. With these results
we use (8.25) to get

©) () I
Ypy =0, Xpy = _8 D_o RO,

11
5@ = —— —R® + [\/—D]m R“)

6 o

11 1
By R<‘> 8.28
233O O (8.28)

It is worth noticing that the two choices are equivalent at the
first order, indeed

=9 == (8.29)

and then the anomalous contribution to the three point func-
tion 7' J J is the same by using one choice or the other. Indeed,
we obtain

SVe, Trv(9)] = SV lg, Tr(9)]

_ ﬁcfd4 2L 1 RO,
6 Do

showing the equivalence of the two choices at the first order.
At the second order, by inserting (8.28) in the expansion
(8.17), we have

1
SPlg. Sy (g = — P / d*x / a L ygFHP (=) RY
6 O ! X
1
F2 R(%)
* (Do) *
an| 1 of 1 m (1 )
e GE(s) & (5) R
12\ G, 0o )
1
_p2( L M Rq) ,
X(Do)x wveal? (5 R

noticing that at the second order the expansions with the two
different choices of ¥ give distinguished results, and they

(8.30)

(8.31)

differ for terms like

1
SPlg, Trv(@)] — SPlg, Tr()] ~ =

2
F2 1 E®@ 4 ...
X |:|2 x’
0/ xx'

We compute now the contribution of the anomaly effective
action with the Fradkin Vilkovisky gauge, to the 77 JJ in
momentum space. From (8.31) and by using the variations
in Appendix F we have

(8.32)

(THY (p)TH2"2 (p2) I3 (p3) I (pa)) BV =
§ﬂc {[(ﬁFz)]“2”2“3“4(p2, p3, p)TM (p1)
+ [(gFH]) " (py, p3, paT 22 (p2)

+[F?]"*" (p3, pa) ([R]”l”‘“z”z(pl, )

1
(p1+ p2)?

1
+ E(p% + pHmrm (pl)ﬂ“m(m))

1
_ W34
L Y s

([@D]Mlvl (p1, P27 (p2)

+ V& O]"*" (pa, pr)mh™ (p])) } (8.33)

One can check by explicit computation in momentum space
— in this case the expression is transformable by the Fourier
integral — that the anomalous trace Ward identity is no more
satisfied. Indeed we have

(S,ulul(sp,gvz (Tﬂlvl (PI)TMVZ (PZ)JM (P3)JM4 (P4)>an0m

2
_ e { [F21" (p3, pa)

9 .
3 (p1-p2)

1
(p1+ p2)? <

3
- Z(p% + p%)) —3[F2]"*" (ps, p4>}, (8.34)

contrary to the expected result (7.46). This is, obviously, at
variance with the trace Ward identity satisfied by the anomaly
contribution coming from the perturbative expansion dis-
cussed in the previous sections. In the case of the FV action,
such Ward identities are expected to be expressed only in
terms of hierarchical equations involving only the 3- and 4-
point functions identified by the same action.

This result raises some important issues concerning the
consistency of the flat spacetime limit of such actions. Notice
that the FV action also introduces a conformal decomposi-
tion related to a logarithmic conformal choice (8.25). The
corresponding expansion, in FV, is also essentially deprived
of a physical scale, although it is possible to formulate an
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explicit expansion of such gauge conditions in terms of the
dimensionless combination RC1™!.

9 Expected expansion

In this section we show what is the expansion of an effec-
tive action that reproduces the anomalous contribution of
the (T'TJJ) calculated perturbatively. The expression in a
covariant form of this non-local effective action, that will dif-
fer from Riegert and Fradkin—Vilkovisky ones, is currently
under investigation and will be presented in a later work. The
result we are going to discuss comes from the explicit calcu-
lation of the anomalous part of the correlator (TT JJ) per-
formed in Sect. 7.3. In particular we write the correct expan-
sion at the second order in curvature of an effective action
that reproduces (7.38). We find that at the second order in
the metric fluctuation, the desired expansion of the anomaly
effective action should be

Bc 1
=22 [t e | ar (£) a0
6 ‘:l() xx/
+ 2 ( 1 ) R®
o x
+/d4x”[F2(i) @) (i) RY)
* I:l() xx/ I:l() x'x" *
1 1 1
__F3< ) R (_) RY
6 D() xx/ DO x'x"
1 1 1
;“( ) Ff,(—) Rf}?“. ©.1)
3 DO xx’ ‘:lo x/'x"

The contribution to the anomaly part of the (77T J J) of this
expansion in momentum space reads as

+

(THY (p)TH22 (p2) J* (p3) IH (pa) ) anom

2
/;3(:{ \/—Fz)mvmwét(pl D3, P4) 2[R];szz(l?z)
2

1
+ (Vg FH)"M221314 (py | b3, pa) po [R1“" (p1)
1

+ [F?1#3"4 (p3, pa) [RI#1V1E22 (1| po)

(p1+ p2)?

