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Abstract We investigate flavour bounds on the Z2 × Z5

and Z2 × Z9 flavour symmetries. These flavour symmetries
are a minimal and a non-minimal forms of the Z2 × ZN

flavour symmetry, that can provide a simple set-up for the
Froggatt–Nielsen mechanism. The Z2 × Z5 and Z2 × Z9

flavour symmetries are capable of explaining the fermionic
masses and mixing pattern of the standard model including
that of the neutrinos. The bounds on the parameter space of
the flavon field of theZ2×Z5 andZ2×Z9 flavour symmetries
are derived using the current quark and lepton flavour physics
data and future projected sensitivities of quark and lepton
flavour effects. The strongest bounds on the flavon of theZ2×
Z5 symmetry come from the D0 − D̄0 mixing. The bounds
on theZ2 ×Z9 flavour symmetry are stronger than that of the
minimal Z2 × Z5 symmetry. The ratio Rμμ provides rather
robust bounds on the flavon parameters in the future phase-I
and phase-II of the LHCb by leaving only a very small region
in the allowed parameter space of the models.

1 Introduction

The Z2 × ZN flavour symmetry [1] provides a new frame-
work for the celebrated Froggatt–Nielsen (FN) mechanism
that eventually furnishes an elegant solution to the flavour
problem of the standard model (SM) [2]. The flavour prob-
lem of the SM comprises a set of fundamental questions,
including the origin of the mass pattern of fermions of
the SM, an explanation for the observed quark-mixing, and
the source of neutrino masses and oscillations. There are
various approaches to address this problem in literature.
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For instance, it can have a solution through the hierarchy
of vacuum-expectation-values (VEVs) in a technicolour-
framework where VEVs are sequential chiral condensates
of an extended dark-technicolour sector [3–5]. A possible
explanation can be obtained using Abelian flavor symmetries
[2,6–13], creating loop-suppressed couplings to the Higgs
[14], through wave-function localization [15–19] or via com-
positeness [20].

The central idea of the FN mechanism is based on an
Abelian flavour symmetryU (1)F , which can distinguish dif-
ferent flavours of fermions among and within the fermionic
generations in the SM. This is achieved by introducing a
flavon field χ in such a way that only top quark gets mass
from a renormalized SM interaction, and masses for other
fermions are obtained from appropriate non-renormalized
higher dimensional operators, which are constructed using
the flavon field χ . For instance, if under theU (1)F symmetry
the fermions ψc

i and ψ j have charges θi and θ j respectively
and the charge of the SM Higgs field is zero then the Yukawa
Lagrangian of the SM is forbidden by the U (1)F symme-
try. In this scenario, the masses of the SM fermions can be
recovered by the non-renormalizable operators of the form,

O = y
(χ

�

)(θi+θ j )

ψ̄ϕψ,

= yε(θi+θ j )ψ̄ϕψ = Y ψ̄ϕψ (1)

where y is the dimensionless coupling constant, � is the scale

at which these operators are renormalized, ε = 〈χ〉
�

, Y =
yε(θi+θ j ) is the effective Yukawa coupling, and the gauge
singlet flavon scalar field χ transforms under the SU (3)c ×
SU (2)L ×U (1)Y symmetry of the SM as,

χ : (1, 1, 0). (2)

The U (1)F flavour symmetry is broken spontaneously
when the flavon field χ acquires a VEV. The scale � is not
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provided by the theory, and it can be anywhere between the
weak and the Planck scale. We only require that the flavour
symmetry should be broken weakly which means the ratio
〈χ〉
�

should be less than unity. The flavon exchange effects

in the SM phenomenology will be highly suppressed if the
scale of new physics � is much larger than the weak scale.
However, if the flavour symmetry is broken close to the weak
scale, we can hope to see observable effects on the direct or
indirect experimentally measured SM observables such as
mixing and CP-violation in mesons. Therefore, we need to
ask how low the flavour scale could be such that it respects
the bounds on flavour-changing and CP-violating processes.
Moreover, the nature of the flavour symmetry also plays an
important role in the investigation of the flavour scale. For
example, if the flavour symmetry is a continuousU (1)F , then
we should ask whether it is a gauged or a global symmetry. In
a gauged U (1)F scenario, the phenomenology of the flavon
field will be affected by the exchange of the corresponding
gauge boson. If the continuousU (1)F is global, then a mass-
less Goldstone boson must exist.

The Z2 × ZN flavour symmetry, unlike the conven-
tional continuousU (1) flavour symmetry that is employed to
achieve the FN mechanism, is a product of two discrete sym-
metries which can implement the FN mechanism in a unique
way such that the flavour structure of the SM including neu-
trino masses and mixing parameters can be parametrized in
terms of a small parameter which is the ratio of the VEV of
the flavon field and the flavour scale � [1]. We notice that
the origin of the Z2 ×ZN flavour symmetry may be traced to
an underlying Abelian or non-Abelian continuous symmetry
or their products. For instance, the Z2 ×ZN symmetry may
be a by-product of a spontaneous breaking of U (1) × U (1)

continuous product symmetry.
We note that the discrete Z2 symmetry is extensively

used in studying the different versions of the two-Higgs-
doublet model (2HDM) and the minimal supersymmetric SM
(MSSM). In particular, in theZ2 ×ZN flavour symmetry, the
discrete Z2 symmetry exactly behaves like the one used in
the type-II 2HDM [21]. Therefore, theZ2 ×ZN flavour sym-
metry may also be used to implement the FN mechanism in
the type-II 2HDM and the MSSM. Moreover, the discrete Z2

symmetry is also found to be useful in model building, for
instance, see Refs. [3,5,22–25].

In this work, we investigate flavour bounds on the dynam-
ics of the flavon field of a minimal and a non-minimal form
of the Z2 × ZN flavour symmetry that provides a simple
set-up for the FN mechanism. We do not consider any ultra-
violet completion of the Z2 ×ZN based FN mechanism, and
present our results in a model-independent manner. The phe-
nomenological investigations of the flavon field of the FN
mechanism in the framework of a continuous U (1) symme-
try and its extensions are dedicatedly performed in literature,

for instance, flavour bounds are investigated in Ref. [26], the
LHC phenomenology is explored in Refs. [27–34], a low
flavour breaking scale is studied in Ref. [35], a study for a
future high energy collider is presented in Ref. [36], flavon
exchange effects in the dark matter interactions are studied
in Ref. [37], the texture based investigation of the FN mech-
anism can be found in Ref. [38].

We shall present our phenomenological analysis along the
following line: In Sect. 2, we investigate a minimal form of
the Z2 × ZN flavour symmetry that can implement the FN
mechanism. An explanation to neutrino masses and mixing
parameters is discussed in Sect. 2.4.1. A non-minimal form
of the Z2 × ZN flavour symmetry that implements the FN
mechanism is discussed in Sect. 3. The scalar potential of
our model is discussed in Sect. 4. Phenomenological bounds
based on the quark flavour physics on the parameter space of
a minimal and a non-minimal form of the Z2 × ZN flavour
symmetry are derived in Sect. 5. Leptonic flavour constraints
are investigated in Sect. 6. A summary of the work is pre-
sented in Sect. 7.

2 A minimal Z2 ×ZN flavour symmetry

We now discuss the question of a minimal form of the
Z2 ×ZN flavour symmetry that can provide a simple set-up
of the FN mechanism. Our guiding principle for this purpose
is the observation that a minimal suppression of the effec-
tive Yukawa couplings will require a minimal form of the
Z2 × ZN flavour symmetry. For instance, we assume that
the mass of the top quark originates from the tree level SM
Yukawa operator, then, following the principle of minimum
suppression (PMS), the mass of the bottom quark is obtained
from the operator having the suppression of the order yε, the
mass of the charm quark from the operator having the sup-
pression of the order yε2, the mass of the strange quark from
the operator having the suppression of the order yε3, and the
mass of the up and down quarks from the operators having
at least the suppression of the order yε4.

Additionally, we need to count the number of hierarchical
energy scales needed to account for the fermionic mass hier-
archy in the SM. For instance, for the quark sector, we need
three energy scales to explain the mass hierarchy among the
three fermionic families. We note that only the second and
the third quark families have intra-generational mass hier-
archies, which require only two hierarchical energy scales
to achieve an explanation for the mass hierarchy within the
second and third quark families. These hierarchical energy
scales are created by the different non-renormalizable opera-
tors of the flavon fields as given in Eq. 1. Since the mass of the
top quark is generated by the renormalized SM Yukawa oper-
ators, at least four energy scales are required to be created
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through the operators of the form given in Eq. 1 for providing
an explanation for the hierarchical quark mass pattern.

The symmetry ZN in the Z2 × ZN flavour symmetry is
responsible for providing such operators. The symmetry Z2

distinguishes between the up-type and the down-type quarks,
which makes sure that identical non-renormalizable opera-
tors of the flavon fields, as given in Eq. 1, do not appear in
the up and down-type quark mass matrices. For creating four
energy scales, the required ZN symmetry, therefore, should
have at least four non-trivial charges. Therefore, the size of
a minimal symmetry will be determined by this requirement
and through the application of the PMS.

Finally, we must note that a minimal form of the Z2 ×ZN

flavour symmetry should not only produce correct pattern of
the charged fermion masses, it should be capable of explain-
ing the quark mixing pattern, neutrino masses, and more
importantly, it should predict correct pattern of the neutrino
mixing angles.

After taking into account above considerations, Z2 ×ZN

flavour symmetry allows us to write the following generic
Lagrangian which provides masses to the charged fermions
of the SM,

− LYukawa =
[
χ(χ†)

�

]nui j
yui j ψ̄

q
Li

ϕ̃ψu
R j

+
[
χ(χ†)

�

]ndi j
ydi j ψ̄

q
Li

ϕψd
R j

+
[
χ(χ†)

�

]n�
i j

y�
i j ψ̄

�
Li

ϕψ�
R j

+ H.c.,

= Yu
i j ψ̄

q
Li

ϕ̃ψu
R j

+ Yd
i j ψ̄

q
Li

ϕψd
R j

+Y �
i j ψ̄

�
Li

ϕψ�
R j

+ H.c., (3)

where χ or χ† may appear in the numerator of the term inside
the square brackets. We note that in the above Lagrangian
i and j are family indices, ψ

q
L , ψ�

L are quark and leptonic
doublets, ψu

R, ψd
R, ψ�

R are right-handed up, down type singlet
quarks and leptons, ϕ and ϕ̃ = −iσ2ϕ

∗ are the SM Higgs
field and its conjugate and σ2 is the second Pauli matrix.
The effective Yukawa couplings Yi j are defined in terms of

the expansion parameter
〈χ〉
�

= f√
2�

= ε � 1 such that

Yi j = yi jεni j .

2.1 Z2 × Z2 flavour symmetry

The simplest choice is the Z2 ×Z2 flavour symmetry, which
turns out to be a trivial selection since the only charges of the
Z2 symmetry are ±1, which are too trivial to provide four
energy scales or equivalently non-trivial operators of the form
given in Eq. 1. Hence, we conclude that this symmetry cannot
be used to create a simple FN mechanism.

