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Abstract We derive the most general homogeneous and
isotropic teleparallel geometries, defined by a metric and a
flat, affine connection. We find that there are five branches of
connection solutions, which are connected via several limits,
and can further be restricted to the torsion-free and metric-
compatible cases. We apply our results to several classes of
general teleparallel gravity theories and derive their cosmo-
logical dynamics for all five branches. Our results show that
for large subclasses of these theories the dynamics reduce to
that of closely related metric or symmetric teleparallel grav-
ity theories, while for other subclasses up to two new scalar
degrees of freedom participate in the cosmological dynamics.

1 Motivation

Various cosmological observations, such as the tension
between late-time and early-time measurements of the Hub-
ble parameter [1], show indications towards physics beyond
the so-called �CDM model, which describes the dynam-
ics of the universe through general relativity, a cosmological
constant � and cold dark matter (CDM), and has become
widely accepted as the standard model of cosmology. In order
to explain these observations, besides introducing new and
unknown types of matter, numerous modified gravity the-
ories have been developed and their cosmological dynam-
ics has been studied [2–4]. Most conventionally, these theo-
ries depart from the common formulation of general relativ-
ity using the metric and its Levi-Civita connection, thereby
attributing gravity to the curvature of the latter. However,
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besides these also a large number of so-called teleparallel
theories exists, which attribute gravity to the torsion or non-
metricity of a flat connection, and these three possibilities
have been subsumed under the title “geometric trinity of
gravity” [5]. Further, instead of restricting the teleparallel
geometry to being either metric-compatible or symmetric,
one may also consider geometries which allow for both tor-
sion and nonmetricity, leading to the class of general telepar-
allel gravity theories [6,7]. Several classes of such theories
have been proposed and studied [8–10].

In order to study the cosmological dynamics of any given
gravity theory, one usually assumes that all dynamical fields
present in the theory exhibit cosmological symmetry, i.e.,
homogeneity and isotropy, and are thus invariant under spa-
tial rotations and translations. For the metric, this leads to the
well-known Friedmann–Lemaître–Robertson–Walker form,
while, e.g., a scalar field is assumed to be constant along
hypersurfaces of constant time. For teleparallel gravity the-
ories, one of the dynamical fields is a flat, affine connec-
tion, and so one must also impose homogeneity and isotropy
on this field for consistency. Previous works in this direc-
tion have shown that the most general homogeneous and
isotropic affine connection is described by five functions of
time, two of which can be associated with torsion, while three
are related to nonmetricity [11,12]. If one imposes vanishing
curvature and torsion, one finds three branches of solutions
described by one function of time [13,14], while for van-
ishing curvature and nonmetricity one finds three branches
without any additional free functions besides those determin-
ing the metric [15].

The aim of this article is to continue the aforementioned
line of studies and determine the most general homogeneous
and isotropic teleparallel geometry, defined by a metric and
a flat, affine connection, where the latter is restricted only by
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the condition of vanishing curvature, but may possess both
torsion and nonmetricity, and to study the physical conse-
quences of our findings in the context of different general
teleparallel gravity theories. Moreover, we study how a cou-
pling between matter and the teleparallel connection, which
gives rise to a hypermomentum described as a cosmological
hyperfluid [16], enters as a source into the cosmological field
equations.

The outline of this article is as follows. In Sect. 2 we
give a brief review of general teleparallel gravity, its dynam-
ical fields and the general structure of the field equations.
Bianchi identities are discussed in Sect. 3. We then construct
the most general class of homogeneous and isotropic geome-
tries in Sect. 4. In Sect. 5, we apply our findings to the matter
side of the field equations and study the possible energy–
momentum–hypermomentum sources. Further, in Sect. 6 we
discuss several classes of general teleparallel gravity theories,
derive their cosmological dynamics and study their general
properties as well as relate them to previously studied classes
of theories. Finally, we give an example for a possible con-
tribution of the newly introduced connection degrees of free-
dom to the cosmological dynamics in Sect. 7. We end with a
conclusion in Sect. 8.

2 General teleparallel gravity

We start by giving a brief review of the class of general
teleparallel gravity theories. In their metric-affine formula-
tion, the dynamical fields are given by a Lorentzian metric
gμν and an affine connection with coefficients �μ

νρ , which
is imposed to be flat,

Rρ
σμν=∂μ�ρ

σν−∂ν�
ρ

σμ+�ρ
λμ�λ

σν−�ρ
λν�

λ
σμ = 0.

(1)

Note that this connection is different from the Levi-Civita
connection, whose coefficients are the Christoffel symbols

◦
�μ

νρ = 1

2
gμσ (∂νgσρ + ∂ρgνσ − ∂σ gνρ), (2)

where we use an empty circle to denote any quantity related
to the Levi-Civita connection. Their difference can be written
as

�μ
νρ − ◦

�μ
νρ = Mμ

νρ = Kμ
νρ + Lμ

νρ, (3)

where the distortion Mμ
νρ is composed of the contortion

Kμ
νρ = 1

2

(
Tν

μ
ρ + Tρ

μ
ν − Tμ

νρ

)
, (4)

as well as the disformation

Lμ
νρ = 1

2

(
Qμ

νρ − Qν
μ

ρ − Qρ
μ

ν

)
, (5)

and these are defined through the torsion

Tμ
νρ = �μ

ρν − �μ
νρ, (6)

and the nonmetricity

Qμνρ = ∇μgνρ = ∂μgνρ − �σ
νμgσρ − �σ

ρμgνσ . (7)

The dynamical fields, among which we also include an arbi-
trary set ψ I of matter fields, constitute the action, which we
write in the form

S[g, �,ψ] = Sg[g, �] + Sm[g, �,ψ], (8)

where Sg is the gravitational action, which defines the gravity
theory under consideration, and Sm is a generic matter action.
It follows that the variation of the latter can be written in the
form

δSm =
∫

M

(
1

2
�μνδgμν + Hμ

νρδ�μ
νρ + �I δψ

I
)

×√−gd4x, (9)

where �I = 0 are the matter field equations, and we intro-
duced the energy–momentum tensor �μν and the hypermo-
mentum Hμ

νρ . For the gravitational part of the action, we
similarly write

δSg = −
∫

M

(
1

2
Wμνδgμν + Yμ

νρδ�μ
νρ

) √−gd4x, (10)

where Wμν and Yμ
νρ depend on the gravity theory under

consideration. When performing the variation with respect
to the connection, one must take into account its flatness (1),
either by adding a Lagrange multiplier and keeping the vari-
ation δ�μ

νρ of the connection arbitrary, or by allowing only
variations of the form

δ�μ
νρ = ∇ρξμ

ν (11)

with a tensor field ξμ
ν , which preserve the flatness by con-

struction. Following either approach yields the connection
field equations [10,17]

∇τYμ
ντ − Mω

τωYμ
ντ = ∇τ Hμ

ντ − Mω
τωHμ

ντ , (12)

while variation with respect to the metric yields the field
equations

Wμν = �μν. (13)

As mentioned before, the dependence of the terms Wμν and
Yμ

νρ on the dynamical fields depends on the choice of the
gravitational action, and thus the theory under consideration.
A simple example is the general teleparallel equivalent of
general relativity (GTEGR), whose action reads [6]

Sg = − 1

2κ2

∫
d4x

√−gG, (14)

where the scalar G in the action is defined as
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G = 2Mμ
ν[μMνρ

ρ] =
(

1

4
QμνρQμνρ

−1

2
QμνρQρμν − 1

4
Qρμ

μQρν
ν

+1

2
Qμ

μρQ
ρν

ν + 1

4
TμνρTμνρ + 1

2
TμνρTρνμ

−Tμ
ρμTν

ρν + TμνρQνρμ − Tμ
ρμQρν

ν

+Tμ
ρμQ

ν
νρ

)
. (15)

This action has the property that it agrees with the Einstein–
Hilbert action up to a boundary term B,
◦
R = −G + B, B = 2

◦∇μM
[νμ]

ν

= − ◦∇μ(Qμν
ν − Qν

νμ − 2Tν
νμ), (16)

and so its field equations turn out to be identical to those of
general relativity [10],

Wμν = 1

κ2

(
◦
Rμν − 1

2

◦
Rgμν

)
,

∇τYμ
ντ − Mω

τωYμ
ντ = 0. (17)

We will discuss a number of generalizations of GTEGR in
Sect. 6.

3 Bianchi identity of general teleparallel theories

In GR the famous Bianchi identity states that the Einstein
tensor is automatically covariantly conserved, and so is the
energy–momentum tensor of matter by the Einstein equa-
tion. Here we want to derive the Bianchi identity of a general
teleparallel theory and look at the consequences for hyper-
momentum conservation.