[R]*1V! (m)— [F2]4314 (s, p4)
p] p2

5 [RI"2%(p2)

U-)IN

+ F2 M3 144 ,
[F2174 (p3, pa) (p R

[R]’””z(pz)
Pz

[[ 11 (pr, p2)—

+[O11#2"2(p2, p1)—
i

[R]’“”' (Pl):|
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1
— — [F?1M314 (p3, pg) ———
6 P3. b4 (p1 + p2)?

— [RV2"(p2)
1

4
IRV (o) —5 R (m)} }8(‘“ (Z m) .
p3 i—1

9.2)

[[1’?]‘“”1 (p1)

Using the expression of the functional variations in momen-
tum space given in Appendix F, we write

<TM1U1 (Pl)vaz (pZ)-IM3 (P3)JM4 (p4))an0m
= <Tm VITH2Y2 JH3 Jﬂ4>07residue
+ (T/AIVIT/A2V2JII«3 JlM)pole + <Tl/«1V1Tl/«2V2Jll3 J/M)inv
9.3)

where the first two terms are exactly those in (7.39) and
(7.44), and the last term is a Weyl invariant term written
as

<TM1V1 TMZVZ JHS JM4>inv

80510!2 [2 ﬁZ ,51
(p1+ p2)?

—sb1P ((m +p2)* = pr- pz)] [F2]/354 (p3, p4)} :
9.4)

1
= e T (DT (o) {

and it does not contribute to the trace anomaly part. In prin-
ciple this Weyl invariant contribution can be removed by an
inclusion of a Weyl invariant term in the effective action. It
is worth mentioning that the expression derived satisfies cor-
rectly the conservation and anomalous trace Ward identities.

10 Conclusions

In this work, we have performed an explicit computation of
the TTJJ correlator using a free field theory realization.
We have identified the general structure of the correspond-
ing form factors in its tensorial decomposition. In particular,
we have implemented a method that simplifies their number,
exploiting the momentum dependent degeneracies in combi-
nation with the classification of their orbits. The approach we
presented is general and will be applied to similar correlators
in future works.

We have used this correlator to investigate the structure
of the anomalous CWIs satisfied by it and compared the
results with the analogous prediction for its anomaly part, as
identified by the anomaly-induced actions. Such actions are
expected to reproduce the anomaly contribution to all orders
in the external gravitational field. Indeed, this has been veri-
fied in the case of 3-point functions for two special choices of
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the conformal decomposition of the background metric that
generate two different types of anomaly actions.

Indeed we have shown that, for 3-point functions, the two
actions of Riegert and FV type are both in agreement with
the perturbative analysis, once that we have isolated from the
perturbative correlator its anomaly contribution.

As explained in the previous sections, this separation is
uniquely defined since the anomaly part of a correlator is
identified by the condition that (1) it reproduces the anomaly
contribution in the hierarchy and (2) it is separately con-
served. In other words, such part satisfies anomalous CWIs
while the non anomalous part satisfies CWIs which are ordi-
nary (non anomalous), and both parts are separately con-
served.

As we move to 4-point functions, our analysis shows that
the conservation WI for the anomaly part should be modified
by an additional traceless contribution (that we have called
the “O-residue” part). In other words, at the level of 4-point
functions, the anomaly part of the correlator is not just iden-
tified by the sequence of pole-like contributions, which are
part of the trace WIs, but also by a traceless part. This allows,
again, to separate the correlator into two parts, separately
conserved and satisfying, again separately, anomalous CWIs
and ordinary CWIs, respectively, as for 3-point functions.

These analyses demonstrate the important role of free field
theory realizations in extracting such information, which is
not a priori predictable from general considerations in this
class of theories. This point has been first noticed in a previ-
ous analysis of the anomaly contribution to the TTTT (4T)
[3].

In the case of the 4T correlator, that we hope to investigate
in the future by similar methods, such (O-residue) part could
be identified by the € expansion of the counterterms é VE and
éVCz, without the need to determine the entire structure of
the correlator. Indeed, one only needs to perform a consistent
decomposition of the counterterms up to O (1) in € to achieve
the goal.

We recall that the anomaly, in DR, comes for the
expansion of Vg c2,p2 up to O(e), which in flat space
is polynomial in the momenta. The application of the
transverse-traceless/longitudinal/trace decomposition, intro-
duced in [7], has allowed extracting such O-residue term
from the finite part of the counterterms, indicating that such
terms are essential in the definition of an anomaly action
defined directly from the perturbative expansion. Therefore,
the anomalous CWIs and the conservation WI are both sat-
isfied only if we add to the pole-term contributions such 0-
residue term. The perturbative analysis of the 77 J J that we
have discussed is similar to the case of the 4T discussed in
previous work, and exhibits the same features.