Table 1 The charges of left and right-handed fermions of three families
of the SM, Higgs and the flavon field under the Z2 and Z3 product
symmetry, where ω is the cube root of unity

Fields Z2 Z3

uR, cR, tR + ω

dR, sR, bR, eR, μR, τR – 1

ψ
q
L1

+ ω2

ψ
q
L2

+ 1

ψ
q
L3

+ ω

ψ�
L1

+ ω2

ψ�
L2

+ 1

ψ�
L3

+ ω

χ – ω

ϕ + 1

2.2 Z2 × Z3 flavour symmetry

The first non-trivial form of the Z2 ×ZN flavour symmetry,
which may provide an implementation of the FN mechanism,
is Z2 × Z3. The symmetry Z3 has two non-trivial charges
characterized by ω and ω2, where ω is the cube root of unity.
In the first scenario, following the PMS, we assign the charges
to the SM and flavon fields as given in Table 1.

We observe that the masses of s and b quarks can be recov-
ered from this charge assignment, for instance, mass of the s
quark is of the order ε3, and that of the b quark is of the order
ε. However, the mass of the u and d quarks are produced by

the operators y(
χ†

�
)2ψ̄ϕuR and y(

χ†

�
)ψ̄ϕdR instead of the

operators y(
χ

�
)4ψ̄ϕuR and y(

χ

�
)5ψ̄ϕdR . Any other charge

assignment also does not reproduce masses of every quark.
As an additional check, we may assume that exactly iden-

tical diagonal operators for the u and d quarks in their mass
matrices as given in Table 2. This charge assignment is
against the original sprite of the Z2 ×ZN flavour symmetry,
where the Z2 is exactly like the symmetry used in the type
II 2HDM. It turns out that even in this case, the mass of the
u quark is of the order ε. This conclusion does not change
even if we provide different non-trivial charge assignments
to the fermions and flavon fields under the Z2 × Z3 flavour
symmetry.

2.3 Z2 × Z4 flavour symmetry

The charges of the symmetryZ2×Z4 are characterized by the
fourth roots of unity, which are 1, ω, ω2 and ω3 where ω = i ,
ω3 = ω∗ and ω2 = −1. We particularly note that minimally

suppressed diagonal operator of the form y(
χ

�
)4ψ̄LϕuR is

not the dominant operator no matter what charge we assign
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Table 2 The charges of left and right-handed fermions of three families
of the SM, Higgs and the flavon fields under the Z2 and Z3 product
symmetry, where ω is the cube root of unity

Fields Z2 Z3

cR, tR + ω

uR, dR, sR, bR, eR, μR, τR – 1

ψ
q
L1

+ ω2

ψ
q
L2

+ 1

ψ
q
L3

+ ω

ψ�
L1

+ ω2

ψ�
L2

+ 1

ψ�
L3

+ ω

χ – ω

ϕ + 1

to the flavon and fermionic fields. This is because the tree-
level SM Yukawa operator yψ̄LϕuR is allowed for any charge

assignment for the y(
χ

�
)4ψ̄LϕuR operator under theZ2×Z4

flavour symmetry.
Therefore, to produce the mass of the u-quark, we either

choose a non-trivial transformation of the uR-quark or the
first family of the quarks under the Z2 symmetry, in addition
to the next to the minimal suppressed operator of the order ε5.
One such charge assignment is given in Table 3. In this case,
the masses of the down-type quarks are produced correctly
through the operators with minimal suppression. However,
in the case of up-type quarks, still non-diagonal tree-level
SM operators dominate the mass of the u-quark. Other alter-
native charge assignments also do not work for creating an
FN mechanism through the Z2 × Z4 symmetry.

2.4 Z2 × Z5 flavour symmetry

We now impose the next flavour symmetry, that is, the Z2 ×
Z5 symmetry on the SM in a way that the various fields of the
SM transform under this symmetry as given in Table 4 [1]. As
discussed earlier, we need to create at least four hierarchical
energy scales as an origin of the quark mass spectrum. This
means, for creating these energy scales, a non-trivial and a
minimal ZN symmetry should have at least four non-trivial
charges. Thus, the symmetry Z5 could be such a symmetry.
Moreover, we note that the transformation of fields under
the Z2 ×Z5 symmetry is chosen such that the symmetry Z2

exactly acts like the way used in the type-II 2HDM.1

The Z2 × Z5 flavour symmetry allows us to write the
following Lagrangian which provides masses to the charged
fermions of the SM,

1 Adding an additional Higgs doublet to this model such that it is odd
under the Z2 symmetry will result in a type-I like 2HDM.

Table 3 The charges of left and right-handed fermions of three families
of the SM, Higgs and the flavon fields under the Z2 and Z4 product
symmetry, where ω is the fourth root of unity

Fields Z2 Z4

cR, tR + ω2

uR, dR, sR, bR, eR, μR, τR – ω

ψ
q
L1

+ ω2

ψ
q
L2

+ 1

ψ
q
L3

+ ω2

ψ�
L1

+ ω2

ψ�
L2

+ 1

ψ�
L3

+ ω2

χ – ω

ϕ + 1

Table 4 The charges of left and right-handed fermions of three families
of the SM, right-handed neutrinos, Higgs, and singlet scalar fields under
Z2 and Z5 symmetries, where ω is the fifth root of unity

Fields Z2 Z5

uR, cR, tR + ω2

dR, sR, bR, eR, μR, τR – ω

νeR , νμR , ντR – ω3

ψ
q
L1

+ ω

ψ
q
L2

+ ω4

ψ
q
L3

+ ω2

ψ�
L1

+ ω

ψ�
L2

+ ω4

ψ�
L3

+ ω2

χ – ω

ϕ + 1

−LYukawa =
( χ

�

)4
yu11ψ̄

q
L1

ϕ̃uR +
( χ

�

)4
yu12ψ̄

q
L1

ϕ̃cR

+
( χ

�

)4
yu13ψ̄

q
L1

ϕ̃tR +
( χ

�

)2
yu21ψ̄

q
L2

ϕ̃uR

+
( χ

�

)2
yu22ψ̄

q
L2

ϕ̃cR +
( χ

�

)2
yu23ψ̄

q
L2

ϕ̃tR

+yu31ψ̄
q
L3

ϕ̃uR + yu32ψ̄
q
L3

ϕ̃cR + yu33ψ̄
q
L3

ϕ̃tR

+
( χ

�

)5
yd11ψ̄

q
L1

ϕdR +
( χ

�

)5
yd12ψ̄

q
L1

ϕsR

+
( χ

�

)5
yd13ψ̄

q
L1

ϕbR +
( χ

�

)3
yd21ψ̄

q
L2

ϕdR

+
( χ

�

)3
yd22ψ̄

q
L2

ϕsR +
( χ

�

)3
yd23ψ̄

q
L2

ϕbR

+
( χ

�

)
yd31ψ̄

q
L3

ϕdR +
( χ

�

)
yd32ψ̄

q
L3

ϕsR

+
( χ

�

)
yd33ψ̄

q
L3

ϕbR +
( χ

�

)5
y�

11ψ̄
�
L1

ϕeR

+
( χ

�

)5
y�

12ψ̄
�
L1

ϕμR +
( χ

�

)5
y�

13ψ̄
�
L1

ϕτR
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+
( χ

�

)3
y�

21ψ̄
�
L2

ϕeR +
( χ

�

)3
y�

22ψ̄
�
L2

ϕμR

+
( χ

�

)3
y�

23ψ̄
�
L2

ϕτR +
( χ

�

)
y�

31ψ̄
�
L3

ϕeR

+
( χ

�

)
y�

32ψ̄
�
L3

ϕμR +
( χ

�

)
y�

33ψ̄
�
L3

ϕτR + H.c.

The mass matrices for up- and down-type quarks and
charged leptons can be written now in terms of the expansion
parameter ε,

Mu = v√
2

⎛
⎜⎝
yu11ε

4 yu12ε
4 yu13ε

4

yu21ε
2 yu22ε

2 yu23ε
2

yu31 yu32 yu33

⎞
⎟⎠ ,

Md = v√
2

⎛
⎜⎝
yd11ε

5 yd12ε
5 yd13ε

5

yd21ε
3 yd22ε

3 yd23ε
3

yd31ε yd32ε yd33ε

⎞
⎟⎠ ,

M� = v√
2

⎛
⎜⎝
y�

11ε
5 y�

12ε
5 y�

13ε
5

y�
21ε

3 y�
22ε

3 y�
23ε

3

y�
31ε y�

32ε y�
33ε

⎞
⎟⎠ . (4)

The masses of quarks and charged leptons approximately
are [39],

{mt ,mc,mu}
�
{
|yu33|,

∣∣∣∣yu22 − yu23y
u
32

|yu33|
∣∣∣∣ ε2,

∣∣∣∣yu11 − yu12y
u
21

|yu22 − yu23y
u
32/y

u
33|

− yu13|yu31y
u
22 − yu21y

u
32| − yu31y

u
12y

u
23

|yu22 − yu23y
u
32/y

u
33||yu33|

∣∣∣∣ ε4
}

v/
√

2, (5)

{mb,ms,md}

�
{

|yd33|ε,
∣∣∣∣∣y

d
22 − yd23y

d
32

|yd33|

∣∣∣∣∣ ε
3,

∣∣∣∣∣y
d
11 − yd12y

d
21

|yd22 − yd23y
d
32/y

d
33|

− yd13|yd31y
d
22 − yd21y

d
32| − yd31y

d
12y

d
23

|yd22 − yd23y
d
32/y

d
33||yd33|

∣∣∣∣∣ ε
5

}
v/

√
2, (6)

{mτ ,mμ,me}

�
{

|yl33|ε,
∣∣∣∣∣y

l
22 − yl23y

l
32

|yl33|

∣∣∣∣∣ ε
3,

∣∣∣∣∣y
l
11 − yl12y

l
21

|yl22 − yl23y
l
32/y

l
33|

− yl13|yl31y
l
22 − yl21y

l
32| − yl31y

l
12y

l
23

|yl22 − yl23y
l
32/y

l
33||yl33|

∣∣∣∣∣ ε
5

}
v/

√
2. (7)

The mixing angles of quarks are found to be [39],

sin θ12 � |Vus | �
∣∣∣∣∣
yd12

yd22

− yu12

yu22

∣∣∣∣∣ ε
2,

sin θ23 � |Vcb| �
∣∣∣∣∣
yd23

yd33

− yu23

yu33

∣∣∣∣∣ ε
2,

sin θ13 � |Vub| �
∣∣∣∣∣
yd13

yd33

− yu12y
d
23

yu22y
d
33

− yu13

yu33

∣∣∣∣∣ ε
4. (8)

We notice that the sin θ12 and sin θ23 have the same order.
The similar result is also reported in Ref. [8].

We present a fit of the experimental data to the masses
of fermions in Appendix. It turns out that some of the cou-
plings are not order one. We discuss a theoretical scenario
for such couplings in the Appendix. This kind of not order
one couplings are also reported in Refs. [8,26].