Let us assume again we have an action S[g, �,ψ] of met-
ric, connection, and matter fields. This action can be either
Sg , Sm , or their sum, where the first is of course indepen-
dent of ψ . In each case the action is by construction invari-
ant under coordinate transformations, i.e. its value will not
change if we perform an infinitesimal coordinate transfor-
mation xμ → xμ + ζμ. But the integrand in the action will
change by its Lie derivative along ζμ, so we obtain

0 = δζ S[g, �,ψ] =
∫

M

×
(

−1

2
EμνLζ gμν+Yα

μνLζ �
α

μν+PILζ ψ
I
)

√−gd4x . (18)

Let us also define

Cμ
ν = ∇τYμ

ντ − Mω
τωYμ

ντ . (19)

If we take for S the full action then Eμν = 0, Cμ
ν = 0, and

PI = 0 will be the equations of motion of metric, connection,

and matter fields, respectively. For either of the three choices
of S we will have PI = 0 either trivially or by the matter
field equation of motion �I = 0, so we can drop this term;
otherwise we must consider concrete field theories to find the
form of Lζ ψ

I . For the other two Lie derivatives we have

Lζ gμν = ζ λ∂λgμν + 2∂(μζ λgν)λ = 2
◦∇(μζν) , (20)

Lζ �
α

μν = ζ λ∂λ�
α

μν + ∂μζλ�α
λν

+ ∂νζ
λ�α

μλ − ∂λζ
α�λ

μν + ∂μ∂νζ
α

= Rα
μλνζ

λ + ∇ν∇μζα + ∇ν(T
α

λμζ λ) . (21)

For our flat connection the Riemann tensor vanishes, so we
have

0 = δζ S[g, �,ψ]
=

∫

M

(
−Eμν

◦∇μζν + Yα
μν∇ν(∇μζα + T α

λμζ λ)
)

× √−gd4x (22)

=
∫

M

( ◦∇μEμ
ν + (∇μ − Mω

μω)Cν
μ − T α

νμCα
μ
)

ζ ν

× √−gd4x , (23)

where we integrated by parts.1 Since this must hold for any
ζμ we obtain the Bianchi identity
◦∇μEμ

ν + (∇μ − Mω
μω)Cν

μ − T α
νμCα

μ = 0, (24)

or in other form
◦∇μ(Eμ

ν + Cν
μ) + (Mα

νμ − T α
νμ)Cα

μ = 0. (25)

This identity trivially holds if we take for S the full action
Sg + Sm , although one finds that if the metric equation alone
is fulfilled we still have

∇μCν
μ − T α

νμCα
μ = 0 (26)

automatically. In theories without torsion the connection
equation of motion is actually just (∇μ − Mω

μω)Cν
μ = 0,

which is by the Bianchi identity fulfilled automatically when-
ever the metric equations are. Hence they become obsolete
by the Bianchi identity. If we consider only S = Sg we
have Eμν = Wμν and Yα

μν = Yα
μν , and (24) becomes a

non-trivial identity between the left side of the equations of
motion. One can check that it holds for all examples given

1 Note that by the identity ∂μ(
√−g Vμ) = √−g(

◦∇μVμ) =√−g(∇μVμ−Mμ
νμV ν) for any vector Vμ, integrating the connection

∇ by parts will introduce additional terms proportional to Mμ
νμ. We

also assume here that boundary terms vanish, e.g., that ζ ν vanishes on
the boundary.
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below. When using the matter action Sm we haveEμν = �μν ,
and we assume the matter energy–momentum tensor to be
covariantly conserved on its own,

◦∇μ�μ
ν = 0. We then find

that hypermomentum must be covariantly conserved as well
in the form

∇μCν
μ − T α

νμCα
μ = 0 Cμ

ν = ∇τ Hμ
ντ − Mω

τωHμ
ντ .

(27)

Lastly we consider the case when the gravitational action also
depends on a scalar field �, as we will discuss below. Then
Lζ � = ζμ∂μ� = ζμ

◦∇�, and we find the Bianchi identity
◦∇μEμ

ν + ∇μCν
μ − T α

νμCα
μ + �

◦∇ν� = 0, (28)

where � is the equation of motion of �.

4 Homogeneous and isotropic cosmology

In this section we derive the most general teleparallel geome-
try which is compatible with the assumption of cosmological
symmetry, following closely the approach used for the met-
ric and symmetric teleparallel cases [13–15]. Using spherical
coordinates (t, r, ϑ, ϕ), the generating vector fields establish-
ing cosmological symmetry are the three rotation generators

�1 = sin ϕ∂ϑ + cos ϕ

tan ϑ
∂ϕ , (29a)

�2 = − cos ϕ∂ϑ + sin ϕ

tan ϑ
∂ϕ , (29b)

�3 = −∂ϕ , (29c)

as well as the three translation generators

τ1 = χ sin ϑ cos ϕ∂r + χ

r
cos ϑ cos ϕ∂ϑ − χ sin ϕ

r sin ϑ
∂ϕ ,

(30a)

τ2 = χ sin ϑ sin ϕ∂r + χ

r
cos ϑ sin ϕ∂ϑ + χ cos ϕ

r sin ϑ
∂ϕ ,

(30b)

τ3 = χ cos ϑ∂r − χ

r
sin ϑ∂ϑ . (30c)

We then demand that both the metric gμν and the flat affine
connection �μ

νρ , which constitute the dynamical fields in
the teleparallel geometry, are invariant under the action of
these vector fields. This means that their Lie derivatives [18]

(LX g)μν = Xρ∂ρgμν + ∂μX
ρgρν + ∂νX

ρgμρ (31)

and

(LX�)μνρ = Xσ ∂σ �μ
νρ − ∂σ X

μ�σ
νρ + ∂νX

σ �μ
σρ

+∂ρX
σ �μ

νσ + ∂ν∂ρX
μ (32)

must vanish, where we used the abbreviation χ=√
1−u2r2,

and u2 ∈ R indicates the spatial curvature. The latter can take
positive or negative values, so that u can be real or imaginary;
this choice of the parameter will turn out to be more practical
than the more common curvature parameter k = u2. It is
well known that the most general metric which satisfies the
condition (31) is the Robertson-Walker metric, whose non-
vanishing components are given by

gtt=−N 2, grr= A2

χ2 , gϑϑ=A2r2, gϕϕ=gϑϑ sin2 ϑ,

(33)

where we denote by N = N (t) the lapse function and by
A = A(t) the scale factor. Note that we will keep the former
general at this point, and make a convenient choice later in
this article. Further, we introduce the hypersurface conormal
nμ and spatial metric hμν , which allow us to decompose the
metric in the form

gμν = −nμnν + hμν. (34)

Their non-vanishing components are given by

nt= − N , hrr= A2

χ2 , hϑϑ=A2r2, hϕϕ=hϑϑ sin2 ϑ.

(35)

Further, the Levi-Civita tensor εμνρσ of gμν gives rise to
spatial Levi-Civita tensor εμνρ via

εμνρ = nσ εσμνρ, εμνρσ = 4ε[μνρnσ ]. (36)

For the affine connection, we will proceed in two steps. In
addition to the symmetry condition (32) for the six gener-
ating vector fields of cosmological symmetry, we must also
impose the condition (1) of vanishing curvature. Starting with
the former condition, one finds that the non-vanishing com-
ponents of the most general cosmologically symmetric affine
connection are given by [11,12,14]

�t
t t = K1, �ϑ

rϑ = �ϑ
ϑr = �ϕ

rϕ = �ϕ
ϕr = 1

r
,

�ϕ
ϑϕ = �ϕ

ϕϑ = cot ϑ, �ϑ
ϕϕ = − sin ϑ cos ϑ,

�t
rr = K2

χ2 , �r
ϑϑ = −rχ2, �r

ϕϕ = −rχ2 sin2 ϑ,

�r
ϕϑ = −�r

ϑϕ = K5r
2χ sin ϑ,

�t
ϑϑ = K2r

2, �r
tr = �ϑ

tϑ = �ϕ
tϕ = K3,

�r
r t = �ϑ

ϑ t = �ϕ
ϕt = K4, �r

rr = kr

χ2 ,

�t
ϕϕ = K2r

2 sin2 ϑ, �ϑ
rϕ = −�ϑ

ϕr = K5 sin ϑ

χ
,

�ϕ
rϑ = −�ϕ

ϑr = − K5

χ sin ϑ
, (37)
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where K1(t), . . . , K5(t) are functions of time. For this con-
nection, we can now calculate the curvature tensor, which
reads

Rμ
νρσ = 2

K3(K4 − K1) + ∂t K3

N 2 nνn[ρhμ
σ ]

+2
K2(K4 − K1) − ∂t K2

A2 nμn[ρhσ ]ν

+2
K2K5N

A3 nμενρσ − 2
K3K5

N A
nνε

μ
ρσ

−2
∂t K5

N A
εμ

ν[ρnσ ] + 2
u2 + K2K3 − K 2

5

A2 hμ
[ρhσ ]ν,

(38)

making use of the decomposition (34) we introduced before.
Note that all terms appearing in this decomposition are inde-
pendent, and so their coefficients must vanish separately.
Hence, the connection is flat if and only if

∂t K5 = K2K5 = K3K5 = u2 + K2K3 − K 2
5

= K3(K4 − K1) + ∂t K3 = K2(K4 − K1)

−∂t K2 = 0. (39)

In order to determine the most general solution to these con-
ditions, we distinguish the following two cases:

1. We start by assuming u = 0, i.e., vanishing spatial curva-
ture. In this case we have the condition K2K3 = K 2

5 , so
either both sides are vanishing or non-vanishing. How-
ever, from K2K5 = K3K5 = 0 follows that K5 = 0 or
K2 = K3 = 0. Hence, the only option is K5 = K2K3 =
0. Therefore, at least one of K2 or K3 must vanish, which
leaves three cases to be distinguished:

(a) Setting K2 = K3 = 0, the remaining equations
are already satisfied and no further restrictions on
the parameter functions arise. K1 and K4 are the
only parameters left, which are arbitrary and uncon-
strained.