On the other end, our analysis shows that the anomaly-
induced actions that we have investigated fail — at the level

of 4-point functions — to generate conserved anomaly parts,
while they succeed in 3-point functions. At the same time,
as we have shown, they do not satisfy the hierarchical CWIs
that we expect.

The result is puzzling — but rather interesting — since it may
bring under even closer scrutiny this class of actions, origi-
nally introduced as formal solutions of a variational problem.

We also remark that conservation W1Is are associated with
the diffeomorphism invariance, and one indeed expects that
the conservation of the stress energy tensor should hold.
Indeed it does, at least for the correlators of rank 2 and 3.

10.1 Possible resolutions

Our conclusions, given these findings, are open-ended and
call for further investigations of such correlation functions.
One crucial issue that needs to be addressed is if such actions
can be consistently expanded around a flat spacetime — in the
absence of any physical scale in their expressions — beyond a
specific order, without encountering the puzzling behaviour
that we have identified in our analysis. The need to introduce
an extra scale p r in the expression of the 77 J J vertex using
Riegert’s conformal decomposition, is an indication that the
action cannot be correctly Fourier transformed to momentum
space. This is in clear contradiction with the result we have
obtained for the anomaly part of the perturbative 7T J J and
corresponding WIs, which are, obviously, free of any log-
arithmic term. In Riegert’s action, this point is, in a way,
expected, given that the A4 operator is quartic and it has
been noticed before [5].

It is nevertheless remarkable that the action successfully
predicts the behaviour of the TT T, as shown in [2]. On the
other hand, the FV action does not suffer from such short-
comings since it can be transformed in momentum space.
However, the gauge choice (X ry) used for its definition is
formally very involved, being defined as a logarithmic expan-
sion of a curvature dependent Green function. Even though
no scale is present in the logarithm, one may ask if the expan-
sion is justified in the flat spacetime limit, and R (0~ ! is area-
sonable variable that can appear in an expansion. The issues
that we have identified could be related to such intrinsic limi-
tations. The answer to this question may be found by extend-
ing these types of analysis to a curved space, to begin with,
such as to a maximally symmetric space or to other spaces
where dimensionful constants are naturally present.

Finally, one possibility is to proceed with a modification of
such anomaly induced action by the inclusion of Weyl invari-
ant terms. These extra terms can be identified, by investigat-
ing more closely the mismatch between the perturbative anal-
ysis and the predictions of such anomaly-induced actions, as
done in this work for the 77 J J.

In all these analyses, it is obvious that the safest way to
deal with these problems is to proceed with perturbative tests,
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that provide a safe reference for any further investigation of
these issues. In principle, the strategy we have presented can
be extended any n-point function. These important aspects
are currently being investigated.
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A: Ward identities
A.1 Diffeomorphism invariance

In this section, we derive the conservation and trace Ward
identities for the TJJ and T T J J. We start from the invari-
ance under diffeomorphism, for which the energy momentum
tensor has to satisfy

Vll«l (TM1V1> + F'ullfl <JM1> — 0’ (A_])
that can be re-written as
58S §S 8S
20y, —— +2T,}; +F," =0. (A2)
8uiv 88112 8Au,
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Taking functional variations with respect to the gauge
fields we find

24 ( S ) Lo ( s )
i 88111 0A0A,, 1k 88un6A 304,
SF,'  8%S SF,'  8%S

=0, (A3)

0Aus 8Au0AL,  SAu, §AL A,

where we have discarded the terms that in the limit A — 0
does not contribute. Taking one more functional derivative
with respect to the metric and neglecting terms that vanish in
the limit g — & we have

5 < 84S )
H 881u1v108 sy 6 Auz 8 Ay,

Vi

+2 SFMIX < 838 )
88w 8811204304,

82F," 828
“(FAssems) (o)
SA,BSgM,}Z 8Au 8Au,

< m )( 88 )
+
SA,Mng,)z 8Au0A
S
A, §Au18A;1,0815v)
SF, U1 838
+( i )( ):0. (A4)
3Au, 8Ap8A308p50

Then by using the explicit expressions of the functional
derivatives written as

SF,)"
8Fu 1) = (8"Hid,, — 89"y (ALS)
8Au; (xi) lg=5 4=0
82F,)! :
_ e ) = 8y, 8" 025 (shi g,
SAM; (xi)ngZVZ(XZ) g=38,A=0
- 65; ak)axlx,- (A6)

5TV, ()
88 1ov, (X2) g=5

1
=3 <5v1(/t23/1121)3)\ + 5\)1(1125;2)3;“

— sy )a (A7)

with &y, x; = 8§D (x; — x i), we rewrite (A.3) to obtain the
conservation Ward identities for the (T'J J) as

By (THIPT o) JH3 (x3) 14 (x4))
= —[(8"H2 8,y — 8138 )8y ] (T (x1) T4 (x4))
— [(8”1“48m _ Sﬁfaul)sxlm](-lm(XI)JM(X3)>’
(A.8)
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and from (A.4) the conservation Ward identities for the
(TTJJ) reads as

By (T (1) TH2%2 (x2) T3 (x3) I (x4)
= —[(28"102602)8, — 526129 )8y 2 J(T™1% (x1) T (x3) I (x4))

+ {zaxlxz[(avl(ltzsvz)mam _ 5{2?5”'(”23”2))3;(,)(4](]u' ) I (x3))

[(8"17448,, — 811401 ) 8y, J(I ™1 (1) T12 (X3)T“2”2(X2))}
{ (A.9)

+ 3(—)4}.