2.4.1 Neutrino masses and mixing

The neutrino masses are obtained by adding three right-
handed neutrinos as shown in Table 4. The Lagrangian for
the tree-level Majorana mass is,

LMR = ci j

[
χ†

�

]5

χ†ν̄ci,Rν j,R, (9)

where i, j are flavour indices.
The Majorana mass matrices MR is,

MR = M

⎛
⎝
c11 c12 c13

c12 c22 c23

c13 c23 c33

⎞
⎠ , (10)

where M = 〈χ〉
[ 〈χ〉

�

]5 = f√
2
ε5.

The Dirac mass Lagrangian for neutrinos can be written
as,

− Lν
Yukawa = yν

11ψ̄
�
L1
HνeR

[χ

�

]3 + yν
12ψ̄

�
L1
HνμR

[χ

�

]3

+yν
13ψ̄

�
L1
HντR

[χ

�

]3 + yν
21ψ̄

�
L2
HνeR

[χ

�

]

+yν
22ψ̄

�
L2
HνμR

[χ

�

]
+ yν

23ψ̄
�
L2
HντR

[χ

�

]

+yν
31ψ̄

�
L3
HνeR

[
χ†

�

]
+ yν

32ψ̄
�
L3
HνμR

[
χ†

�

]

+yν
33ψ̄

�
L3
HντR

[
χ†

�

]
+ H.c.. (11)

The Dirac mass matrix is given by,

MD = v√
2

⎛
⎜⎝
yν

11ε
3 yν

12ε
3 yν

13ε
3

yν
21ε yν

22ε yν
23ε

yν
31ε yν

32ε yν
33ε

⎞
⎟⎠ . (12)
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The mass matrix of neutrinos after including the Majorana
mass terms can be written as,

M =
(ML MD
MT

D MR

)
. (13)

Since v � f , we ignore the contribution of the mass
matrix ML to the neutrino masses.2 Now, we can use the
type-I seesaw mechanism to determine the neutrino masses
by assuming MD � MR [40–45]. Thus the light neutrino
mass matrix is,

M ≈ − MDM−1
R MT

D,

≈ v√
2
ε′

⎛
⎜⎜⎝

− ε4
(
c22c33yν2

11 −2c22yν
11+c22−2c33yν

11+c33−yν2
11 +4yν

11−2
)

(c22−1)(c33−1)
−ε2yν

11 − ε2(c33yν
11−yν

11y
ν
33+yν

33−1)

c33−1
−ε2yν

11 −1 −1

− ε2(c33yν
11−yν

11y
ν
33+yν

33−1)

c33−1 −1 − (c33+(yν
33−2)yν

33)

c33−1

⎞
⎟⎟⎠ , (14)

where ε′ = v
f ε3 , and we have assumed each and every cou-

pling exactly one except those appearing in above equation.
We obtain two degenerate neutrino masses. The masses

approximately are given by,

m1 ≈
(−yν2

11 + 2yν
11 − 1

)

c22 − 1
ε4ε′v/

√
2,

m2 ≈

(
−
√

4c2
33 − 8c33 + yν4

33 − 4yν3
33 + 6yν2

33 − 4yν
33 + 5 − 2yν

33 − yν2
33 + 2yν

33 + 1

)

2(c33 − 1)
ε′v/

√
2,

m3 ≈

(√
4c2

33 − 8c33 + yν4
33 − 4yν3

33 + 6yν2
33 − 4yν

33 + 5 − 2c33 − yν2
33 + 2yν

33 + 1

)

2(c33 − 1)
ε′v/

√
2. (15)

This kind of approximate degenerate neutrino masses are
well studied in literature, for instance, see Refs. [46–49].

The leptonic mixing angles can be written as,

sin θ12 �
∣∣∣∣∣
y�

12

y�
22

− yν
11

∣∣∣∣∣ ε
2,

sin θ23 �
∣∣∣∣

1 − c33

c33 + (yν
33 − 2)yν

33

∣∣∣∣ ,

sin θ13 �
∣∣∣∣
(c33yν

11 − yν
11y

ν
33 + yν

33 − 1)

c33 + (yν
33 − 2)yν

33

∣∣∣∣ ε2. (16)

The remarkable observation is the pattern of the neutrino
mixing angles. The mixing angle θ12 and θ13 are of the same
order of magnitude, where θ13 is closer to the Cabibbo angle,
and the mixing angle θ23 is completely unsuppressed.

2 Alternatively, we can assume that it is forbidden by some discrete
symmetry. For instance, if three left-handed fermionic doublets of
quarks and leptons, and the Higgs doublet have a charge ω under a
Z3 symmetry, the mass matrix ML is forbidden.

3 A non-minimal Z2 ×Z9 flavour symmetry

We note from the previous section that some of the Yukawa
couplings for the minimal model based on theZ2×Z5 flavour
symmetry are not order one, which is a preferred choice in
literature. However, so far purpose has been to introduce the
Z2 × ZN flavour paradigm. In this section, we show a non-
minimal model based on theZ2×ZN flavour paradigm where
the Yukawa couplings turn out to be order one, and are given
in the appendix. We adopt a non-minimal Z2 × Z9 flavour

symmetry, and assign the charges to different fields as shown
in Table 5.

The Z2 × Z9 flavour symmetry allows us to write the
following Lagrangian which provides masses to the charged
fermions of the SM,

−LYukawa =
(

χ†

�

)8

yu11ψ̄
q
L1

ϕ̃uR +
(χ

�

)6
yu12ψ̄

q
L1

ϕ̃cR

+
(

χ†

�

)8

yu13ψ̄
q
L1

ϕ̃tR +
(χ

�

)8
yu21ψ̄

q
L2

ϕ̃uR

+
(χ

�

)4
yu22ψ̄

q
L2

ϕ̃cR +
(χ

�

)8
yu23ψ̄

q
L2

ϕ̃tR

+yu31ψ̄
q
L3

ϕ̃uR +
(

χ†

�

)4

yu32ψ̄
q
L3

ϕ̃cR

+yu33ψ̄
q
L3

ϕ̃tR +
(χ

�

)7
yd11ψ̄

q
L1

ϕdR

+
(χ

�

)7
yd12ψ̄

q
L1

ϕsR +
(χ

�

)7
yd13ψ̄

q
L1

ϕbR

+
(χ

�

)5
yd21ψ̄

q
L2

ϕdR +
(χ

�

)5
yd22ψ̄

q
L2

ϕsR

+
(χ

�

)5
yd23ψ̄

q
L2

ϕbR +
(

χ†

�

)3

yd31ψ̄
q
L3

ϕdR

123
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Table 5 The charges of left and right-handed fermions of three families
of the SM, right-handed neutrinos, Higgs, and singlet scalar field under
Z2 and Z9 symmetries, where ω is the ninth root of unity

Fields Z2 Z9

uR, tR + 1

cR + ω4

dR, sR, bR, eR, μR, τR – ω3

νeR , νμR , ντR – ω7

ψ
q
L1

+ ω

ψ
q
L2

+ ω8

ψ
q
L3

+ 1

ψ�
L1

+ ω

ψ�
L2

+ ω8

ψ�
L3

+ ω6

χ – ω

ϕ + 1

+
(

χ†

�

)3

yd32ψ̄
q
L3

ϕsR +
(

χ†

�

)3

yd33ψ̄
q
L3

ϕbR

+
(χ

�

)7
y�

11ψ̄
�
L1

ϕeR +
(χ

�

)7
y�

12ψ̄
�
L1

ϕμR

+
(χ

�

)7
y�

13ψ̄
�
L1

ϕτR +
(χ

�

)5
y�

21ψ̄
�
L2

ϕeR

+
(χ

�

)5
y�

22ψ̄
�
L2

ϕμR +
(χ

�

)5
y�

23ψ̄
�
L2

ϕτR

+
(χ

�

)3
y�

31ψ̄
�
L3

ϕeR +
(χ

�

)3
y�

32ψ̄
�
L3

ϕμR

+
(χ

�

)3
y�

33ψ̄
�
L3

ϕτR + H.c.

The mass matrices for up and down-type quarks and
charged leptons turn out to be,

Mu = v√
2

⎛
⎝
yu11ε

8 yu12ε
6 yu13ε

8

yu21ε
8 yu22ε

4 yu23ε
8

yu31 yu32ε
4 yu33

⎞
⎠ ,

Md = v√
2

⎛
⎝
yd11ε

7 yd12ε
7 yd13ε

7

yd21ε
5 yd22ε

5 yd23ε
5

yd31ε
3 yd32ε

3 yd33ε
3

⎞
⎠ ,

M� = v√
2

⎛
⎝
y�

11ε
7 y�

12ε
7 y�

13ε
7

y�
21ε

5 y�
22ε

5 y�
23ε

5

y�
31ε

3 y�
32ε

3 y�
33ε

3

⎞
⎠ . (17)

The masses of charged fermions are approximately given
by [39],

{mt ,mc,mu}
�
{
|yu33|,

∣∣∣∣yu22ε
4 − yu23y

u
32

|yu33|
ε12
∣∣∣∣ ,

∣∣∣∣yu11ε
8 − yu12y

u
21

|yu22|
ε10

− yu13|yu31y
u
22 − yu21y

u
32|

|yu22||yu33|
ε8
∣∣∣∣
}

v/
√

2, (18)

{mb,ms,md}

�
{

|yd33|ε3,

∣∣∣∣∣y
d
22 − yd23y

d
32

|yd33|

∣∣∣∣∣ ε
5,

∣∣∣∣∣y
d
11 − yd12y

d
21

|yd22 − yd23y
d
32/y

d
33|

− yd13|yd31y
d
22 − yd21y

d
32| − yd31y

d
12y

d
23

|yd22 − yd23y
d
32/y

d
33||yd33|

∣∣∣∣∣ ε
7

}
v/

√
2, (19)

{mτ ,mμ,me}

�
{

|yl33|ε3,

∣∣∣∣∣y
l
22 − yl23y

l
32

|yl33|

∣∣∣∣∣ ε
5,

∣∣∣∣∣y
l
11 − yl12y

l
21

|yl22 − yl23y
l
32/y

l
33|

− yl13|yl31y
l
22 − yl21y

l
32| − yl31y

l
12y

l
23

|yl22 − yl23y
l
32/y

l
33||yl33|

∣∣∣∣∣ ε
7

}
v/

√
2. (20)

Similarly, the mixing angles of quarks read [39],

sin θ12 � |Vus | �
∣∣∣∣∣
yd12

yd22

− yu12

yu22

∣∣∣∣∣ ε
2,

sin θ23 � |Vcb| �
∣∣∣∣∣
yd23

yd33

ε2 − yu23

yu33
ε8

∣∣∣∣∣ ,

sin θ13 � |Vub| �
∣∣∣∣∣
yd13

yd33

ε4 − yu12y
d
23

yu22y
d
33

ε4 − yu13

yu33
ε8

∣∣∣∣∣ . (21)

3.1 Neutrino masses and mixing

The masses and mixing of neutrinos in the non-minimal
model is identical to that of the minimal model. Thus, we
write the Majorana Lagrangian for right-handed neutrinos
as,

LMR = ci j
[χ

�

]3
χν̄ci,Rν j,R, (22)

where i, j are flavour indices.
The Majorana mass matrices MR can be written as,

MR = M

⎛
⎝
c11 c12 c13

c12 c22 c23

c13 c23 c33

⎞
⎠ , (23)

where M = 〈χ〉
[ 〈χ〉

�

]3 = f√
2
ε3.