(b) For K3 = 0 and K2 �= 0, K2 is a free function. Now
only one of K1 and K4 is left undetermined, since the
difference is constrained to satisfy

K4 − K1 = ∂t K2

K2
. (40)

(c) Assuming K2 = 0 and K3 �= 0, one obtains a similar
result as in the previous case, but now K3 is a free
function and the difference between K1 and K4 must
satisfy

K4 − K1 = −∂t K3

K3
. (41)

2. We then continue with the spatially curved case u �= 0.
Now we can further distinguish the following two cases:

(a) K5 �= 0: From K2K5 = K3K5 = 0 follows
K2 = K3 = 0. Hence, K5 = ±u, which becomes
imaginary for negative curvature u2 < 0, and the
remaining equations are satisfied. K1 and K4 are left
undetermined.

(b) K5 = 0: In this case one has K2K3 = −u2 �= 0 and
so both must be non-zero and inversely proportional,
so that only one of them can be chosen arbitrarily.
This further implies

0 = ∂t K2K3 + K2∂t K3, (42)

and so

K4 − K1 = ∂t K2

K2
= −∂t K3

K3
, (43)

so that the remaining equations consistently deter-
mine the difference between K1 and K4.

We see that there are five different branches, in each of
which the flat, cosmologically symmetric connection is deter-
mined by two functions of time. In the following, however,
it will turn out to be more convenient to introduce a different
parametrization, which is based on the expressions

Tμ
νρ = 2T1h

μ
[νnρ] + 2T2ε

μ
νρ,

Qρμν = 2Q1nρnμnν + 2Q2nρhμν + 2Q3hρ(μnν). (44)

for the most general cosmologically symmetric torsion and
nonmetricity tensors [11,16], where T1, T2, Q1, Q2, Q3 are
functions of time t , which serve as an alternative parametriza-
tion to the previously introduced K1, . . . , K5. It follows from
the tensor character of the expressions on both sides of the
equations that these new quantities are scalars under coor-
dinate transformations, which makes them more suitable
as dynamical variables in the cosmological field equations.
They are related to the previously introduced quantities by

T1 = K4 − K3

N
, T2 = K5

A
, Q1 = ∂t N

N 2 − K1

N
,

Q2 = 1

N

(
K4 − ∂t A

A

)
, Q3 = K3

N
− K2N

A2 . (45)

From the case distinction discussed above, we see that in all
cases we are free to choose the function K4, or equivalently,
Q2 in the scalar variables, so that we can use it as a dynam-
ical variable in all branches, which we denote by K = Q2.
For the remaining branches of flat connections, we need to
introduce different parametrizations, in order to express the
remaining scalar variables in terms of one additional, inde-
pendent, dynamical variable. We follow the same distinction
as before, and use the Hubble parameter

H = ∂t A

N A
(46)

for convenience.
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1. For u = 0, we have K5 = 0, and therefore T2 = 0. We
then distinguish further:

(a) In the branch K2 = K3 = 0, we find Q3 = 0. We are
free to choose K1, and hence can define the second
variable as L = Q1. The remaining scalar quantity
is determined as T1 = H + K .

(b) For K2 �= 0, one has K2 as a free function, and so
can use L = Q3 as dynamical variable. K1 is fixed,
and so are

T1 = H + K , Q1 = −K + H + ∂t L

N L
. (47)

(c) For K3 �= 0, one can freely choose K3, which again
allows to define L = Q3 as dynamical variable. In
this case the remaining scalars read

T1 = H + K − L , Q1 = −K − H − ∂t L

N L
. (48)

2. For the spatially curved case u �= 0, we use the following
two parametrizations:

(a) For K5 �= 0, we choose the sign of u in the
parametrization such that K5 = u, and are free to
choose L = Q1. The other sign convention of u will
give the same result with the replacement u → −u.
This yields

T1 = H + K , T2 = u

A
, Q3 = 0. (49)

(b) Finally, for K5 = 0, we can choose L = H +K −T1

such that

T1 = H + K − L , T2 = 0, Q1 = −K − H

− ∂t L

N L
, Q3 = L + u2

A2L
. (50)

To further simplify the parametrizations, it turns out to be
convenient to introduce rescaled quantities

H = AH, K = AK , L = AL ,

Ti = ATi , Qi = AQi , (51)

where H is the conformal Hubble parameter, as well as the
conformal time derivative

f ′ = A

N
∂t f (52)

for any function f of time. In terms of these quantities, the
parametrizations simplify, and take the form summarized in
Table 1.

It is worth discussing how these different branches of cos-
mologies are related to each other. For the spatially curved
branch 2a, we see that K2 = K3 = 0 everywhere, and so this
property is preserved also in the limit u → 0, leading to the
branch 1a. This is different for the spatially curved branch 2b.
Using the parametrization given in Table 1, the limit u → 0

leads to the branch 1c. However, this limit depends on the
choice of the parametrization. By introducing a new parame-
ter function L̃ = u2/L, the parametrization of the branch 2b
becomes

T1 = H + K − u2

L̃
, T2 = 0, Q1 = −K + L̃′

L̃
,

Q2 = K, Q3 = L̃ + u2

L̃
. (53)

Taking the limit u → 0, and renaming L̃ to L, we obtain
the branch 1b. Finally, defining a new parameter instead as
L̃ = L/u, one obtains

T1 = H + K − uL̃, T2 = 0, Q1 = −K − L̃′

L̃
,

Q2 = K, Q3 = u

(
L̃ + 1

L̃

)
. (54)

In the limit u → 0, we obtain the branch 1a, with the identi-
fication of the new parameter

L = −K − L̃′

L̃
. (55)

Further, one may consider the special cases of vanishing
torsion and nonmetricity, respectively. First note that the
branch 2a has explicit torsion T2 = u, and so does not have a
limit with vanishing torsion. For the remaining branches, this
limit is obtained by solving T1 = 0 forK, and one obtains the
four branches of symmetric teleparallel cosmology [13,14].
Similarly, to obtain vanishing nonmetricity, one sets K = 0
and then solves for L. In this case the three spatially flat
(u = 0) branches assume the common limit T1 = H and
T2 = 0. Together with the two spatially curved branches,
these agree with the result found for metric teleparallel cos-
mology [15]. These relations are illustrated in Fig. 1.

In the following sections, we will apply the conditions of
homogeneity and isotropy to the matter source and gravita-
tional field equations of teleparallel gravity theories.

5 Cosmologically symmetric field equations and
energy–momentum–hypermomentum

We apply the conditions of cosmological symmetry intro-
duced in the previous section to the generic form (13) of
the general teleparallel field equations. Assuming that the
teleparallel geometry given by a metric and a flat affine con-
nection is homogeneous and isotropic, it follows that also
the left hand side of the gravitational field equations, which
is constituted by these fields, has this symmetry, and must
therefore be of the form

Wμν = Nnμnν + Hhμν,

∇τYμ
ντ s − Mω

τωYμ
ντ = Tnμn

ν + Shμ
ν, (56)
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Table 1 Branches for flat
connections with cosmological
symmetry

u K2 K3 T1 T2 Q1 Q2 Q3

1a = 0 = 0 = 0 H + K 0 L K 0

1b = 0 �= 0 = 0 H + K 0 −K + L′

L
K L

1c = 0 = 0 �= 0 H + K − L 0 −K − L′

L
K L

2a �= 0 = 0 = 0 H + K u L K 0

2b �= 0 �= 0 �= 0 H + K − L 0 −K − L′

L
K L + u2

L

Fig. 1 Schematic relation between different cosmologically symmetric branches

where the dependence of the scalars N,H,T,S follows
from the gravity theory under consideration. For this form of
hypermomentum the connection equation of motion becomes
symmetric in μ and ν. Hence, the right hand side of the
field equations must be of the same form. For the energy–
momentum tensor �μν , the cosmological symmetry condi-
tion leads to the perfect fluid form

�μν = ρnμnν + phμν. (57)

Similarly, imposing the cosmological symmetry on the
hypermomentum leads to the form [16]

Hρμν = φhμρnν + χhνρnμ + ψhμνnρ

+ωnμnνnρ − ζερμν. (58)

Note that here and for the rest of the paper χ refers to the field
appearing in the hypermomentum, and not to the expression√

1 − u2r2. Inserting these expressions into the gravitational
field equations, one finds that they take the form

N = ρ, H = p (59)

for the metric equations, while the connection equations read

−AT = ω′ + 3[Hω + (H − T1 + Q2 − Q3)ψ

+ (H − T1 + Q2)χ ] , (60a)

−AS = φ′ + 3Hφ + (H − T1 + Q2 − Q3)ψ

+ (H − T1 + Q2)χ . (60b)

Note that the latter depend on the choice of the cosmologi-
cally symmetric connection. For the five different branches
we found, they are given as follows. For the spatially curved

branch 2a and its flat limit 1a we find

− AT = ω′ + 3Hω,

−AS = φ′ + 3Hφ. (61)

The spatially curved branch 2b yields

− AT = ω′ + 3Hω + 3Lχ − 3
u2

L ψ,

−AS = φ′ + 3Hφ + Lχ − u2

L ψ. (62)

For the spatially flat branch 1c one has

− AT = ω′ + 3Hω + 3Lχ,

−AS = φ′ + 3Hφ + Lχ, (63)

while the branch 1b yields

− AT = ω′ + 3Hω − 3Lψ,

−AS = φ′ + 3Hφ − Lψ. (64)

We will make use of these expressions in the following sec-
tions, where we will derive the cosmological field equations
for a number of example theories and discuss their physical
implications.