In momentum space, these conservation Ward identities are
written as

P1, (TH (p1) I M3 (p3) T4 (pa))
= [(5’“”' Py — 813 p3™) (S (p1 + P3)J"4(P4))]
+[3 < 4]
P (THH (p)TH22 (p2) I3 (p3) JH4 (pa))
= (28102532 pay, — 802512 pa" )
(TH™ (p1 + p2) T (p3)J ™ (ps))
+ {2 (sgp8m 0 py) — g2 )

(JHU(p1 + p2 + p3) TH4(pa))
+ (31)1#3173;/4 _ allﬁpéﬂl)

(J* (p1+ p3)J“4(p4)T“2”2(192))} +{3<4}. @I

(A.10)

A.2 Gauge invariance

The invariance under gauge transformation implies the con-
servation of the current

V. (J#) =0. (A.12)
By taking functional derivatives with respect to the metric
and the gauge fields and considering the flat spacetime limit,
we find the conservation Ward Identities for the 3- and 4-
point functions

Bz (THI (1) JH3 (x3) T4 (x4)) = 0, (A.13)
Apua (TH () TH22 (x2) T3 (xx3) T4 (xa)) = 0, (A.14)
that in momentum space become

P3us (THH (1) JH3 (x3) M4 (xa)) = 0, (A.15)
Paps (T (x ) TH272 (x2) T3 (xx3) T4 (x4)) = 0, (A.16)

and similar equations for the contraction of p4,,.

A.3 Weyl invariance

The invariance under Weyl transformation implies that the
energy momentum tensor has zero trace, mainly
gp,v<le) =0, (A.17)

in general d dimensions. Taking functional derivatives of the
previous equation we have the trace Ward identities

8o (TH (p1) T3 (p3) I (ps)) = 0, (A.18)
8o (T (p)TH22 (p2) T3 (p3) JH4 (pa))
= —2(T""2(p1 + p2) "3 (p3) J"4(pa)). (A.19)

Ind = 4, due to the quantum effect, the trace of the energy
momentum tensor acquires a non-zero trace contribution

gu(TH), = [b C’+V E + B¢ FZ], (A.20)

leading to the anomalous trace Ward identities for the corre-
lation functions

B (T (1) (p3) 14 (p) = e [F2] ™ (3, pa),

(A21)
Sy (TH (p1)TH2"2 (p2) I3 (p3) I M4 (pa))
=2fc [@Fz]mvzmm(m, P3, P4)
= 2(T"*"(p1 + p2)J "3 (p3) "4 (pa)), (A.22)

where the functional derivatives of the field strength F> with
respect tot he gauge field are expressed in (F.7) and (F.8).

B: Orbits representatives of the permutations
B.1 General d dimensional case

In this section we list the representative of the orbits for each
sector of tensor structures used to construct the transverse
traceless part in general d dimensions. In particular for the
864 sector we have chosen the two representative

VIV oM LD QU3V] QU4 Y;
8#1#25 1 25/ 3#4, 8//«112813 1514 2

(B.1)
Moving forward, for the 66pp sector we find the following
representatives
p1M3p1“48“1“28V1V2, [71“3 p2M45u1M25V1V2’
p3’“ p1M35M2V1 shavy p3“2p1“3 sHV2gHavL
p3”1 plm(wzvl shave p3“2p1“43’“ V2 gH3vL
],3u11731)1(311218(3#41227 p3”1p3“23m“43v1 v

p%ll«l p3lt25u3v1 Shav
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p3M1p4V15M2M35#4V2’

p3tl pylaghavigiavs

p3M1 p4M28M3V25M4V1 ,

p3mp4#23ﬂ3#45vw2’