123
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The Dirac mass Lagrangian for neutrinos is,

− Lν
Yukawa = yν

11ψ̄
�
L1
HνeR

[χ

�

]3 + yν
12ψ̄

�
L1
HνμR

[χ

�

]3

+yν
13ψ̄

�
L1
HντR

[χ

�

]3 + yν
21ψ̄

�
L2
HνeR

[χ

�

]

+yν
22ψ̄

�
L2
HνμR

[χ

�

]
+ yν

23ψ̄
�
L2
HντR

[χ

�

]

+yν
31ψ̄

�
L3
HνeR

[
χ†

�

]
+ yν

32ψ̄
�
L3
HνμR

[
χ†

�

]

+yν
33ψ̄

�
L3
HντR

[
χ†

�

]
+ H.c. (24)

The Dirac mass matrix for neutrinos now reads,

MD = v√
2

⎛
⎝
yν

11ε
3 yν

12ε
3 yν

13ε
3

yν
21ε yν

22ε yν
23ε

yν
31ε yν

32ε yν
33ε

⎞
⎠ . (25)

The mass matrix of neutrinos after including the Majorana
mass term is,

M =
(ML MD
MT

D MR

)
. (26)

The light neutrino mass matrix is,

M ≈ − MDM−1
R MT

D,

≈ v√
2
ε′

⎛
⎜⎜⎝

− ε4
(
c22c33yν2

11 −2c22yν
11+c22−2c33yν

11+c33−yν2
11 +4yν

11−2
)

(c22−1)(c33−1)
−ε2yν

11 − ε2(c33yν
11−yν

11y
ν
33+yν

33−1)

c33−1
−ε2yν

11 −1 −1

− ε2(c33yν
11−yν

11y
ν
33+yν

33−1)

c33−1 −1 − (c33+(yν
33−2)yν

33)

c33−1

⎞
⎟⎟⎠ , (27)

where ε′ = v
f ε , and we have again assumed each and every

coupling exactly one except those appearing in above equa-
tion.

The neutrino masses approximately are,

m1 ≈
(−yν2

11 + 2yν
11 − 1

)

c22 − 1
ε4ε′v/

√
2,

m2 ≈

(
−
√

4c2
33 − 8c33 + yν4

33 − 4yν3
33 + 6yν2

33 − 4yν
33 + 5 − 2yν

33 − yν2
33 + 2yν

33 + 1

)

2(c33 − 1)
ε′v/

√
2,

m3 ≈

(√
4c2

33 − 8c33 + yν4
33 − 4yν3

33 + 6yν2
33 − 4yν

33 + 5 − 2c33 − yν2
33 + 2yν

33 + 1

)

2(c33 − 1)
ε′v/

√
2. (28)

The neutrino mixing angles are,

sin θ12 �
∣∣∣∣∣
y�

12

y�
22

− yν
11

∣∣∣∣∣ ε
2,

sin θ23 �
∣∣∣∣

1 − c33

c33 + (yν
33 − 2)yν

33

∣∣∣∣ ,

sin θ13 �
∣∣∣∣
(c33yν

11 − yν
11y

ν
33 + yν

33 − 1)

c33 + (yν
33 − 2)yν

33

∣∣∣∣ ε2. (29)

4 The scalar potential

The scalar potential of the model can be written in the fol-
lowing form,

−Lpotential = −μ2ϕ†ϕ + λ(ϕ†ϕ)2 − μ2
χ χ∗χ + λχ (χ∗χ)2

+ (ρ χ2 + H.c.) + λϕχ(χ∗χ)(ϕ†ϕ), (30)

where we have introduced a soft breaking of the Z5 sym-
metry in the fifth term. We are assuming λϕχ = 0, i.e., no
Higgs-flavon mixing [36]. If this term is non-zero, the phe-
nomenology of the flavon field will be different, for instance,
see Ref. [28]. The only parameter which can have a phase in
the scalar potential is ρ. However, this phase can be removed
by a phase rotation of the flavon field χ leading to a real value
of the VEV of the field χ .

We can parametrize the flavon field by excitations around
its VEV,

χ(x) = f + s(x) + i a(x)√
2

. (31)

In a similar manner, the Higgs field can be written as,

ϕ(x) = v + h(x)√
2

. (32)

123
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The minimization conditions can be written in terms of the
scalar and pseudo-scalar components having the following
masses:

ms = √
μχ − 2ρ = √

λχ f and ma = √−2ρ. (33)

We observe that the mass of the pseudoscalar component
of the flavon field depends on the soft-breaking parameter
ρ. Therefore, it is a free parameter of the model. Now using
Eq. 31, we can write

χ

�
= ε[1 + s + ia

f
]. (34)

The couplings of the scalar and pseudoscalar components
of the flavon field are obtained from Eq. 24 by writing the
effective Yukawa couplings in the following form:

Y f
i j ϕ = y f

i j

(χ

�

)n f
i j
(

v + h√
2

.

)

∼= y f
i jε

n f
i j

v√
2

⎡
⎣1 + n f

i j (s + ia)

f
+ h

v

⎤
⎦

= M f

⎡
⎣1 + n f

i j (s + ia)

f
+ h

v

⎤
⎦ , (35)

where f = u, d, �, and n f
i j is the power of the parameter ε

appearing in the mass matrices M f .
We note that for our phenomenological investigation, we

have only retained the terms linear in the flavon field compo-
nents s and a in Eq. 35. The terms which are higher than the
linear terms are not interesting in the present work. The cou-
plings of the Higgs boson field h to the charged fermions are
real and diagonal since the mass matrices M f can be diag-
onalized resulting in real and positive masses of the charged
fermions. However, the couplings of the scalar and pseu-
doscalar components s and a of the flavon field are given by
n f
i jM f . This product cannot be diagonalized exactly and as

a consequence, the couplings of s and a cannot be made real
and diagonal. This in turn gives rise to the flavour-changing
and CP-violating interactions of the flavon field.

The couplings of a field with fermions for minimal Z2 ×
Z5 symmetry are now given by,

yua fi L f j R ≡ yuai j = v√
2 f

⎛
⎝

4yu11ε
4 4yu12ε

4 4yu13ε
4

2yu21ε
2 2yu22ε

2 2yu23ε
2

0 0 0

⎞
⎠ ,

ydai j = v√
2 f

⎛
⎝

5yd11ε
5 5yd12ε

5 5yd13ε
5

3yd21ε
3 3yd22ε

3 3yd23ε
3

yd31ε yd32ε yd33ε

⎞
⎠ ,

y�
ai j = v√

2 f

⎛
⎝

5y�
11ε

5 5y�
12ε

5 5y�
13ε

5

3y�
21ε

3 3y�
22ε

3 3y�
23ε

3

y�
31ε y�

32ε y�
33ε

⎞
⎠ . (36)

In the similar way, the couplings of a field with fermions for
non-minimal Z2 × Z9 symmetry are given by

yua fi L f j R ≡ yuai j = v√
2 f

⎛
⎝

8yu11ε
8 6yu12ε

6 8yu13ε
8

8yu21ε
8 4yu22ε

4 8yu23ε
8

0 4yu32ε
4 0

⎞
⎠ ,

ydai j = v√
2 f

⎛
⎝

7yd11ε
7 7yd12ε

7 7yd13ε
7

5yd21ε
5 5yd22ε

5 5yd23ε
5

3yd31ε
3 3yd32ε

3 3yd33ε
3

⎞
⎠ ,

y�
ai j = v√

2 f

⎛
⎝

7y�
11ε

7 7y�
12ε

7 7y�
13ε

7

5y�
21ε

5 5y�
22ε

5 5y�
23ε

5

3y�
31ε

3 3y�
32ε

3 3y�
33ε

3

⎞
⎠ . (37)

For the pseudoscalar component of flavon field, the fol-
lowing notation is used:

yi j = ys fi L fi R = −iya fi L fi R . (38)

The couplings of a to fermions are identical to that of s except
with a relative phase factor i . This factor becomes trivial in
the squared amplitude of a Feynman diagram mediated by a.
Thus, it does not give rise to CP-violating interactions to the
order investigated in this work.

5 Quark flavour physics in the minimal and
non-minimal Z2 ×ZN flavour symmetry

The quark flavour physics places stronger bounds on the
parameter space of our model, which is parametrized by
the VEV of the flavon field f , the mass of the pseudoscalar
flavon ma , and the quartic coupling λχ . In particular, mea-
surement of the loop-induced processes in the SM such as
neutral meson mixing and rare mesonic decays constrain the
parameter space of the model. The numerical inputs used in
this work are given in Table 6.

5.1 Neutral meson mixing

The non-diagonal couplings of the flavon to fermions intro-
duce the FCNC interactions at tree-level. Therefore, they
are expected to be highly suppressed from neutral meson–
antimeson mixing. These interactions of the flavon can be
parametrized by writing the �F = 2 effective Hamiltonian
as follows,

H�F=2
NP = Ci j

1 (q̄iL γμ q j
L)2 + C̃i j

1 (q̄iR γμ q j
R)2

+ Ci j
2 (q̄iR q

j
L)2 + C̃i j

2 (q̄iL q
j
R)2 + Ci j

4 (q̄iR q
j
L)

× (q̄iL q
j
R) + Ci j

5 (q̄ iL γμ q j
L) (q̄iR γ μq j

R) + H.c.,
(39)

where qR,L = 1±γ5
2 q and the colour indices are omitted for

simplicity.