6 Application to teleparallel theories

We now apply our findings to a few classes of general telepar-
allel gravity theories and study their cosmological dynam-
ics. In Sect. 6.1 we study the f (G) class of theories, whose
Lagrangian is given by an arbitrary function f of the GTEGR
Lagrangian G. Another class of theories based on the most
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general Lagrangian which is quadratic in torsion and non-
metricity is studied in Sect. 6.2. Finally, we consider a class
of theories with a non-minimally coupled scalar field in
Sect. 6.3.

6.1 f (G) gravity

The first example we study is a generalization of GTEGR
whose action is given by

Sg = − 1

2κ2

∫
d4x

√−g f (G), (65)

where G denotes the scalar (15).

δG = ◦∇αδgμν(Mρ
(μ|ρ|δα

ν) − Mα
(μν)

+M [αρ]
ρgμν) + δ�α

μν(−Mμν
α − Mν

α
μ + Mρ

αρg
μν

+Mμρ
ρδν

α) + δgμν(Mρ(μν)M
σρ

σ

−Mρ
σ(μ)Mσ

ν)ρ). (66)

Varying the action with respect to the metric and the connec-
tion, one obtains the field equations [10]

f ′
(

◦
Rμν − 1

2

◦
Rgμν

)
− Mρ

(μν)

◦∇ρ f ′

+ ◦∇(μ f ′Mσ
ν)σ + M [ρσ ]

σ gμν

◦∇ρ f ′ + 1

2
( f − f ′G)gμν

= κ2�μν, (67a)

Mνρ
ρ∇μ f ′ + Mσ

μσ g
νρ∇ρ f ′ − Mνρ

μ∇ρ f ′ −
Mρ

μ
ν∇ρ f ′ = 2κ2(∇ρHμ

νρ − Mω
ρωHμ

νρ). (67b)

One can then evaluate these for the cosmologically symmet-
ric branches of teleparallel geometries. First note that the
scalar G takes the cosmological value

G = 3

A2 [Q3(Q1 − Q2 + 2T1) + 2(Q2 − T1)
2 − 2T 2

2 ].
(68)

The structure of the resulting cosmological field equations
depends on the choice of the branch.

We start with the spatially curved branch 2a, for which the
metric field equations become

12H2 f ′

A2 − f = 2κ2ρ , (69a)

− 4E f ′′

A4 − 4(H′ + 2H2 − u2)
f ′

A2 + f = 2κ2 p , (69b)

with

E = A2HG ′, (70)

while the left hand side of the connection equations vanishes
identically, so that they reduce to the continuity equations

ω′ + 3Hω = φ′ + 3Hφ = 0. (71)

It is remarkable that the two functions K and L describing
the dynamics of the flat connection do not explicitly appear
in these equations. Calculating

G = 6(H2 − u2)

A2 , (72)

we see that these do not enter implicitly through f either, and
so fully decouple for this branch. These findings also hold
in the limit u → 0, in which the branch 1a is obtained, for
which the cosmological field equations become

12H2 f ′

A2 − f = 2κ2ρ , (73a)

−4E f ′′

A4 − 4(H′ + 2H2)
f ′

A2 + f = 2κ2 p , (73b)

and the scalar G becomes

G = 6
H2

A2 , (74)

and (70) still holds. Note that these equations agree with those
of the metric teleparallel class of f (T ) theories; while the
spatially curved case (69) yield those for the “axial” branch
of metric teleparallel cosmologies, the flat case (73) yields
its flat limit [15,19].

The situation is similar, yet different for the remaining
branches. For the spatially curved case 2b, the metric cos-
mological field equations become

− 9(u2 + L2)E f ′′

A4L4

+
[
6HL(u2 + 2HL − L2) − 3(u2 + L2)L′]

f ′

A2L2 − f = 2κ2ρ , (75a)

3(u2 + 4HL − 3L2)E f ′′

A4L4

+
{

2L[2L(u2 − 2H2) − 3H(u2 − L2)] − 4L2H′

+3(u2 + L2)L′} f ′

A2L2 + f

= 2κ2 p , (75b)

while the connection equations become

− 9(u2 + L2)E f ′′

A4L4 = 2κ2

A(
ω′ + 3Hω + 3Lχ − 3

u2

L ψ

)
, (76a)

− 3(u2 + L2)E f ′′

A4L4 = 2κ2

A

(
φ′ + 3Hφ + Lχ − u2

L ψ

)
,

(76b)
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where

E = 4HL2(u2 + HL)(H − L) − 2L2(u2 + 2HLL2)H′

−2u2L′2 + L(u2 + L2)L′′ = −A2L3 G
′

3
, (77)

with

G = 3
L2A2 [2L(H − L)(u2 + HL) − (u2 + L2)L′]. (78)

We now see that the scalar L enters the field equations, while
K does not. Note that the connection field equations can be
satisfied only if the hypermomentum satisfies the combined
conservation equation

(ω + 3φ)′ + 3H(ω + 3φ) = 0. (79)

This holds also for the flat limiting cases; for the case 1c we
find the equations

− 9LE f ′′

A4 + 3(4H2 − 2HL − L′) f ′

A2 − f = 2κ2ρ ,

(80a)

3(4H − 3L)E f ′′

A4 − (4H′ − 3L′ − 6HL + 8H2)
f ′

A2

+ f = 2κ2 p (80b)

− 9LE f ′′

A4 = 2κ2

A
(ω′ + 3Hω + 3Lχ) , (80c)

− 3LE f ′′

A4 = 2κ2

A
(φ′ + 3Hφ + Lχ) , (80d)

with

E = 4H2(H − L) − 2(2H − L)H′ + L′′ = −A2 G
′

3
, (81)

and

G = 6H(H − L) − 3L′

A2 , (82)

while for the branch 1b we have

− 9LE f ′′

A4 + 3(4H2 + 2HL + L′) f ′

A2 − f = 2κ2ρ ,

(83a)

3(4H + L)E f ′′

A4 − (4H′ + 3L′ + 6HL + 8H2)

f ′

A2 + f = 2κ2 p (83b)

− 9LE f ′′

A4 = 2κ2

A
(ω′ + 3Hω − 3Lψ) , (83c)

− 3LE f ′′

A4 = 2κ2

A
(φ′ + 3Hφ − Lψ) , (83d)

with

E = 4H2(H + L) − 2(2H + L)H′ − L′′ = −A2 G
′

3
, (84)

and

G = 6H(H + L) + 3L′

A2 , (85)

Note that the last three branches of cosmological dynam-
ics allow for a particular classification of their solutions in
case the right hand side of the connection field equations van-
ishes, e.g., for vanishing hypermomentum. Further assuming
u2 < 0, i.e., negative spatial curvature, the connection field
equations (76) are solved by L = ±iu. Choosing the lower
sign, the metric field equations (75) then reduce to

12H(H + iu)
f ′

A2 − f = 2κ2ρ , (86a)

− 48(H + iu)2(H′ − H2 − iuH)
f ′′

A4

− 4(H′ + 2H2 + 3iuH − u2)
f ′

A2 + f = 2κ2 p , (86b)

while for the upper sign one obtains an equivalent set of equa-
tions up to the trivial redefinition u 	→ −u. It follows that
in these cases the cosmological dynamics in f (G) gravity
become identical to the vector branch of the metric telepar-
allel f (T ) class of theories [15,19]. Since in this case the
connection degree of freedom L is fixed by an algebraic
equation we do not obtain a dynamical contribution of it
to the metric evolution. So, even if the resulting equations
would give rise to a dark energy like effect, i.e. accelerated
expansion at late times, it should not be called dynamical as
it would rather come from the choice of f and not a new
degree of freedom. Similarly, setting L = 0 solves the con-
nection equations in (80) and (83) (again assuming that their
right hand side vanishes), while in both cases the metric field
equations reduce to (73) again, and thus reproduce the flat
limiting case of f (T ) cosmology. Any remaining solutions,
given by L �= ±iu in the spatially curved case and L �= 0
in the spatially flat cases – except in 1a and 2a where the
connection equations of motion are trivial – must then sat-
isfy E = 0, leading to G = G0 where G0 is a constant. This
follows directly from the form of the connection equations
of motion, where all terms on the left side are proportional
to f ′′∂ρG. In general the left side is then an algebraic com-
bination of derivatives of G, but since in our cosmological
setup G depends only time all terms are proportional to G ′.
Since G contains first derivatives of L the equation G = G0

can be seen as a first order differential equation for L. For
example, for the case 1b one finds