(B.2)
and for the §pppp sector we have

P1HS pr 1 gt pahagvive o I3 A sl 2 §VIVY
P13 pott pai patagiive
P1H3 paft pattt pyiagiiva,
plﬂ3p3li1 p3”’2p3vl shav2,
p1M3 p3li1 p3uzp3V25M4V1’
plu4p3ﬂ1p3ﬂ2p3v28ﬂ3ul ,
p1M3p3M1 p3vl p4M28M4U2,
leS p3M1 p3,u2p4])28,u4vl ,
plﬂ3p3ﬂ2p3v2p4#lgll4ul ,
pll/«4p3lﬂ p3l‘b2p4vl 8#3\)27
p1M4P3ﬂ1p3MZ p4v28ﬂ3vl ,
p3tt p3t2 p3¥t p3t2stana,
p3mp3u2p3v1 p4V23M3M4’
p3tt p3t? pa¥t pgsHate,

pll-L3 p2M4p3#2p4ll«18U1 VZ’
P14 p3tt paha paVigHve
plﬂ3 p3l1v1 p3M2P4V1 8IJL4VZ7
114 patt p3™t patt2 8t
p1M4P3M2 p3V2 p4M16M3V1 ,

p3ll-l p3v1 p4/L2p4vZ5u3M4,
(B.3)

Finally, the last sector pppppp is described by the represen-
tatives

p3tt p3t? p1tS pr p3™ ps',
p3t p3"? p1tS pr p3tt pa,
p3ﬂ1p3ﬂ2p1ﬂ3plﬂ4p4vl p3v2’
3" pat? p1t pr p3™ pa?,
p3t! 3" p1'S pi pa¥t pa?,
p3M1p3ﬂ2p1ﬂ3p2ﬂ4p3vl p3‘)2,
p3tt p3t2 p1t pa p3™ pa'?,
p3tt p3t2 pr?3 pat patt p32,
P3M1p4“2plﬂ3p2“4p3vl p4v2,
p3M1 p3“2plﬂ3p2“4p4vl p4V2,

pa™t p3t2 pi3 patt pg™t p3t2. (B.4)

As already mentioned in Sect. 4.1, we directly obtain the
structure of the transverse traceless part through these repre-
sentatives of the orbits. Indeed, one has to consider indepen-
dent form factors times each representative. Then, applying
the permutation operator, one finds the entire structure of
X %124 with the symmetry condition on the form factors.

B.2 The case of d = 4
In this section we list the representatives of the orbits for each
sector of tensor structures used to construct the transverse

traceless part when d = 4 and we use the n-p basis. In
particular for the nnnnpp sector we have chosen the two

@ Springer

representatives

v V. v V. .
p3ﬂlp3ﬂ2n ln 2nll3nﬂ4 p3ﬂ1p4ﬂ2n ln 2nli3nllf4,

and for the nnpppp sector we have

P13 pi patt pstanVinVz,
1" p2tps

P13 poltd pahtt pyHapVig v,
plu3p3M1p3ﬂ2p3vlnﬂ4nv2’

P13 p3"t p3t? p3"2nt4n™,

p1i patt pai p3”2n“3nvl

L Vi,V
llp3/12n ln 27

p]ﬂ3p3ﬂ1p3vl p4M2nM4nV2’
plﬂ3p3ﬂl p3ﬂ2p4u2nll4nvl ,
D1M3 P32 p3V2 pyti eVt
P14 p3tt p3t2 pytntin'2,
plﬂ4p3ﬂl p3:u2p4‘)2n,u3nul ,
P31 p3ha p3Vi patapphts
p3ﬂ1p3ﬂ2p3ul p4U2nﬂ3n,u4’

3P p3t? pat paintint

and finally the last sector pppppp is identified, as in the

1t p1H pat pgentin2,
P13 pat 32 patinin2,
P14 p3t pa#2 paVighapVa
1M p3t p3t2 paVintan2
P14 p3t 3t patentin2,

p1M4p3M2p3V2p4H1nl‘v3nV1 ,

p3M1p3V1p4lL2p4U2nﬂ3nlL4,

(B.6)

general case, by the representatives

p3M1p3M2p1M3p1H4p3V1 173‘)2,
p3tt p3t2 p1#3 p1H pgtt p32,
p3M1p4M2p1M3p1M4p3vl 1741)27
p3tt p3t2 p113 pyttd p3¥i p32,
p3M1p3M2p1M3p2M4p3V1p4v2’
p3"! pat? p1*3 pat p3¥t pa?,
p3/41p3”v2p1ﬂ3p2ﬂ4p4v1 p4V2,
p4l‘v1p3#2p]#3 p2#4p4vl p3v2;

B.3 The case of d = 3

In this section we list the representatives of the orbits for each
sector of tensor structures used to construct the transverse

traceless part when d = 3.