123
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Table 6 Values of the
experimental and theoretical
quantities used as input
parameters

GF 1.166 × 10−5 GeV [50] v 246.22 GeV [50]

αs [MZ ] 0.1184 [51] mu (2.16+0.49
−0.26) × 10−3 GeV [50]

MW 80.387 ± 0.016 GeV [50] md (4.67+0.48
−0.17) × 10−3 GeV [50]

fK 159.8 MeV [52] mc 1.27 ± 0.02 GeV [50]

mK 497.611 ± 0.013 MeV [50] ms 93.4+8.6
−3.4 GeV [50]

B̂K 0.7625 [51] mt 172.69 ± 0.30 GeV [50]

BK
1 0.60(6) [52] mb 4.18+0.03

−0.02 GeV [50]

BK
2 0.66(4) [52] mc(mc) 1.275 GeV

BK
3 1.05(12) [52] mb(mb) 4.18 GeV

BK
4 1.03(6) [52] mt (mt ) 162.883 GeV

BK
5 0.73(10) [52] α 1/137.035 [50]

η1 1.87 ± 0.76 [53] e 0.302862 GeV

η2 0.574 [54] me 0.51099 MeV [50]

η3 0.496 ± 0.047 [55] mμ 105.65837 MeV [50]

fBs 230.3 MeV [51] mτ 1776.86 ± 0.12 MeV [50]

mBs 5366.88 MeV [50] τμ 2.196811 × 10−6 s [50]

ˆBBs 1.232 [51] ττ (290.3 ± 0.5) × 10−15 s [50]

BBs
1 0.86(2)(+5

−4) [56] mp 938.272 MeV [50]

BBs
2 0.83(2)(4) [56] mn 939.565 MeV [50]

BBs
3 1.03(4)(9) [56] mD 1864.83 MeV [50]

BBs
4 1.17(2)(+5

−7) [56] fD 212 MeV [51]

BBs
5 1.94(3)(+23

−7 ) [56] BD
1 0.861 [57]

η2B 0.551 [54] BD
2 0.82 [57]

fBd 190.0 MeV [51] BD
3 1.07 [57]

mBd 5279.65 MeV [50] BD
4 1.08 [57]

ˆBBd 1.222 [51] BD
5 1.455 [57]

BBd
1 0.87(4)(+5

−4) [56] τBd (1.520 ± 0.004) × 10−12 s [58]

BBd
2 0.82(3)(4) [56] τBs (1.505 ± 0.005) × 10−12 s [58]

BBd
3 1.02(6)(9) [56] τKL (5.116 ± 0.021) × 10−8 s [50]

BBd
4 1.16(3)(+5

−7) [56] τD (410.1 ± 1.5) × 10−15 s [50]

BBd
5 1.91(4)(+22

−7 ) [56]

The tree-level contribution to neutral meson mixing due
to the flavon exchange gives rise to the following Wilson
coefficients [59,60],

Ci j
2 = −(y∗

j i )
2
(

1

m2
s

− 1

m2
a

)

C̃i j
2 = −y2

i j

(
1

m2
s

− 1

m2
a

)

Ci j
4 = − yi j y ji

2

(
1

m2
s

+ 1

m2
a

)
, (40)

where ms and ma are the masses of scalar and pseudoscalar
component of flavon field, respectively.

The Wilson coefficients Ci are computed at a scale �,
where heavier new degrees of freedom are integrated out.

They need to be evolved down to the hadronic scales 4.6 GeV
for bottom mesons, 2.8 GeV for charmed mesons, and 2 GeV
for kaons. These particular scales are used in the lattice com-
putations of the corresponding matrix elements [52,56,57].
In this work, renormalization group running of the matrix ele-
ments is implemented as discussed in Ref. [57] and matrix
elements are taken from Refs. [52,56]. Thus, the new physics
contribution to the Bq − B̄q mixing amplitudes due to the
Wilson coefficients Ci at a scale � can be written as [57],

〈B̄q |H�B=2
eff |Bq〉i =

5∑
j=1

5∑
r=1

(
b(r,i)
j + η c(r,i)

j

)

×ηa j Ci (�) 〈B̄q |Qbq
r |Bq〉, (41)
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where q = d, s, αs is the strong coupling constant, η =
αs(�)/αs(mt ), and a j , b

(r,i)
j , c(r,i)

j are the so-called the magic
numbers which are taken from Ref. [61]. We can write a
similar formula for D0 − D̄0 mixing with magic numbers
given in Ref. [57]. For K 0− K̄ 0 mixing, the formula becomes
[57],

〈K̄ 0|H�S=2
eff |K 0〉i =

5∑
j=1

5∑
r=1

(
b(r,i)
j + η c(r,i)

j

)

×ηa j Ci (�) Rr 〈K̄ 0|Qsd
1 |K 0〉, (42)

where Rr are the ratio of the matrix elements of NP operators
over that of SM [62] and their numerical values are directly
taken from Ref. [57] for our analysis. The magic numbers
for K 0 − K̄ 0 mixing are taken from Ref. [52].

The mixing observables of the K 0 − K̄ 0 mixing can be
used now to constrain the flavon mass and VEV by employing
their experimental measurements. These are [57],

CεK = Im〈K 0|H�F=2
eff |K̄ 0〉

Im〈K 0|H�F=2
SM |K̄ 0〉 = 1.12+0.27

−0.25,

C�mK = Re〈K 0|H�F=2
eff |K̄ 0〉

Re〈K 0|H�F=2
SM |K̄ 0〉 = 0.93+1.14

−0.42, (43)

where numbers are given at 95% C.L., H�F=2
eff contains the

SM and flavon contributions, andH�F=2
SM represents only the

SM contribution.
The mixing observables for the Bq − B̄q mixing are,

CBq e
2iφBq = Im〈B0

q |H�F=2|B̄0
q 〉

Im〈B0
q |H�F=2

SM |B̄0
q 〉

where q = s, d for Bs and Bd mixing respectively. The
following measurements at 95% CL limits are used in this
work [57],

CBs = 1.110 ± 0.090 [0.942, 1.288],
φo
Bs = 0.42 ± 0.89 [−1.35, 2.21]

CBd = 1.05 ± 0.11 [0.83, 1.29],
φo
Bd = −2.0 ± 1.8 [−6.0, 1.5].

The new physics contributions to neutral meson mixing
can be written as,

Md,s,K
12 = (Md,s,K

12 )SM

(
1 + hd,s,K e

2iσd,s,K
)

. (44)

We assume the minimum flavour violation scenario that
corresponds to σd,s,K = 0. We adopt the following future
sensitivity phases in this work [63]:

1. Phase I which is 50 fb−1 LHCb and 50 ab−1 Belle II (late
2020s);

Table 7 Future projected sensitivity of the neutral meson mixing

Observables Phase I Phase II Ref.

hd 0–0.04 0–0.028 [63]

hs 0–0.036 0–0.025 [63]

hK 0–0.3 – [64]

2. Phase II which is 300 fb−1 LHCb and 250 ab−1 Belle II
(late 2030s).

The expected sensitivities to C�mK and CBq in future
phase I and II of LHCb and Belle II can be obtained from
Table 7.

In Fig. 1, we show the bounds on the VEV of the flavon and
the mass of the pseudo-scalar flavon arising due to the neutral
kaon mixing observables CεK and C�mK for the minimal
model based on theZ2×Z5 flavour symmetry. On the left, the
allowed region by the observables CεK and C�mK is shown
for the quartic coupling λχ = 2. There is a sudden dip in the
allowed parameter space given by CεK which appears due to

a cancellation in the Wilson coefficients Ci j
2 and C̃i j

2 when
masses of scalar and pseudoscalar flavon become identical.
For C�mK , this dip is not visible in this plot, and is excluded
for the quartic coupling for λχ = 2. The region bounded by
the yellow curve is the allowed parameter space by the future
projected sensitivity as shown in Table 7. On the right panel,
we show the allowed regions of the parameter space by the
observable CεK for λχ = 0.5, 2, 4π . It is observed that the
allowed region shrinks as λχ approaches smaller values.

Similar results for non-minimal model based on the Z2 ×
Z9 flavour symmetry are shown in Fig. 2. The constraints
on the allowed parameter space by the neutral kaon mixing
observablesCεK andC�mK , in this case, are more stringent in
comparison to that of the minimal (Z2 ×Z5) flavour symme-
try. In particular, we observe that the region with the sudden
dip is excluded for the non-minimal model. Moreover, there
is no allowed parameter space for the future projected sen-
sitivity of the observable C�mK for the bench-mark values
of the couplings given in the Appendix. Therefore, we show
these bounds for different values (|yd12| = 1 and |yd21| = π)

of the couplings which are allowed by a more relaxed fit.
We show the allowed regions of parameter space by the

Bs − B̄s mixing observables CBs and φBs for λχ = 2 in the
ma − f plane for the minimal model based on the Z2 × Z5

flavour symmetry and the non-minimal model based on the
Z2 × Z9 flavour symmetry in Fig. 3. In the left panel in
Fig. 3a, the red and yellow coloured boundaries are rep-
resenting allowed flavon contribution for current values of
CBs and φBs , respectively in the minimal model, while that
for the non-minimal model are shown in the right panel in
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Fig. 1 The allowed parameter space by flavour observables CεK and
C�mK in thema− f plane for the minimal (Z2 ×Z5) flavour symmetry.
On the left panel in a, the allowed bounds for λχ = 2 with current limits
forC�mK andCεK are shown by red and violet boundaries, respectively.

Also, the allowed bound with projected limits of C�mK is shown with
yellow boundary. The effect of the variation of the quartic coupling λχ

on the observable CεK is shown on the right panel in b

Fig. 2 The allowed parameter space by flavour observables CεK and
C�mK in thema− f plane for the non-minimalZ2×Z9 flavour symme-
try. On the left panel in a, the allowed bounds for λχ = 2 with current
limits for C�mK and CεK are shown by green and magenta boundaries,

respectively. Also, the allowed bound with projected limits of C�mK is
shown with olive coloured boundary. The effect of the variation of the
quartic coupling λχ on the observable CεK is shown in the right panel
in b

Fig. 3b, by magenta and green coloured boundaries, respec-
tively. We note that the region in the left panel, bounded by the
blue curve, represents the allowed bounds for the observable
CBs with projected limits of LHCb Phase-II for the mini-
mal model, while the same for the non-minimal model is
shown by the region surrounded by the olive coloured curve
in the right panel. For the LHCb phase-I, the bounds are
shown by the pink coloured curves for the minimal as well
as for the non-minimal models, which are not appreciably
different than that of the LHCb phase-II. We also notice an
isolated allowed strip of the parameter space for the non-
minimal model below the green boundary in the right panel.

The effects of the observables CBs and φBs are relatively
strong in the non-minimal model based on theZ2×Z9 flavour
symmetry, which is obvious from the figure itself.

Figure 4 shows the allowed parameter space by flavour
observablesCBd and φBd of the Bd− B̄d mixing for λχ = 2 in
thema− f plane. This is shown for the minimal model on the
left in Fig. 4a and for the non-minimal model on the right in
Fig. 4b. In the left panel in Fig. 4a, the red and yellow coloured
boundaries are representing allowed flavon contribution for
current values of CBd and φBd , respectively for the minimal
model based on the Z2 × Z5 symmetry while that for non-
minimal model is shown in the right panel in Fig. 4b by green
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Fig. 3 The parameter space allowed by flavour observables CBs and φBs for λχ = 2 in the ma − f plane for the minimal (Z2 ×Z5) model in the
left panel and for the non-minimal (Z2 × Z9) model in the right panel

Fig. 4 The allowed parameter space by flavour observables CBd and φBd for λχ = 2 in the ma − f plane for the minimal (Z2 ×Z5) model in the
left panel and for the non-minimal (Z2 × Z9) model in the right panel

and purple coloured boundaries, respectively. Moreover, the
region surrounded by the blue curve in the left panel shows
the allowed parameter space for the observable CBd with
projected limits of LHCb Phase-II for the minimal model
while the same for the non-minimal model is shown by olive
coloured boundary in the right panel. The bounds for the
LHCb phase-I are shown by the pink coloured boundaries
for the minimal as well as for the non-minimal model, and
are very similar to that of the LHCb phase-II.