L = L0
A2 + 1

3A2

∫
dη A2(G0A2−6H2), (87)

with L0 an integration constant and η conformal time. How-
ever, one can easily see that for constant G = G0 the metric
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equations of motion become

(
◦
Rμν−1

2

◦
Rgμν

)
= κ2

f ′(G0)
�μν+ f (G0)− f ′(G0)G0

2 f ′(G0)
gμν

(88)

which are nothing but the GR Friedmann equations with
rescaled κ2 and an effective cosmological constant. This case
does also not lead to a dynamical dark energy, since only f
and its derivatives evaluated at G0 enter the metric equations,
which are fixed and do not evolve, though one may see G0

as another integration constant of solving E = 0 for L. In
the presence of hypermomentum the connection equations
become more involved and will generally lead to G ′ �= 0 and
more interesting solutions, but it is curious to see that in its
absence f (G) gravity does not involve a dynamical connec-
tion. Either L is fixed by an algebraic equation or it leads to
constant G.

6.2 General teleparallel quadratic gravity

The next class of teleparallel gravity theories we study is
known as general teleparallel quadratic gravity [6]. Its action
is an arbitrary linear combination of the 11 scalars which are
quadratic in torsion and nonmetricity, and hence takes the
form

Sg = − 1

2κ2

∫
d4x

√−gG̃

= − 1

2κ2

∫
d4x

√−g(c1Q
μνρQμνρ

+c2Q
μνρQρμν + c3Q

ρμ
μQρν

ν + c4Q
μ

μρQν
νρ

+c5Q
μ

μρQ
ρν

ν + a1T
μνρTμνρ + a2T

μνρTρνμ

+a3T
μ

ρμTν
ρν + b1T

μνρQνρμ

+b2T
μρ

μQρν
ν + b3T

μρ
μQ

ν
νρ)

= − 1

2κ2

∫
d4x

√−g

[
Mμνρ(k1Mμνρ

+k2Mνρμ + k3Mμρν + k4Mρνμ + k5Mνμρ)

+k6Mρμ
μMρν

ν + k7Mμρ
μMνρ

ν + k8M
μ

μρMν
νρ

+k9Mμρ
μMν

νρ + k10M
μ

μρM
ρν

ν + k11Mρμ
μMνρ

ν

]
,

(89)

with 11 constant coefficients either parametrized as a1,...,3,

b1,...,3, c1,...,5 or k1 ...,11. While the former parametrization
gives more insight into the split between torsion and non-
metricity, and will be more convenient for the purposes of this
article, the latter turns out to be more convenient to express
the field equations, which can be written in the form [10]

Uμν − ◦∇ρ(V ρ
μν) + 1

2
G̃gμν = κ2�μν, (90)

and

∇τ Zμ
ντ − Mω

τωZμ
ντ

= 2κ2(∇τ Hμ
ντ − Mω

τωHμ
ντ ), (91)

where we introduced the abbreviations

Uμν = k1(M
μρσ Mν

ρσ − Mρμ
σ Mρ

νσ

−Mρσ
μMρσν) − k2Mρ

σ(μM

+k3(M
μρσ Mν

σρ − 2Mρσ(μMρ
ν)

σ )

−k4M
ρμ

σ M
σν

ρ − k5M
ρσμMσρ

ν

+k6M
μρ

ρM
νσ

σ − k7M
ρμ

ρM
σν

σ

−k8Mρ
ρμMσ

σν − k9Mρ
ρ(μMσ

ν)σ

−(2k6Mρσ
σ + k11Mσρ

σ + k10M
σ

σρ)Mρ(μν),

(92a)

as well as

V ρμν = −2k6g
ρ(μMν)σ

σ − k11g
ρ(μMσ

ν)σ

−k10Mσ
σ(μgν)ρ + (k4 − k5 − k1 − k3)M

(μν)ρ

+(k5 − k4 − k1 − k3)M
(μ|ρ|ν)

+(k1 − k2 + k3 − k4 − k5)M
ρ(μν) + 1

2
gμν

×
[
(2k6 − k10 − k11)M

ρσ
σ + (k11 − 2k7 − k9)

Mσρ
σ + (k10 − 2k8 − k9)Mσ

σρ

]

(92b)

and

Zμ
νρ = 2k1Mμ

νρ + k2(M
νρ

μ + Mρ
μ

ν)

+2k3Mμ
ρν + 2k4M

ρν
μ + 2k5M

ν
μ

ρ

+2k6Mμσ
σ gνρ + 2k7M

σν
σ δρ

μ

+2k8Mσ
σρδν

μ + k9(Mσ
ρσ δν

μ + Mσ
σνδρ

μ)

+k10(M
ρσ

σ δν
μ + Mσ

σμg
νρ)

+k11(M
νσ

σ δρ
μ + Mσ

μσ g
νρ). (92c)

The two parametrizations are related by

k1 = 2a1 − b1 + 2c1, k2 = −2a2 + b1 + 2c2,

k9 = −2a3 + 2b2 − b3 + 2c5, k4 = a2 + c2,

k5 = a2 − b1 + 2c1, k6 = c4, k7 = a3 + b3 + c4,

k8 = a3 − 2b2 + 4c3, k3 = −2a1 + b1 + c2,

k10 = −b3 + 2c5, k11 = b3 + 2c4. (93)

Note that for the values

a1 = 1

4
, a2 = 1

2
, a3 = −1, b1 = 1, b2 = −1,

b3 = 1, c1 = 1

4
, c2 = −1

2
, c3 = −1

4
, c4 = 0,
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c5 = 1

2
, (94)

or equivalently,

k11 = −k2 = 1,

k1 = k3 = k4 = k5 = k6 = k7 = k8 = k9 = k10 = 0, (95)

we obtain the GTEGR action (15). We now study the cos-
mological dynamics of this class of theories. While deriving
the cosmological field equations, one finds that not all 11
coefficients enter these equations independently, but only a
limited number of linear combinations appears. A suitable
parametrization of these linear combinations is given by

z1 = −2a1 + a2 + 3a3

2
, z2 = 3

2
(3a2 + a3 − 2a1),

z4 = 2a1 + a2 + 3a3 − 2b1 − 6b2 + 4c1 + 12c3,

z7 = 2c3 + c5, z3 = c2 − c4 + c5, z5 = b1 + 3b2 − 4c1

−12c3,

z6 = b2 + b3 − 4c3 − 2c5, z8 = c1 + c2 + c3 + c4 + c5.

(96)

This particular parametrization is chosen here as it will turn
out to simplify the cosmological field equations as much as
possible, and that for GTEGR it is simply given by

z1 = 1, z2 = z3 = z4 = z5 = z6 = z7 = z8 = 0. (97)

Hence, we can easily see which new terms arise from modi-
fications of GTEGR and how they alter the dynamics. We
now display the cosmological field equations, and give a
few remarks on their general properties. We start with the
branch 2a, for which they read

6(z1 + z2)u
2 + 6(z1 − 2z6 − 4z7)H2 − 6(z6 + 2z7)H′

− 6z6K′ − 8z8L′ − 4z8L2 − 3z4K2

− 6(z4 + z5 + 2z6)HK
− 2(3z6 + 6z7 + 8z8)HL − 6z6KL = 2κ2A2ρ , (98a)

− 2(z1 + z2)u
2 − 2(z1 + 2z4 + 2z5)H2

− 2(2z1 + z4 + z5)H′ + 2z5K′ + 4z7L′

− 3z4K2 − 4z8L2 − 2(3z4 + z5)HK
− 2(3z6 + 2z7)HL − 6z6KL = 2κ2A2 p , (98b)

− 6(z6 + 2z7)(2H2 + H′) − 6z6K′ − 8z8L′

− 4H(3z6K + 4z8L) = 2κ2A(ω′ + 3Hω) , (98c)

− 2(z4 + z5)(2H2 + H′) − 2z4K′ − 2z6L′ − 4H(z4K
+ z6L) = 2κ2A(φ′ + 3Hφ) . (98d)

Note that both K and L appear as dynamical quantities with
first-order time derivatives, and that the dynamics does not
depend on the parameter z3 obtained from the action parame-
ters. The same holds true for the branch 1a, which is obtained

taking the limit u → 0, and leads to the field equations

6(z1 − 2z6 − 4z7)H2 − 6(z6 + 2z7)H′ − 6z6K′ − 8z8L′

− 4z8L2 − 3z4K2 − 6(z4 + z5 + 2z6)HK
− 2(3z6 + 6z7 + 8z8)HL − 6z6KL = 2κ2A2ρ , (99a)