Ijllf’“:;I)l/1'41)3!/'«1173//"2173‘)1173\)27
173 p2t p3tt p3#2 p3tt p3'2,
P1M3p2u4p3ulP3U1p4M2p4v2,

P13 2t p3h? 32 pytt pg ™t

p?ﬂl p2ﬂ2p1ﬂ3 pll/v4p3vl p4U2’

p3/'LI p3ﬂ2p1ﬂ3 plﬂ4p4vlp4v2’

p3M1p3l/-2pll/-3 pzl/-4p4vl p3‘)2’

(B.7)

pl“3plu4p'%“lp3ul p4/l~2p4\)2,

(B.8)

(B.5)
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C: More on the reconstruction

In this section we derived the anomalous part of the correlator
after the renormalization in more detail. From (7.36) we have
computed the (t75¢ T J J)anom part of the correlator after the
renormalization as

VL grpoavy i3 g\ (d=4)
(ll()c T JBJ )anom

s (2 v)ri (py 4 py)
3

= fc {Ié‘f=4>”‘”l [2 P2, [F2]" (p3. pa)

T (p1 + p2)

— pat B PR [P (s )

7h2"2 (py) A
S — 845 pa [F21™ (p1 + p3. pa)

=5 [P (p1 + ps. p4))

7-[”'2‘)2( 2) A
% 814 pay, [Fz] " (p1 + pa. p3)

-y’ [Fz]m“4 (p3, p1 + p4)):|

_ o T (1) T2 (p1 + p2)
3 3

T (p1) 2 H2V2I3 L4
—_— F ’ , D3,
3 Ve F’] (P2, p3» pa)

= Bc {I(d=4)l/~|u| |:2 I (50[1(1“7'[”2))Ll (p1+ p2)
- o Al

[F2]"" (p3, pa)

+2

3
A + T2V
_ (p2+p1) (p2) [F21" (ps. pa)
3 3
TH2V2 + TH2v2
B pz“l( (1;1 p2) 3(172)) [F2]°" (ps. p4)}

_ 22 (py) a1Biuspg
+ 2y TP g (2 Ve P

(1, p3, p4a)

2 ey
—gn“‘ﬂ‘ (p1+ pz)[Fz} (p3, p4)>

_, M (p1) TR (p1 + p2)
3 3

aHV (py)
2 [Vg F2]"2"" (pa, p3, pa) |

[FZ]M#4 (p3, p4)

(C.1)

where we have considered the relation

T (py + pi) T2 (p2)
3 3

Ty [2 P2, [T 3. o)

TH2V2 (p2)
— ™ — [Fz]ﬂs;u (3, pa)
22 (p2)

3

- p$ [FH™ (o1 + pas P4)>

22 (pa)
3

= [F21" (psapr + p4)>}

A
(8’““‘p3xl [F]"" (p1 + p3. pa)

A
(5“‘“’” pan [F21" (p2 + pa. p3)

:|a|ﬂ1uz/14

. TH2v2 (pz)
= gy 0D 2[@ F? (p1. 3. Pa)

2
—gﬂ“"s‘ (1 + pz)[Fz]Mm(m, p4)> - (C2)

We consider here the other part, (tjoctiocd J)anom, that is
explicitly given by
" 1 e

loc

= Be {Igli=4)/41v11é021=4) H2v2

1
x [§ P23, P25, 8 7P (py + p2) [F215 (s, p4)]

2 _
_ g v (pl)z'c(g—‘*) [253%) P2,

af
|:Tf (1;1 + p2) [Fz];mu (p3. pa)
— [\/E Fz]vtzﬁzmm (92, P3, p4)]}

+ {157:4)u.u1 ”“2”;(172)

2
[gpleﬂ“‘“ (p1 + p2) [F2]°" (03, po)

— 2™ [F]™ (3, pa)

A
+ (5’”“'17%1 [F2]""™ (p1 + p3. pa)
- " [F2" (1 + ps. 174))
A
+ <5”4a1P4M [F2]™" (p1 + pa. p3) — P!

[F2]"" (p3, p1 + p4))]

_p T p) 2R (p2) [F2]"" (ps, p4)}

3 3

= B¢ {Iétli=4)ﬂlvlzo(g=4) H2v2

1

X [§ P22, P25, 82 P2 (py + po) [F2]™ (ps. p4)]
2 _

_ 3 THIVI (pl)Ié‘;_‘l) uzl&pzﬁz

[ﬂ“Zﬁz (p1+ p2)

3 [F2]°" (p3, pa)

_ [\/E F2]0t2flet3#4 (P2, P3, p4):|

2 _
_ g T2 (py) 115611—4)M1U1p1ﬁ1

b (p1+ p2) PRTEI
— —|F ,
[ 3 [F2]7™ (p3. pa)

— [Vg FF P oy, ps, p4)]

H1vi Hav2
_9 s (p1) = (p2) [Fz]mm (3, p4)}

. . (C.3)

where we have considered the relation (C.2). The trace
anomalous part of the correlator is then