The SM contribution to D0 − D̄0 mixing is marred by
large hadronic uncertainties. Therefore, for constraining the
parameter space of our model, we keep only the flavon con-
tribution to D0 − D̄0 mixing such that it always lies within
the 2σ experimental bound [65]:

|MD
12| = |〈D0|H�F=2|D̄0〉| < 7.5 × 10−3 ps−1. (45)

The bound in the ma − f panel arising from the D0 − D̄0

mixing is shown in Fig. 5 for the minimal model based on
the Z2 × Z5 flavour symmetry and the non-minimal model
based on the Z2 ×Z9 flavour symmetry. The first remarkable
observation is the allowed parameter space for the minimal
model is much smaller than that of the non-minimal model.
This is because the D0 − D̄0 mixing has an enhancement of
the order ε2 (see the coupling 2yu21ε

2 in Eq. 36) in the minimal
model based on the Z2 ×Z5 flavour symmetry, which is not
present in the case of the non-minimal model. Therefore, the
bound derived by the D0 − D̄0 mixing is the most stringent
bound among the bounds given by the mixing observables
in the minimal model. However, this is not the case for the
non-minimal model.

The one-loop contribution to this mixing from the box dia-
gram depends on the relatively large yct and ytc couplings
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Fig. 5 The allowed parameter space by |MD
12| for λχ = 2 in the ma −

f plane for the minimal (Z2 × Z5) model is shown by the magenta
coloured boundary while that for the non-minimal (Z2 ×Z9) model is
shown by the red coloured boundary

of the flavon to fermions. In the minimal model, ytc is zero.
Thus, this contribution is proportional to ε4/(4π2 f 2) in the
minimal model and proportional to ε16/(4π2 f 2) in the non-
minimal model. Therefore, this contribution is highly sup-
pressed with respect to the tree-level contribution used in
deriving the bounds in Fig. 5.

5.2 Leptonic decays of mesons

The effective Hamiltonian for flavon mediated decays of neu-
tral mesons into two charged leptons can be written as,

Heff = −G2
Fm

2
W

π2

(
Ci j
S (q̄i PLq j )�̄� + C̃i j

S (q̄i PRq j )�̄�

+Ci j
P (q̄i PLq j )�̄γ5� + C̃i j

P (q̄i PRq j )�̄γ5�
)

+ H.c.

(46)

The branching ratio of a meson decaying to two charged
leptons reads,

BR(M → �+�−)

= G4
Fm

4
W

8π5
β mM f 2

Mm2
�τM

×
⎛
⎝
∣∣∣∣∣
m2

M

(
Ci j

P − C̃i j
P

)

2m�(mi + m j )
− CSM

A

∣∣∣∣∣
2

+
∣∣∣∣∣
m2

M

(
Ci j
S − C̃i j

S

)

2m�(mi + m j )

∣∣∣∣∣
2

β2

⎞
⎠ ,

(47)

where β(x) = √
1 − 4x2 with x = m�/mM .

The Wilson coefficients having tree-level contribution of
the flavon are given as [59,60],

Ci j
S = π2

2G2
Fm

2
W

2y��y ji
m2

s

C̃ i j
S = π2

2G2
Fm

2
W

2y��yi j
m2

s

Ci j
P = π2

2G2
Fm

2
W

2y��y ji
m2

a

C̃i j
P = π2

2G2
Fm

2
W

2y��yi j
m2

a
. (48)

In the SM, processes of mesons decaying to two charged
leptons are induced by one-loop contribution, and for the Bs

meson it is given by [60],

CSM
A = −V ∗

tbVts Y

(
m2

t

m2
W

)
− V ∗

cbVcs Y

(
m2

c

m2
W

)
, (49)

where Inami–Lim function Y (x) is given by [66],

Y (x) = ηQCD
x

8

[
4 − x

1 − x
+ 3x

(1 − x)2 log x

]
, (50)

where ηQCD = 1.0113 includes NLO QCD effects [67].
For Bd meson, the SM predictions are obtained by a sim-
ple replacement of indices in Eq. 49.

The average of the branching fraction of Bs → μ+μ−
from HFLAV group is [68],

BR(Bs → μ+μ−) = (3.45 ± 0.29) × 10−9. (51)

The latest measurement of the branching fraction of Bd →
μ+μ− is [69,70],

BR(Bd → μ+μ−) < 2.6 × 10−10. (52)

As observed in Ref. [71], due to sizeable width difference,
of the Bs meson, theoretical branching ratio can be converted
to experimental branching ratio by multiplying (1 − ys)−1,
where ys = 0.088±0.014 [72]. This correction is negligible
in the case of the Bd meson.

In addition to BR(Bs → μ+μ−) branching ratio, the
LHCb collaboration has also measured the ratio of the
BR(Bd → μ+μ−) and BR(Bs → μ+μ−) branching frac-
tions, Rμμ [69,70]. The CMS has measured the effective
lifetime, τμμ, of the Bs → μ+μ− decay [73]. We note that
the ratio Rμμ is an excellent observable to probe the min-
imal flavour violation [74]. On the other side, the effective
lifetime, τμμ, can be used to discriminate between the con-
tributions due to any possible new scalar and pseudoscalar
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Table 8 The current and
expected experimental precision
for rare B decays observables
where LHCb-I corresponds to
23 fb−1, LHCb-II corresponds
to 300 fb−1, CMS and ATLAS
correspond to 3 ab−1 [73,74]

Observables Current LHCb-I LHCb-II CMS ATLAS

BR(Bs → μ+μ−)(×109) ±0.38 ±0.30 ±0.16 – ±0.50

Rμμ ∼ 70% ∼ 34% ∼ 10% ∼ 21% –

τμμ ∼ 12% ±0.16 ps ±0.04 ps – –

mediators [74]. The measured value of the ratio of branching
fractions, Rμμ, is [69,70],

Rμμ = BR(Bd → μ+μ−)

BR(Bs → μ+μ−)

= 0.039+0.030+0.006
−0.024−0.004. (53)

The effective lifetime τμμ and the branching fraction of
Bs → μ+μ− are also measured by CMS, and are [73],

τμμ = 1.83+0.23+0.04
−0.20−0.04 ps, (54)

BR(Bs → μ+μ−) = 3.83+0.38+0.19+0.14
−0.36−0.16−0.13 × 10−9. (55)

We have also taken HFLAV measurement average into
account for effective lifetime τμμ, which is [68],

τμμ = 2.00+0.27
−0.26 ps, (56)

with BR(Bs → μ+μ−) given in Eq. 51.
The current and future sensitivities of these observables are
summarized in Table 8. The effective lifetime can be written
in the following form [75],

τμμ = τBs
(Bs → μ+μ−)experiment

(Bs → μ+μ−)theory , (57)

where we have assumed the SM value of the final state depen-
dent observable A f

�� = 1 [72].
In Fig. 6, the bounds coming from the branching ratios

BR(Bd → μ+μ−) and the BR(Bs → μ+μ−) for λχ = 2 in
the ma − f plane are shown. The branching ratios BR(Bd →
μ+μ−) and BR(Bs → μ+μ−) place weaker constraints on
the parameter space of the minimal model. However, for
the non-minimal model, the bounds, particularly from the
branching ratios BR(Bs → μ+μ−), are quite stronger. For
the projected sensitivities of the LHCb Phase-I and II and of
the ATLAS for the BR(Bs → μ+μ−), we do not obtain any
appreciable improvements in our bounds. Therefore, we do
not show them in Fig. 6.

Figure 7 shows the allowed bounds derived from the
HFLAV average of the effective lifetime τμμ and the
branching-ratio BR(Bs → μ+μ−) by the green coloured
curve for the minimal model in Fig. 7a and through the olive
coloured boundary for the non-minimal model in Fig. 7b.
The bounds from the current measurement by CMS, and
from the future projected sensitivity of the LHCb phase-II
for the minimal model based on Z2 × Z5, are shown by red
and yellow coloured boundaries respectively, in Fig. 7a. The
same bounds for the non-minimal model based on theZ2×Z9

flavour symmetry are shown in Fig. 7b by green and magenta
coloured curves respectively. We observe that the bounds are
stronger for the non-minimal model in comparison to that
of the minimal model. For the projected sensitivity of the
LHCb Phase-I, we do not find any appreciable improvement
in the allowed bounds over that from the current measure-
ment. Therefore, we do not show it in Fig. 7.

One of the most important observables for our models is
the ratio Rμμ whose future projected sensitivity will be cru-
cial to constrain our models. On the left panel in Fig. 8a, we
show the bounds arising from the ratio Rμμ for the mini-
mal model. These bounds are weaker for the current mea-
surement as well as for the future projected sensitivity of
the LHCb Phase-I shown by the red and yellow boundaries,
respectively. However, the future projected sensitivity of the
LHCb Phase-II dramatically changes this scenario and pro-
vide extremely stringent constraints on the parameter space
of the minimal model shown by the purple coloured strip.
Therefore, the LHCb Phase-II will be decisive for the mini-
mal model based on the Z2 ×Z5 flavour symmetry. We also
do not find any improvement over the bounds given by the
LHCb Phase-I using the future projected sensitivity of the
CMS experiment. Therefore, we do not show it in Fig. 8a.

On the other hand, for the non-minimal model based on
the Z2 × Z9 symmetry, the bounds from the ratio Rμμ are
shown in Fig. 8b in the right panel. The bounds from the cur-
rent measurement are shown by the green boundary while
the bounds from the LHCb Phase-I are surrounded by the
purple coloured curve. Moreover, we also have bounds from
the future projected sensitivity of the CMS experiment sur-
rounded by olive coloured boundary. These are more strin-
gent than that of the projected sensitivity of the LHCb Phase-
I. We note that similar to the minimal model, the bounds for
the projected sensitivity of the LHCb Phase-II are highly
stringent depicted by the orange coloured strip. This result
does not change even if we deviate from the bench-mark val-
ues of the Yukawa couplings used for these bounds. There-
fore, these bounds are robust, and crucial to test the param-
eter space of the non-minimal model based on the Z2 × Z9

symmetry in the future projected sensitivity of the LHCb
Phase-II.

For the KL → μ+μ− decay, we have only reliable esti-
mate of the so-called short distance (SD) part of KL →
μ+μ− decay [59]. We use the SM prediction obtained in
Ref. [59] and given by
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Fig. 6 The allowed parameter space by BR(Bd → μ+μ−) in the left panel and that for the BR(Bs → μ+μ−) in the right panel for λχ = 2 with
current experimental bounds for the minimal and the non-minimal models

Fig. 7 The allowed parameter space by τμμ for λχ = 2 in the ma − f plane for the recent measurement and the future projected sensitivity of the
LHCb for the minimal (Z2 × Z5) model on the left, and for the non-minimal (Z2 × Z9) model on the right

CSM
A = −V ∗

tsVtd Y

(
m2

t

m2
W

)
− V ∗

csVcdYNNL, (58)

where at NNLO YNNL = λ4Pc(Y ), λ = |Vus | and Pc(Y ) =
0.113 ± 0.017 [76]. The short distance contribution can be
extracted from the experimental measurement and has an
upper limit [60],

BR(KL → μ+μ−)SD < 2.5 × 10−9. (59)

For the case of D → μ+μ− decay, the SM contribution
is plagued by large non-perturbative effects. Therefore, we
only require that the flavon contribution does not generate

more than the experimental upper bound on the branching
ratio that is given at 90% C.L. [77],

BR(D → μ+μ−) < 6.2 × 10−9. (60)

We show bounds arising from the BR(KL → μ+μ−)SD

for λχ = 2 for the minimal and the non-minimal models in
the ma − f plane in Fig. 9. It turns out that the constraints
on the parameter space of the minimal model are weaker.
However, the bounds on the parameter space of the non-
minimal model are more stringent. The constraints from the
D → μ+μ− decay are much weaker than that from the
BR(KL → μ+μ−)SD. Therefore, we do not show them in
this work.
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Fig. 8 The left panel represents the allowed parameter space by Rμμ

for the minimal (Z2×Z5) model with λχ = 2 with the current measure-
ment and for the future projected sensitivity of the LHCb Phase-I and

LHCb Phase-II. The same allowed parameter space for the non-minimal
(Z2 × Z9) model is shown in the right panel

Fig. 9 The parameter space allowed by BR(KL → μ+μ−)SD with
λχ = 2 in the ma − f plane for the minimal (Z2 × Z5) and non-
minimal (Z2 × Z9) model are shown with red and magenta coloured
boundaries, respectively

6 Leptonic flavour physics in the minimal and
non-minimal Z2 ×ZN flavour symmetry

Charged lepton flavour violation (CLFV) has a substan-
tial potential to provide bounds on flavon physics in future
upcoming experiments. The quark flavour constraints cur-
rently dominate our flavon model. However, it is expected
that the future projected sensitivities of CLFV, which are
shown in Table 9, may significantly improve the bounds from
quark flavour physics.