− 2(z1 + 2z4 + 2z5)H2 − 2(2z1 + z4 + z5)H′

+ 2z5K′ + 4z7L′ − 3z4K2 − 4z8L2 − 2(3z4 + z5)HK
− 2(3z6 + 2z7)HL − 6z6KL = 2κ2A2 p , (99b)

− 6(z6 + 2z7)(2H2 + H′) − 6z6K′ − 8z8L′

− 4H(3z6K + 4z8L) = 2κ2A(ω′ + 3Hω) , (99c)

− 2(z4 + z5)(2H2 + H′) − 2z4K′ − 2z6L′ − 4H(z4K
+ z6L) = 2κ2A(φ′ + 3Hφ) . (99d)

Note that one can also obtain the cosmological dynamics of
branch 1a from 2a by setting z2 = −z1, which only affects
the curvature term (z1+z2)u2 as z2 only appears here. Hence
one can obtain the same dynamics as in spatially flat cosmo-
logical solutions also in curved spaces by setting z1+z2 = 0,
regardless of their spatial curvature. We then continue with
the branch 2b, for which the cosmological field equations
become significantly more involved, and consist of the met-
ric field equations

3(2z1 − 2z3 + z4 + z5 + 3z6 + 4z7 + 4z8)u
2

− 3(4z3 − 2z4 − 3z5 − 7z6 − 18z7 − 4z8)HL

− 9(z3 + z7 − 2z8)
u4

L2 + 3(z5 − 3z6 − 2z7 + 4z8)u
2 K
L

− 3(4z3 − z5 + 3z6 + 2z7 − 4z8)u
2 H
L

+ 6(z1 − 2z6 − 4z7)H2 − 6(z6 + 2z7)H′

− 2(3z4 + 3z5 + 3z6 − 6z7 − 8z8)HK

+ 2(3z6 + 6z7 + 8z8)
HL′

L − (3z4 − 6z6 + 4z8)K2

+ 3(z3 − z4 − z5 − 3z6

− 5z7 − 2z8)L2 + 4z8
2LL′′ − 3L′2

L2 + (6z6 − 8z8)

× KL′ − LK′

L + 3(2z4 + z5 + z6 − 2z7 − 4z8)KL

= 2κ2A2ρ , (100a)

3(z3 − z4 − z5 − 3z6 − 5z7 − 2z8)L2

− (4z3 + z5 − 3z6 − 2z7 + 4z8)u
2 H
L

− (2z1 − 2z3 + z4 + z5 + 3z6 + 4z7 + 4z8)u
2

+ 2(2z3 − z5 − 3z6 − 10z7 − 4z8)L′

− (4z3 − 6z4 − 5z5 − 9z6 − 14z7 + 4z8)HL
+ 3(2z4 + z5 + z6 − 2z7 − 4z8)KL

123



315 Page 12 of 18 Eur. Phys. J. C (2023) 83 :315

+ 2(z5 − 2z7)K′ − 2(2z1 + z4 + z5)H′

− 2(z1 + 2z4 + 2z5)H2 − (z3 + z7 − 2z8)
u4

L2

− (z5 − 3z6 − 2z7 + 4z8)u
2 K
L + 4z3u

2 L′

L2

+ 2(3z6 + 2z7)
HL′

L + 2(3z6 − 4z8)
KL′

L
− 2(3z4 + z5 − 3z6 − 2z7)HK − (3z4 − 6z6 + 4z8)K2

+ 4(z7 − z8)
L′2

L2 − 4z7
L′′

L = 2κ2A2 p , (100b)

as well as the connection field equations

4(3z6 − 4z8)HK + 6(z3 + z7 − 2z8)
u4

L2

+ 3(4z3 − z5 + 3z6 + 2z7 − 4z8)u
2 H
L

+ 6(z6 + 2z7)(2H2 + H′)
+ 3(4z3 − 2z4 − 3z5 − 7z6 − 18z7 − 4z8)HL
− 6(z3 − z4 − z5 − 3z6 − 5z7 − 2z8)L2

− 3(z5 − 3z6 − 2z7 + 4z8)u
2 K
L

− 3(2z4 + z5 + z6 − 2z7 − 4z8)KL + (6z6 − 8z8)K′

+ 8z8
L′2 − LL′′ − 2HLL′

L2

= 2κ2A

(
ω′ + 3Hω + 3Lχ − 3

u2

L ψ

)
, (100c)

2(z4 + z5)(2H2 + H′) + 2(z3 + z7 − 2z8)
u4

L2

− 2(z3 − z4 − z5 − 3z6 − 5z7 − 2z8)L2

− (z5 − 3z6 − 2z7 + 4z8)u
2 L′

L2

+ (4z3 − 6z4 − 5z5 − 9z6 − 14z7 + 4z8)HL
− (2z4 + z5 + z6 − 2z7 − 4z8)(KL + L′)

+ (4z3 + z5 − 3z6 − 2z7 + 4z8)u
2 H
L

+ 2(z4 − z6)(2HK + K′) − (z5 − 3z6 − 2z7 + 4z8)u
2 K
L

+ 2z6
L′2 − LL′′ − 2HLL′

L2

= 2κ2A

(
φ′ + 3Hφ + Lχ − u2

L ψ

)
. (100d)

We see that in contrast to the two previously studied branches,
L now also appears with second-order time derivatives and
the parameter z3 enters the equations. This holds true also
for the remaining flat branches. For the branch 1c we find the

dynamical equations

2(3z6 + 6z7 + 8z8)
HL′

L
− 3(4z3 − 2z4 − 3z5 − 7z6 − 18z7 − 4z8)HL
+ 6(z1 − 2z6 − 4z7)H2 − 6(z6 + 2z7)H′ − 2(3z4 + 3z5

+ 3z6 − 6z7 − 8z8)HK − (3z4 − 6z6 + 4z8)

× K2 + 3(z3 − z4 − z5 − 3z6 − 5z7 − 2z8)

× L2 + 4z8
2LL′′ − 3L′2

L2 + (6z6 − 8z8)
KL′ − LK′

L
+ 3(2z4 + z5 + z6 − 2z7 − 4z8)KL = 2κ2A2ρ , (101a)

3(z3 − z4 − z5 − 3z6 − 5z7 − 2z8)L2

− (4z3 − 6z4 − 5z5 − 9z6 − 14z7 + 4z8)HL
+ 2(2z3 − z5 − 3z6 − 10z7 − 4z8)L′

+ 3(2z4 + z5 + z6 − 2z7 − 4z8)KL − 4z7
L′′

L

+ 2(3z6 + 2z7)
HL′

L − 2(2z1 + z4 + z5)H′

− 2(z1 + 2z4 + 2z5)H2 + 2(3z6 − 4z8)
KL′

L
+ 2(z5 − 2z7)K′ − 2(3z4 + z5 − 3z6 − 2z7)HK

− (3z4 − 6z6 + 4z8)K2 + 4(z7 − z8)
L′2

L2 = 2κ2A2 p ,

(101b)

4(3z6 − 4z8)HK − 6(z3 − z4 − z5 − 3z6 − 5z7 − 2z8)L2

+ 6(z6 + 2z7)(2H2 + H′)
+ 3(4z3 − 2z4 − 3z5 − 7z6 − 18z7 − 4z8)HL
− 3(2z4 + z5 + z6 − 2z7 − 4z8)KL + (6z6 − 8z8)K′

+ 8z8
L′2 − LL′′ − 2HLL′

L2 = 2κ2A
(
ω′ + 3Hω + 3Lχ

)
,

(101c)

2(z4+z5)(2H2+H′)−2(z3−z4−z5−3z6−5z7−2z8)L2

+ 2(z4 − z6)(2HK + K′) + (4z3 − 6z4 − 5z5

− 9z6 − 14z7 + 4z8)HL − (2z4 + z5 + z6

− 2z7 − 4z8)(KL + L′)

+ 2z6
L′2 − LL′′ − 2HLL′

L2 = 2κ2A
(
φ′ + 3Hφ + Lχ

)
,

(101d)

while in the branch 1b they become

− 2(3z6 + 6z7 + 8z8)
HL′

L − 3(4z3 − z5 + 3z6

+ 2z7 − 4z8)HL + 6(z1 − 2z6 − 4z7)H2

− 2(3z4 + 3z5 + 3z6 − 6z7 − 8z8)HK
− 6(z6 + 2z7)H′ − (3z4 − 6z6 + 4z8)K2
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− 9(z3 + z7 − 2z8)L2 − 4z8
2LL′′ − L′2

L2

− (6z6 − 8z8)
KL′ + LK′

L + 3(z5 − 3z6 − 2z7 + 4z8)

KL = 2κ2A2ρ , (102a)

2(z5 − 2z7)K′ − (z3 + z7 − 2z8)L2

− (4z3 + z5 − 3z6 − 2z7 + 4z8)HL
− 4z3L′ − (z5 − 3z6 − 2z7 + 4z8)KL

+ 4z7
L′′

L − (3z4 − 6z6 + 4z8)K2

− 2(2z1 + z4 + z5)H′ − 2(z1 + 2z4 + 2z5)H2

− 2(3z6 − 4z8)
KL′

L − 2(3z6 + 2z7)
HL′

L s

− 2(3z4 + z5 − 3z6 − 2z7)HK

− 4(z7 + z8)
L′2

L2 = 2κ2A2 p , (102b)