(THIVITH2v2 13 Jll«4>(d=4)

anom

—4 =4
= (tl/zé”lTuzszm Ju4)2710m) + (Tﬂlvltlf;i”2jﬂ3 JM4>((10r7wm)
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d=4
= {1y g ST T 500 (C4)
or explicitly
(Tﬂlvl TH2v2 JU3 JM4)((;Z(:”‘1‘1)
_ 802 v (py 4 py)
= fBc {131174)#1\)1 |:2 P2, < 3 p1 T+ p
M (pa + p1) 72 ()
L BEP P22) P21 (ps. pa)
3 3
e (FE2 P14 P2)
g 3
7-[/’»2‘)2( 2) 5
- % [1'72]MM4 (p3, p4)
_ §@2(i1 vi +
+ = mn [2 puz( S (P1+ p2)
m* (py + p1) TV (p1)
- 3 3 [FZ]MM (p3, pa)
T (p1 + p2)
e LT P
P1 ( 3
TR (D)
- %) [F2"" (s, p@]
_ 1'31124)”'”}]1‘2(;:4) Hav2
1
X [5 P23, P2, 812 P2M (py + po) [F2] (ps, P4)]
2 TV (p1 + p2)
- gﬂﬂm(m)(# [F2]°" (p3. pa)
— [Vg F2]"" " (1, pa. p4)>
2 g (py) (7#22(p1 + p2) PRIEI
—_—— F s
33 3 [F2]7™ (p3. pa)
— [V F2]"*""" (pa, pa. p4))
n-l‘dlvl( 1) T[MZVZ( 2) 3
+2 . 4 3 p [Fz]lhlm (p3, p) . (C.5)
Using the relation
1
S0 = T + T po + 57" 0w (C6)

on the first lines we obtain
d=4
(THIVITH2V2 J13 Ju4>§mum) —

= d=4
= B¢ {Igf 4) vy fozﬂz)mvz(lh)

2
|:§ P23, 812774 (p1 + p2)

1
- gpza‘ﬂ"z'sz (p1+ Pz)] [F2]°" (p3. pa)

d=4 -
+ nt(xlﬁl ) L1V] (Pl)IgzI 4) uavy

2
[§ P18 222 (p1 + po)
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1
- gplazﬂalﬂl (p1+ Pz)} [F2]°" (p3. pa)

+ Ig]f:‘*) Hivy I‘g:‘t) H2va

1
X [§ P23, Pz,szts“‘azﬂ’m‘ (p1+ p2) [FZ]MM4 (p3, P4)]

T (p1 + p2)

3 [F2]" (p3, pa)

2
- gnuzvz (P2)<

_ [\/g, F2]#|V1M3M4 (Pl, 3, p4))

7H2"2(p + p2)

3 [FZ]MH4 (p3, p4)

2
—_ — H1v]
37 (Pl)(

— [\/g Fz]/tszsw (P2, p3s p4))

v V2
5 3(191) 3(172) [Fz]mw (3, p4)}.

(C.7

From this equation, the identification of (T'T J J)0—trace and
(TTJJ) pole is manifestin accordance with (7.39) and (7.42).

D: Metric variations involving the Vielbein

We present in this section all the useful relations related to
the metric variation of the vielbein. In particular we have that
the variation with respect to the metric tensor can be written

as
) 1 ) 8
= - (VK +Vv) D.1)
S 8uv 4 8 Vva 3 Via
" a
8 Va — _l gM(IH Vam)’ g VM
8 8uiv 2 8 8y
1 sV 1
_ 1 ) qab a _ Lop o yub
=3 5,U.MVaVI 59b, Son prreT =5 8(/“ Vvl)éub (D.2)

and these relations are in accordance with the well known
variation of the curved metric

sghv ab ) (Va'u va)
agmvl agulvl
1
— = nab gu(/u Vaw)vbv
1
-5 n”b gV(lLl val)vau — _gu(ﬂlgvl)v (D.3)
§ghivt 8 gt
1
= 51 80, Vi hac Vi,
1
+ E nﬂb SE}MI V,,Cl)ncha“ = Séj“ 1‘)}1)’ (D4)

Other useful relations in order to get the vertices are written
as
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vv)y v
8 . 5 <gu1w V“ u(m ng)) (D.5)
Hivi
p.
82 V Va K ( gul(/tz v2)v1 V“ + g//-(uz v2)(k1 Vvl))
8 81108102 gmwaguzvz 2
+ %8#«1“1 (guzvz VaM _ gu(uz Vavz))
\% \%
_ Zgu(ltl Vavl)gltzv2 + Zgll-(ulgvl)(ll-z Vavz)
D.6)
and we observe that
2 (vvy 2 (vvy

8 8uu1v168uava 8 822 68u1v .

We can obtain the metric variation of the spin connection
starting from its definition

ViuVey = 0, Vipy — a)lfbVW -

Wyab = Vav(au,vbv - Fﬁp V).

T, Vi, =0, (D.8)
(D.9)

Then its variation under a metric variation is given as

Swpab =8V, VI V@, Vey — Ty Vi)
——
5

+ V) (08 Viy — T5,8Via) — V' VirdT,,

=—VL8VS V(0 Vew — T, Von)
Duch

+ V) (08 Viy — T5,8Via) — V' VirdT,
=V, (0u8Viy — @, ,8Ver — T7:,8Vin) — V' VisdT ),
= VVu8Viy — V) VirdT},,. (D.10)

Then the variation with respect to the metric is obtained as
) Wyab (x)
dg v )
It is worth mentioning that, since the spin connection always

appears contracted with the antisymmetric tensor £, we
can omit the antisymmetrization on the indices [a, b].