6.1 Radiative leptonic decays

The effective Lagrangian for the radiative leptonic decays
can be written as,

Leff = m�′ CL
T �̄σ ρλPL �′ Fρλ

+ m�′ CR
T �̄σ ρλPR �′ Fρλ. (61)

The radiative leptonic decays are mediated by dipole oper-
ators and their branching ratio reads,

BR(�′ → �γ ) = m5
�′

4π��′

(
|CL

T |2 + |CR
T |2
)

. (62)

The one-loop contribution to the radiative leptonic decays
is shown in Fig. 10. The corresponding Wilson coefficients
are [35],

CL
T = (CR

T )∗ = e

32π2

∑
k=e,μ,τ

{
1

6

(
y∗
�k y�′k + m�

mk
y∗
k�yk�′

)

×
(

1

m2
s

− 1

m2
a

)
− y�k yk�′

mk

m�′

[
1

m2
s

(
3

2
+ log

m2
�′

m2
s

)

− 1

m2
a

(
3

2
+ log

m2
�′

m2
a

)]}
. (63)

The radiative leptonic decays μ → eγ places weak con-
straints on the parameter space of the minimal model as
shown in Fig. 11a. This does not change much even for the
future projected sensitivities of the MEG-II experiment. For
the non-minimal model, the bounds from the current mea-
surement of the MEG experiment, shown in Fig. 11b by the
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Table 9 Experimental upper
limits on various Leptonic
flavour violation (LFV)
processes

Observables Current sensitivity Ref. Future projection Ref.

BR(μ → eγ ) < 4.2 × 10−13 MEG [78] 6 × 10−14 MEGII [79]

BR(τ → eγ ) < 3.3 × 10−8 Babar [80] ∼ 10−9 Belle II [81]

BR(τ → μγ ) < 4.4 × 10−8 Babar [80] ∼ 10−9 Belle II [81]

BR (μ → e)Au < 7 × 10−13 SINDRUM II [82] – –

BR (μ → e)Al – – 3 × 10−15 COMET Phase-I [83,84]

BR (μ → e)Al – – 6 × 10−17 COMET Phase-II [83]

BR (μ → e)Al – – 6 × 10−17 Mu2e [85]

BR (μ → e)Al – – 3 × 10−18 Mu2e II [84]

BR (μ → e)Si – – 2 × 10−14 DeeMe [86]

BR (μ → e)Ti ∼ 10−20−10−18 PRISM/PRIME [87,88]

BR(μ → eēe) < 1.0 × 10−12 SINDRUM [89] ∼ 10−16 Mu3e [90]

BR(τ → 3μ) < 2.1 × 10−8 Belle [91] ∼ 10−9 Belle II [81]

BR(τ → 3e) < 2.7 × 10−8 Belle [91] ∼ 10−9 Belle II [81]

Fig. 10 Feynman diagram representing μ → eγ decay

green boundary, are quite stringent relative to that of the min-
imal model. Moreover, for the future projected sensitivities
of the MEGII experiment, the constraints are further stronger
depicted by the magenta coloured boundary. The constraints

coming from the decays τ → eγ and τ → μγ are weaker
than that of the decay μ → eγ . Therefore, they are not shown
in this work.

6.2 A μ → A e conversion

The effective Lagrangian describing A μ → A e conversion
can be written as,

Leff = CV L
qq ēγ ν PLμ q̄γνq + mμmq C

SL
qq ēPRμ q̄q

+ mμαsC
L
gg ēPRμGρνG

ρν + (R ↔ L), (64)

Moreover, there is additional contribution to A μ → A e
conversion from the dipole operators given in Eq. (61).

Fig. 11 In the left panel, the red and yellow coloured boundaries rep-
resent the allowed parameter space by the current and projected sensi-
tivities of the MEG experiment on the BR(μ → eγ ) for the minimal

(Z2 × Z5) model with λχ = 2 in the ma − f plane. The same bounds
for the non-minimal (Z2 ×Z9) model are shown in the right panel with
green and magenta coloured curves, respectively
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Fig. 12 Feynman diagram showing A μ → A e conversion

The Feynman diagram for A μ → A e conversion is
shown in Fig. 12. The corresponding Wilson coefficients
arise due to the diagram on the left in Fig. 12 [35],

CSL
qq =

(
1

m2
s

+ 1

m2
a

)
y∗
μeRe(yqq),

CSR
qq =

(
1

m2
s

− 1

m2
a

)
yeμRe(yqq). (65)

The nuclear effects which include effects of quarks inside
the nucleons as well as the contribution of the Feynman dia-
gram on the right side of Fig. 12 are absorbed in the nucleon-
level Wilson coefficients defined by,

C̃V L
p =

∑
q=u,d

CV L
qq f pVq ,

C̃ SL
p =

∑
q=u,d,s

CSL
qq f pq −

∑
Q=c,b,t

C SL
QQ f pheavy, (66)

where the quark content of the proton is accounted by vec-
tor and scalar couplings f pVq , f pq , and f pheavy = 2/27

(
1 −

f pu − f pd − f ps
)

[92]. For right-handed operators, analogous
expressions are obtained by replacing L with R, and for the
neutron p is replaced by n. The vector operators contribute
extremely less than the scalar operators and can be neglected
[35]. The numerical values of vector and scalar couplings
are taken from Refs. [93,94], which are based on the lattice
average given in Ref. [95],

f pu = 0.0191 f nu = 0.0171,

f pd = 0.0363 f nd = 0.0404,

f ps = f ns = 0.043. (67)

The A μ → A e conversion rate including nuclear effects
can be written as [35],

Table 10 Numerical values of the dimensionless coefficients D, Sp,n ,
V p,n and the muon capture rate for different nuclei

Target D Sp Sn V p V n �capt [106 s−1]
Au 0.189 0.0614 0.0918 0.0974 0.146 13.06

Al 0.0362 0.0155 0.0167 0.0161 0.0173 0.705

Si 0.0419 0.0179 0.0179 0.0187 0.0187 0.871

Ti 0.0864 0.0368 0.0435 0.0396 0.0468 2.59

Where �capt stands for the muon capture rate

�A μ→A e = m5
μ

4

∣∣∣CL
T D + 4

[
mμmpC̃

SL
p + C̃V L

p V p

+(p → n)]|2 + L → R, (68)

where the dimensionless coefficients D, S p,n and V p,n

depend on the overlap integrals of the initial state muon
and the final-state electron wave-functions with the target
nucleus, and their numerical values are given in Table 10
[96],

The bounds from BR(μ → e) conversion for different
target nucleus with λχ = 2 in the ma − f plane are shown
in Fig. 13. The bounds for the minimal model are shown
in Fig. 13a for the current measurement and for the differ-
ent future projected sensitivities, and the same for the non-
minimal model are shown in Fig. 13b. The strongest bounds
among them arise from the projected future sensitivities of
the PRISM/PRIME experiment for the minimal as well as
non-minimal models.

6.3 μ → 3e and τ → 3μ decays

The three body flavour violating leptonic decays μ → 3e
and τ → 3� where � = e, μ provide additional tests of the
dipole operators given in Eq. (61). Their decay width can be
written as [35],

�(�′ → 3�) = αm′5
�

12π2

∣∣∣∣∣log
m′

�
2

m�
2 − 11

4

∣∣∣∣∣
(
|CL

T |2 + |CR
T |2
)

,

(69)

where the tree-level contribution is ignored due to the strong
chiral-suppression which is dominated by the logarithmic
enhancement of the dipole operators [35]. Other contribu-
tions, such as Z -mediated penguin are strongly suppressed
and ignored [97].

In Fig. 14, we show the allowed parameter space by
BR(μ → 3e) for λχ = 2 in the ma − f plane. For the
minimal model, the bounds are shown in Fig. 14a. They are
weaker for the current measurement and for the future pro-
jected sensitivity as well. In Fig. 14b, the same bounds on
the allowed parameter space are shown for the non-minimal
model. For the current measurement, the bound is given by
the green boundary, and for the future projected sensitivity, it
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Fig. 13 The left panel represents the allowed parameter space by
BR(μ → e) conversion in the ma − f plane with different experi-
mental limits of various target nuclei in Table 9 with λχ = 2, for the

minimal (Z2 × Z5) model. Similar allowed parameter space for the
non-minimal (Z2 × Z9) model is shown in the right panel

Fig. 14 The allowed parameter space by BR(μ → 3e) for the minimal (Z2 × Z5) model on the left and for the non-minimal (Z2 × Z9) model
on the right with λχ = 2

is depicted by the magenta coloured curve. As obvious from
Fig. 14b, the bounds for the non-minimal model are quite
stringent relative to the minimal model. The bounds from
the decay τ → 3� are much weaker and are not shown in
this work.

Finally, we show a summary of the most relevant and strin-
gent bounds on the parameter space of the minimal and the
non-minimal models in Fig. 15.

7 Summary

We have discussed a simple FN mechanism in the frame-
work of a new Z2 × ZN flavour symmetry. This symme-
try is inspired by the extensively explored 2HDM and the

MSSM, where the Z2 symmetry is an essential ingredient
of the theoretical framework. We show that a minimal form
of this symmetry, the Z2 × Z5, is capable of providing an
explanation to the charged fermion mass pattern and quark
mixing along with a mechanism to predict neutrino masses
and mixing angles. However, for the minimal model based
on the Z2 ×Z5 flavour symmetry, all the Yukawa couplings
are not order one, which is a preferred choice in literature.
This observation leads to a non-minimal model based on the
Z2 ×Z9 flavour symmetry, where all the couplings are order
one. The FN mechanism created through theZ2×ZN flavour
symmetry is different from the conventional FN mechanism,
where a continuous U (1) symmetry is employed to achieve
a solution of the flavour problem of the SM.
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Fig. 15 Summarized significant bounds on the minimal Z2 ×Z5 and the non-minimal Z2 ×Z9 model in the left and the right panel respectively

The leading question is the scale where the flavour sym-
metry Z2 ×ZN is broken. This is addressed by deriving the
bounds on the parameter space of the model using flavour
physics data. Moreover, future sensitivities of the CMS and
the phase-I and II of the LHCb for the flavour physics observ-
ables turn out to be an interesting and fertile ground to inves-
tigate the breaking scale of the Z2 × ZN flavour symmetry.
Particularly the reach of the experiments such as MEG II
and PRISM/PRIME, which are going to test lepton flavour
violating effects, could play a crucial role in improving the
present limits by orders of magnitude.