4(3z6 − 4z8)HK + 6(z3 + z7 − 2z8)L2

+ (6z6 − 8z8)K + 6(z6 + 2z7)(2H2 + H′)′

+ 3(4z3 − z5 + 3z6 + 2z7 − 4z8)HL
− 3(z5 − 3z6 − 2z7 + 4z8)KL′

− 8z8
L′2 − LL′′ − 2HLL′

L2 = 2κ2A
(
ω′ + 3Hω − 3Lψ

)
, (102c)

2(z4 + z5)(2H2 + H′) + 2(z3 + z7 − 2z8)L2

− 2z6
L′2 − LL′′ − 2HLL′

L2

+ 2(z4 − z6)(2HK + K′)′

+ (4z3 + z5 − 3z6 − 2z7 + 4z8)HL
+ (z5 − 3z6 − 2z7 + 4z8)(L′ − KL)′

= 2κ2A
(
φ′ + 3Hφ − Lψ

)
. (102d)

Studying the full dynamics arising for the different branches
and all possible parameter choices is a major task that would
exceed the scope of this article. We therefore restrict our-
selves to a few particular classes of theories which are moti-
vated by a field theoretical perspective, which considers
general teleparallel quadratic gravity as a theory of three
dynamical fields hμν, Hμν, Bμν propagating on Minkowski
spacetime, where hμν is the metric perturbation, while Hμν

and Bμν are the symmetric and antisymmetric parts of the
connection perturbation [6]. The first class of theories we
mention here are those from which the field Bμν , which
is a two-form which transforms non-trivially under local
Lorentz transformations of the teleparallel connection, is
absent. From [6], such kind of local Lorentz invariance is
realized by the conditions

a2 − 2a1 = a3 + 4a1 = b3 − b1 = 0. (103)

Theories satisfying these conditions necessarily have z2 = 0.
Observe that z2 only enters the field equations (98) in the
branch 2a, where it governs the terms involving the curvature
parameter u2, and is absent in all other branches. This is
related to the fact that Bμν contributes to the axial torsion
component, which is non-vanishing only in the branch 2a,
and enforced to vanish by the cosmological symmetry in the
other branches. Alternatively, one may consider the weaker
condition that Bμν is a propagating two-form with a U(1)

gauge symmetry. This is the case if the theory parameters
satisfy the conditions

2a1 + a2 + a3 = b3 − b1 = 0, (104)

which by themselves have no immediate consequence on
the linear combinations z1,...,8 relevant in the cosmological
dynamics, but will contribute if they are combined with other
conditions as we will see below.

Another type of conditions on the parameters can be
obtained that the two fields hμν and Hμν propagate two mass-
less spin-2 fields. This can be obtained if one enhances the
diffeomorphism invariance of the theory by another gauge
symmetry, such thathμν and Hμν become individually invari-
ant under diffeomorphisms. This is the case for

2c1 − c5 = c1 + c3 = 2c1 + c2 + c4 = b1 + b2 = 0, (105)

and implies z7 = z8 = 0. Further demanding that the
two spin-2 fields decouple leads to the additional condition
b1 = 4c1, which then further implies z5 = 0. Finally, com-
bining these conditions with the condition (104) of a prop-
agating two-form yields another condition z6 = 0. Under
these conditions, the cosmological dynamics simplify sig-
nificantly. For the branch 2a and its flat limit 1a, the variable
L decouples completely, and only K contributes to the cos-
mological dynamics. For the remaining three branches, L
remains in the cosmological field equations, but its equa-
tion of motion changes from a second-order to a first-order
differential equation, as the second-order derivative terms
disappear from the cosmological field equations.

The propagation of two massles spin-2 fields can also be
achieved by imposing transverse diffeomorphisms and Weyl
symmetry as an additional gauge symmetry. The former gives
the condition 2c1 + c2 + c4 = 0, while the latter is realized
by

82(2a1 + a2)wH − 2(c2 + c4 − 8c3 − c5)(wh − wH )

− b1(2wh − 3wH ) − b2(4wh − 7wH ) = 0 , (106a)

b1wh + 2(b2 + c2 + c4 + 2c5)(wh − wH ) − (2a1 + a2)

wH = 0 , (106b)

2(c2 + c4 − 8c3 − c5)(wh − wH ) − (b1 + 3b2)wH = 0 ,

(106c)

2(c2 + c4 + 2c5)(wh − wH ) + b1wH = 0 (106d)
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with two constants wh and wH . Imposing these conditions
implies that the linear combinations appearing in the cosmo-
logical dynamics must satisfy the condition

(2z1 + z4 + 2z5 − 2z7)wh = (z5 − 2z7)wH . (107)

Imposing in addition the two-form gauge condition (104)
yields a more involved set of equations among the cosmo-
logically relevant parameters, and so we restrict ourselves to
two special cases. For wH = 0 the conditions become

2z1 + z4 + 2z5 − 2z7 = z5 + z6 = 3z7 + 2z8 = 0, (108)

while in the case wh = wH �= 0 one finds

z1 = z4 + z5 = z6 + 2z7 = 0. (109)

The former set of conditions does not have any particular
relevance for the cosmological dynamics. Under the latter
conditions, however, the cosmological dynamics enjoy the
curious property that all derivatives of the Hubble parameter
H disappear from the equation, and it becomes a purely con-
strained quantity. In this case the dynamics is fully carried
by the connection variables K and L. The physical implica-
tions of this case, which still has 5 free parameters, as well
as those of the other cases discussed above, need to be deter-
mined by a more detailed case-by-case analysis, which we
defer to future work, and hence conclude our discussion of
general teleparallel quadratic gravity at this point.

6.3 Scalar-teleparallel gravity

As the last example, we consider a class of scalar-teleparallel
gravity theories, which is defined by the action [10,20]

Sg = 1
2κ2 d4x

√−g
∫ [−A(�)G − B(�)gμν∂μ�∂ν�

+C(�)(2Tν
νμ − Qμν

ν + Qν
νμ)∂μ� − 2κ2V(�)

]
,

(110)

where � denotes a scalar field, and A,B, C,V are free func-
tions, whose choice determines a particular theory within this
class. The field equations are given by the metric equation

A
◦
Rμν − A

2

◦
Rgμν + C

◦∇μ

◦∇ν� + (A′ + C)

( ◦∇(μ�Mρ
ν)ρ − Mρ

(μν)

◦∇ρ� + M [ρσ ]
σ

◦∇ρ�gμν

)

−(B − C′)
◦∇μ�

◦∇ν� +
[(B

2
− C′

)
◦∇ρ�

◦∇ρ�

−C
◦∇ρ

◦∇ρ� + κ2V
]
gμν = κ2�μν, (111)

the connection equation

(A′ + C)
[
Mνρ

ρ

◦∇μ� + Mρ
μρ

◦∇ν�

−(Mνρ
μ + Mρ

μ
ν)

◦∇ρ�
]

= 2κ2(∇τ Hμ
ντ − Mω

τωHμ
ντ ) (112)

and the scalar field equation

−2B
◦∇μ

◦∇μ� − B′ ◦∇μ�
◦∇μ�

+CB + A′G + 2κ2V ′ = 0. (113)

Note that in the case C = −A′ this class of theories reduces
to the well-studied class of scalar-curvature theories [10,20].

We then take a look at the cosmological dynamics. For the
branch 2a the metric and scalar field equations become

6A(H2 + u2) − B�′2 − 6CH�′ − 2κ2A2V = 2κ2A2ρ,

(114a)

− 2A(2H′ + H2 + u2) + (2C′ − B)�′2 − 2(2A′ + C)H�′

+ 2C�′′ + 2κ2A2V = 2κ2A2 p , (114b)

6CH′ + 6(2C + A′)H2 − 6A′u2

+ 2B(�′′ + 2H�′) + B′�′2 + 2κ2A2V ′ = 0 . (114c)

The left hand side of the connection field equations vanishes
identically, and so these equations are accompanied by the
hypermomentum conservation equations

ω′ + 3Hω = φ′ + 3Hφ = 0. (115)

By taking the limit u → 0, this branch reduces to the
branch 1a, and the field equations become

6AH2 − B�′2 − 6CH�′ − 2κ2A2V = 2κ2A2ρ , (116a)

− 2A(2H′ + H2) + (2C′ − B)�′2

− 2(2A′ + C)H�′ + 2C�′′

+ 2κ2A2V = 2κ2A2 p , (116b)

6CH′ + 6(2C + A′)H2 + 2B(�′′ + 2H�′)
+ B′�′2 + 2κ2A2V ′ = 0 . (116c)

Note that in these two cases the two functions K and L
describing the cosmologically symmetric connection do not
enter the cosmological dynamics. One finds that the obtained
cosmological dynamics agree with those of a class of scalar-
torsion theories of gravity for the axial branch of metric
teleparallel cosmology and its flat limit [15,15,20].