=80V VE VIS (x — ). (D.11)

E: Vertices

We have presented in Fig. 1 a list of all the vertices which we
needed for the momentum space computation of the 77 J J
correlator. They are obtained by taking functional derivatives
of the action. We consider all the momenta incoming into the
vertex. In the case of QED we consider the action

_ d i_ s T A i a7 ,abc
S=[dxV 21”)’ Yy —epy Ay + 4wﬂahvc Yy
(E.1)

where
AT 7oA 7o
Yyt oy =yytoy —ouyyty
yab... _ J/[a)/b J/c]’ (E2)
and we use the Lorentz generator
1 1
Zab:— a by_ ~,ab E3
L vi=gy (E.3)

The variations of the action with respect to the metric in the
flat limit are given by

8S

88uivi (X1) [gs
528

88uzvy (X2)88p 10 (X1) |4

1 [ - -
= At (’Emé_;x/f = ewyaAﬁw) (1),

_ 1(3#1”1#2”201 _

— Cltlvluzvzp)»
4

P
i- d -
+ Drvaveh (2¢)/xaxp¢ - eWVAApW> 8x1,x
1

— SOy aI )y g (E4)
where we have defined
AMVOo _ sivspo _ si(p s0)v
BHvpoaf _ suv spo s o si(p s0)v gaf
BHvoO _ siv 500 _ o si(p go)Y
crveoap _ suvsalpso)p y 5o sa(ugv)p
CHvpoaf _ suvgalo 5o)f
phvpoap — salugv)(pso)f 4 osa(pgo)(ugv)h
prvpoap _ salugv)(pso)p 4 sa(pgo)(ugv)p
ErvPoaB — so(ugv)(pgo)f (E.5)

and we have used the results in Appendix D. From (E.4) we
extract the vertices in direct space involving the fields v/ (y1),
¥ (y2), and T#2"2(xp), THI" (x1), J*1(2) as

M,J(yh y2,2) = —ey® 8y, 8y, 2 (E.6)
V#,/'“/i(xl, Vi, ¥2)
_% Anvias, (aif‘ - aiﬂ) [8y,1.x18y2.x1 1, (E.7)
3| Y2
V;ﬁ,‘,‘jﬁl (X1, Y1, y2,2) = —gAﬂl”lalf\ngyl‘xlgyz’xl7 (E.8)
;L}?/flgzvz (X1, %2, y1, y2) = —i(B/“"WZ“M8
— cHviamap Dulvmzvzaﬂ)ya
d 0
(ﬁ - @) [8y1,x18y2,x1 632, x1 ]
_ é semgagby 2 0 s s 0l (E9)

0x;
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Y M1V Ve
TTYWJ

A A
— CI‘LIVIMZVZWI + DMIVIMZUZWI )VA(S

1
(x1, x2, y1, y2,2) = Z(B“'“”‘Z”Z“M

)71,)‘13)‘293518)52,)5182,)‘1 .

(E.10)
In momentum space these vertices read as
K3 = —ey3
Vs ke, ps) = —eyt, (E.1D)
1
Vi Pk k) = 2 ARy ( + ko), (E.12)
H1VIU3 _ _ & qmvipsh
VTJIN (p1, p3. k1, k2) = 2A Vs (E.13)
1
M1V pH2V2 — L1 V] L2 V2 PA
VTTlW (p1, P2, k1, k2) 8(3
_ Culvwzvzp)» + DMIVIMZVZP)L) v (ki + kz)p
1
_ g st gv)(pa gv2)B Vapi p% (E.14)
e
V#;l;];jf;vzm (Pla P2, D3, kl» kz) — —Z(B’“VW'ZVZM)‘
_ CMIVIV«ZVZU-S)\ 4 DMIVIMZVZIH}»)V)” (E.15)

where k1 is outgoing.
In the case of scalar QED with the action
S = /ddx@ (09T 9,0
+ieA" (9,07 ¢ — ¢ 9,0) + A" A HTD + xR GTP),
(E.16)

the variations of the action with respect to the metric are
given as

8S 1~ . .
— = | =ZBMBG,0T0s¢ —ieAy ¢ 05
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From the previous equation we extract the vertices in direct
space involving the fields ¢ (y1) and ¢ (y2), and TH2"2(x5),
THI (x1), J#3(x3), JH4(xs) as

@ Springer
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In momentum space these vertices are
p
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2

F: Functional variations
We list some functional variations in momentum space

needed for the identification of the anomaly part of the cor-
relator (TT JJ).
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These results can be re-written using the projectors I, Z and
7 in the form
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