For the minimal model based on the flavour symmetry
Z2 × Z5, the quark flavour physics plays a crucial role.
For instance, the most stringent constraints on the parame-
ter space of the minimal model comes from the K 0 − K̄ 0

and D0 − D̄0 mixing using the present data. In partic-
ular, the D0 − D̄0 provides the very tight bounds since
it is highly unsuppressed due to the PMS in the mini-
mal model. The Bd − B̄d mixing provides tighter bounds
than the Bs − B̄s mixing. The future projected sensitivity
of the Bd − B̄d mixing will further constrain the param-
eter space of the minimal model in future. The rare decays
BR(Bd,s → μ+μ−) branching ratios place relatively weaker
bounds on the parameter space of the minimal model for the
present measurements as well as for the future projected sen-
sitivities of phase-I and II of the LHCb. However, the future
projected sensitivity of the rare B decays observable Rμμ

provides robust and the most stringent bound on the parame-
ter space of the minimal model. Among the leptonic observ-
ables, the future projected sensitivity of the PRISM/PRIME
for the BR (μ → e)Ti will substantially be able to constrain
the parameter space of the minimal model.

In the case of the non-minimal model based on the flavour
symmetryZ2 ×Z9, both the quark as well as leptonic flavour

physics play decisive role in constraining the parameter space
of the non-minimal model. On the quark flavour side, the
most stringent bounds are coming from the K 0 − K̄ 0 mixing
while from the leptonic flavour side, it comes from the radia-
tive leptonic decay μ → eγ . We observe that every flavour
observable including the branching ratio of the KL → μ+μ−
decay, is able to provide important bounds on the parame-
ter space of the non-minimal model. In particular, the future
projected sensitivity of the rare B decays observableRμμ for
the LHCb and CMS experiments, will test the non-minimal
model rigorously. Moreover, the future projected sensitivity
of the PRISM/PRIME for the BR (μ → e)Ti will eliminate
a large part of the allowed parameter space.

In short, quark flavour physics will determine the allowed
parameter space of the minimal model, and leptonic flavour
violating observables independently can further probe the
parameter space up to a very high scale. For the non-minimal
model based on the Z2 × Z9 flavour symmetry, quark and
lepton flavour physics play a crucial role in constraining the
allowed parameter space of the model. The future sensitiv-
ities of the experiments such as MEG II, Mu3e, DeeMe,
COMET, Mu2e and PRISM/PRIME will be able to constrain
the parameter space of the non-minimal model based on the
Z2 × Z9 flavour symmetry. On the quark side, the Bd − B̄d

mixing in the future phase-I and II of the LHCb will be able to
eliminate a sufficient region of the parameter space. In future
phase-II of the LHCb, the ratio Rμμ will be crucial in ruling
out the major part of the flavon parameter space. Thus, future
projected sensitivities of the LHCb phase-I and II will play
a defining role in determining the fate of the flavon models
discussed in this work.
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Appendix

Benchmark points for the Yukawa couplings

We reproduce the fermion masses using the following values
of the fermion masses at 1 TeV [98],

{mt ,mc,mu} � {150.7 ± 3.4, 0.532+0.074
−0.073,

(1.10+0.43
−0.37) × 10−3} GeV,

{mb,ms,md} � {2.43 ± 0.08, 4.7+1.4
−1.3 × 10−2,

2.50+1.08
−1.03 × 10−3} GeV,

{mτ ,mμ,me} � {1.78 ± 0.2, 0.105+9.4×10−9

−9.3×10−9 ,

4.96 ± 0.00000043 × 10−4} GeV. (70)

The magnitudes and phases of the CKM mixing elements
are [50],

|Vud | = 0.97370 ± 0.00014, |Vcb| = 0.0410 ± 0.0014,

|Vub| = 0.00382 ± 0.00024,

sin 2β = 0.699 ± 0.017, α = (84.9+5.1
−4.5)

◦,
γ = (72.1+4.1

−4.5)
◦, δ = 1.196+0.045

−0.043. (71)

The present scenario of the neutrino physics for the normal
hierarchy can be described by the following global fit results
[99],

�m2
21 = (7.55+0.59

−0.5 ) × 10−5 eV2,

|�m2
31| = (2.50 ± 0.09) × 10−3 eV2,

sin2 θ12 = (3.20+0.59
−0.47) × 10−1,

sin2 θ23 = (5.47+0.52
−1.02) × 10−1,

sin2 θ13 = (2.160+0.25
−0.20) × 10−2, (72)

where range of errors is 3σ .
We fit quark and charged-lepton masses along with the

neutrino oscillation data by defining

χ2 = (mq − mmodel
q )2

σ 2
mq

+ (m� − mmodel
� )2

σ 2
m�

+ (sin θi j − sin θmodel
i j )2

σ 2
sin θi j

+ (sin 2β − sin 2βmodel)2

σ 2
sin 2β

+ (α − αmodel)2

(σα)2 + (γ − γ model)2

(σγ )2

+ (�m2
21 − �m2 model

21 )

σ 2
�m2

21

+ (�m2
31 − �m2 model

31 )

σ 2
�m2

31

+ (sin θν
i j − sin θν model

i j )2

σsin θν
i j

where q = {u, d, c, s, t, b}, � = {e, μ, τ }, ν = {νe, νμ, ντ }
and i, j = 1, 2, 3. The phases of the CKM matrix in the
standard choice are defined as follows:

βmodel = arg

(
−VcdV ∗

cb

VtdV ∗
tb

)
, αmodel = arg

(
− VtdV ∗

tb

VudV ∗
ub

)
,

γ model = arg

(
−VudV ∗

ub

VcdV ∗
cb

)
. (73)

The minimal model

The dimensionless coefficients yu,d,�,ν
i j = |yu,d,�,ν

i j |eiφq,�,ν
i j

are scanned with |yu,d,�,ν
i j | ∈ [0.1, 4π ] and φ

q,�,ν
i j ∈ [0, 2π ].

The fit results are,

Yu =
⎛
⎝

−1.68 − 3.37i −0.09 + 0.03i −0.1 − 0.02i
1.53 + 4.95i −0.57 + 0.55i 0.48 + 0.002i
0.76 + 0.18i −1.04 + 0.46i 0.58 − 0.65i

⎞
⎠ ,

Yd =
⎛
⎝

−4.15 + 3.58i 2.20 − 0.89i 2.62 − 4.20i
−0.33 − 0.36i 0.07 − 0.075i 0.17 + 0.47i
−0.24 − 0.07i −0.06 − 0.084i −0.07 − 0.12i

⎞
⎠ ,

Yl =
⎛
⎝

−0.07 − 0.06i 0.099 − 0.004i 0.45 − 0.32i
−0.14 − 0.09i 0.08 − 0.06i −0.63 + 0.24i
−0.04 + 0.09i −0.09 + 0.06i 0.10 − 0.0003i

⎞
⎠ ,

with ε = 0.1 ε′ = 1.259×10−13, χ2 ≈ 14, and the following
results for neutrino oscillation data,

{|yν
11|, |yν

22|, |yν
33|, |c11|, |c22|, |c33|}

� {3.14, 3.14, 1.48, 3.14, 0.90, 2.76},
{φν

11, φ
ν
22, φ

ν
33, φ

c
11, φ

c
22, φ

c
33}

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2023) 83 :305 Page 23 of 25 305

� {3.67, 7.73 × 10−7, 1.24, 1.18, 2.10, 5.18}.

The non-minimal model

The dimensionless coefficients yu,d,�,ν
i j = |yu,d,�,ν

i j |eiφq,�,ν
i j

are scanned with |yu,d,�,ν
i j | ∈ [0.9, 2π ] and φ

q,�,ν
i j ∈ [0, 2π ].

The fit results are,

Yu =
⎛
⎝

1 0.87 − 0.49i −0.23 + 0.97i
−0.9 + 1.05i −0.7 − 0.72i 1
0.94 − 0.33i 0.55 + 0.84i 0.9

⎞
⎠ ,

Yd =
⎛
⎝

0.99 − 0.09i 3.24 − 1.05i 1
0.99 − 0.10i 0.92 + 0.39i 0.9

1 1 −1.04 + 0.54i

⎞
⎠ ,

Yl =
⎛
⎝

0.9 0.9 1.5
0.9 1.5 1.5
1.5 1.5 0.9

⎞
⎠ ,

with ε = 0.23, ε′ = 1.259 × 10−13, χ2 ≈ 9, and the follow-
ing results for neutrino oscillation data,

{|yν
11|, |yν

22|, |yν
33|, |c11|, |c22|, |c33|}

� {3.14, 3.04, 0.9, 2.08, 3.14, 0.9},
{φν

11, φ
ν
22, φ

ν
33, φ

c
11, φ

c
22, φ

c
33}

� {2.68, 0.51, 4.92, 0.86, 3.14, 1.99}.

Outline of a possible ultraviolet completion of the
Z2 ×ZN model

We present an outline of the underlying renormalizable the-
ory, which could be suitable to the models discussed in this
work using the idea discussed in Ref. [5]. Let us suppose
that the underlying theory is a technicolour (TC) theory con-
taining two technicolour symmetries. The SM Higgs field
comes from the conventional TC group and the flavon field
χ is derived from a different dark technicolour symmetry
(DTC).

The TC chiral condensate which play the role of the SM
Higgs VEV can be parametrized as,

〈ψ̄TC
L ψTC

R 〉 =
(
�TC exp(kTC�χTC)

)3
, (74)

where �χTC is the chirality of the operator on the left of
above equation, �TC is the scale of the underlying gauge TC
theory, and kTC is a constant.

In a similar manner, we can write DTC chiral condensate
which represents the flavon VEV,

〈ψ̄DTC
L ψDTC

R 〉 =
(
�DTC exp(kDTC�χDTC)

)3
. (75)

Now the couplings yi j are given by the following equation:

yi j = f (�TC,�DTC,�ETC), (76)

where the scale �ETC corresponds to the extended TC theory
in which the SM, TC and DTC fermions are embedded.

The masses of the fermions can be written as,

m f ∝ f (�TC,�DTC,�ETC). (77)

We observe that if the function f (�TC,�DTC,�ETC) is
always generated by a tree-level exchange of the underly-
ing theory, all the couplings yi j will have the same order of
magnitude (which could be order one). However, depend-
ing of the structure of the underlying theory, some of the yi j
could be loop-induced and some could come from tree-level
contributions. Therefore, this will result in some couplings
being suppressed compared to the tree-level contributions.
This scenario will lead to the numerical couplings for the
minimal model based on the Z2 × Z5 flavour symmetry.
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