We continue with the spatially curved branch 2b. In this
case the metric field equations become

6A(H2 + u2) − B�′2 + 3(A′ + C)
(
L + u2

L

)
�′ − 6CH�′ − 2κ2A2V = 2κ2A2ρ , (117a)

− 2A(2H′ + H2 + u2) + (2C′ − B)�′2 − 2(2A′ + C)H�′
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+ (A′ + C)

(
3L − u2

L

)
�′ + 2C�′′ + 2κ2A2V

= 2κ2A2 p . (117b)

The connection equations are also non-trivial in this case and
read

3(A′ + C)

(
L + u2

L

)
�′

= 2κ2A

(
ω′ + 3Hω + 3Lχ − 3

u2

L ψ

)
, (118a)

(A′ + C)

(
L + u2

L

)
�′

= 2κ2A

(
φ′ + 3Hφ + Lχ − u2

L ψ

)
. (118b)

Finally, the scalar equation takes the form

6CH′ + 6(2C + A′)H2 − 6A′u2 − 3(A′ + C)

×
[

2H
(
L − u2

L

)
+ L′

L

(
L + u2

L

)]

+2B(�′′ + 2H�′) + B′�′2 + 2κ2A2V ′ = 0. (119)

Before analyzing these equations, we also list the remaining
spatially flat branches. In the branch 1c, the field equations
become

6A(H2 + u2) − B�′2 + 3(A′ + C)L�′

− 6CH�′ − 2κ2A2V = 2κ2ρ , (120a)

− 2A(2H′ + H2 + u2) + (2C′ − B)�′2

− 2(2A′ + C)H�′ + 3(A′ + C)L�′

+ 2C�′′ + 2κ2A2V = 2κ2 p (120b)

3(A′ + C)L�′ = 2κ2A(ω′ + 3Hω + 3Lχ) , (120c)

(A′ + C)L�′ = 2κ2A(φ′ + 3Hφ + Lχ) , (120d)

6CH′ + 6(2C + A′)H2 − 6A′u2 − 3(A′ + C)(L′ + 2HL)

+ 2B(�′′ + 2H�′) + B′�′2 + 2κ2A2V ′ = 0 , (120e)

while for the branch 1b we find

6A(H2 + u2) − B�′2 + 3(A′ + C)L�′

− 6CH�′ − 2κ2A2V = 2κ2ρ , (121a)

− 2A(2H′ + H2 + u2) + (2C′ − B)�′2 − 2(2A′ + C)H�′

− (A′ + C)L�′ + 2C�′′ + 2κ2A2V = 2κ2 p (121b)

3(A′ + C)L�′

= 2κ2A(ω′ + 3Hω − 3Lψ) , (121c)

(A′ + C)L�′ = 2κ2A(φ′ + 3Hφ − Lψ) , (121d)

6CH′ + 6(2C + A′)H2 − 6A′u2 + 3(A′ + C)(L′ + 2HL)

+ 2B(�′′ + 2H�′) + B′�′2 + 2κ2A2V ′ = 0 . (121e)

Note that in all three cases only the parameter function L
contributes to the field equations, while K is absent.

To study the dynamics of the three branches 2b, 1b and 1c,
we restrict ourselves to the case of vanishing hypermomen-
tum, and start with the connection equations. For the spatially
curved branch 2b, these take the form (118) and can be solved
by any of the following solutions:

1. For theories which satisfy the condition A′ + C = 0 one
can combine the terms containingA and C in the action to
A(−G+B) = A

◦
R by integrating by parts, and the theory

reduces to an equivalent of scalar-curvature gravity [20].
The teleparallel connection variable L does not appear in
the field equations, and the connection equations (118)
of motion become trivial, i.e., the left hand side of these
equations vanishes, and so they are solved identically for
vanishing hypermomentum. The same holds also for the
flat branches 1c and 1b.

2. The field equations (118) are also solved if the scalar
field is constant, �′ = 0. Also in this case L disappears
from the metric field equations (117), and they reduce
to the Friedmann equations, up to a constant rescaling
of the gravitational constant, mediated by A, which can
be absorbed into κ2, as well as a cosmological constant
determined by the potential V . The remaining scalar field
equation (119), which is a first-order differential equation
in L, can then be solved for L. Also these findings apply
in full analogy to the flat branches 1c and 1b.

3. For u2 < 0, corresponding to negative spatial curvature,
the connection field equations (118) can also be solved by
L = ±iu. Choosing the lower sign, both the metric field
equations (117) and the scalar field equation (119) reduce
to the dynamics of the vector branch in scalar-torsion
gravity [15,15,20], while for the upper sign one has a
trivial substitution u 	→ −u. The same statement holds
also for the spatially flat branches 1c and 1b, where in
this case one sets L = 0 and the cosmological dynamics
reduce to that of scalar-torsion theory in the limit u = 0
of vanishing spatial curvature.

In summary, we find that for all branches of cosmolog-
ically symmetric teleparallel geometries the cosmological
dynamics of the class of scalar-teleparallel gravity theories
defined by the action (110) reduce to those of scalar-torsion
gravity [20], or one of its special cases, which are equivalent
to scalar-curvature gravity or general relativity with a cosmo-
logical constant. In order to obtain a non-trivial contribution
also from the nonmetricity to the cosmological dynamics,
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one needs to study more classes of general scalar-teleparallel
theories. We leave such studies for future work.

7 Example solution

We have already seen some example solutions of the connec-
tion equations of motion in f (G) gravity in the absence of
hypermomentum. Here we want to show another simple case
exemplifying effects of the connection and hypermomentum
on the metric. We consider the general quadratic gravity in
the simple branch 2a. One can show that one can find the
exact solution of the connection equations

K=K0

A2

+ (−3z6(z6 + 2z7) + 4z8(z4 + z5))H + A(4z8φ − z6ω)

3z2
6 − 4z4z8

,

(122)

L = L0

A2 + (−3z5z6 + 6z4z7)H + A(−3z6φ + z4ω)

3z2
6 − 4z4z8

,

(123)

with K0 and L0 integration constants, and we have to assume
here 3z2

6 − 4z4z8 �= 0. For 3z2
6 − 4z4z8 = 0 only the com-

bination z4K + z6L appears in the connection equations of
motion, so only this sum can be determined from them. We
also absorb here κ2 in the hypermomentum variables φ and
ω. Plugging the connection functions in the metric equations
of motion yields

2κ2ρ = 6α
H2

A2 + 6(z1 + z2)
u2

A2

+ ρ� + ρH + 2

A
(ω′ + 3Hω) , (124)

2κ2 p = 2α(H′ + H2) − 2(z1 + z2)
u2

A2

+ ρ� + ρH − 2

A
(φ̃′ + 3Hφ̃) , (125)

with

α=z1

−4z2
4z8+2z5(−3z2

6−6z6z7+2z5z8)+z4(−3z2
6+12z2

7+8z5z8)

6z2
6−8z4z8

,

(126)

ρ� = −3z4K2
0 + 6z6K0L0 + 4z8L2

0

A6 , (127)

ρH = 6K0φ + 2L0ω

A3 + 12z8φ
2 − 6z6φω + z4ω

2

3z2
6 − 4z4z8

, (128)

φ̃ = (6z6z7 − 4z5z8)φ + (z5z6 − 2z4z7)ω

3z2
6 − 4z4z8

. (129)

The constant α determines the coupling to matter, which
should be unity to obtain the same coupling as in GR. Spatial
curvature again enters as an effective (z1 + z2)u2. We also
find a contribution coming from the connection, ρ� ∝ A−6,
which shows that the connection behaves like stiff matter
p� = ρ� . Note that the sign of the energy density depends
on the signs of the zi , and one can achieve ρ� < 0. Such stiff
matter with negative energy density may be used to facili-
tate a bouncing universe. Hypermomentum enters in a more
complicated way.

8 Conclusion

We have derived the most general class of homogeneous and
isotropic teleparallel geometries, defined by a metric and a
flat, affine connection, which are invariant under spatial rota-
tions and translations. We find that there are five branches of
such geometries, two of which exhibit a non-vanishing spa-
tial curvature for the metric Levi-Civita connection, while
the remaining three spatially flat cases arise as particular
limits from the spatially curved cases. We have also shown
how these branches are related to the more restricted classes
or metric and symmetric teleparallel geometries, in which
nonmetricity or torsion are imposed to vanish. Our findings
show that in addition to the lapse and scale factor appearing
in the homogeneous and isotropic Robertson-Walker metric,
the flat affine connection is described by two further functions
of time, which may participate in the cosmological dynamics
for a suitable gravity theory which couples to these degrees
of freedom.

We have then applied our findings to a number of gen-
eral teleparallel gravity theories and derived their cosmolog-
ical dynamics. In particular, we have considered the f (G)

class of theories, general teleparallel quadratic gravity and a
simple class of scalar-teleparallel gravity theories. We have
seen that for the different branches of cosmologically sym-
metric teleparallel geometries, which are distinct only by
the flat, affine connection, one finds, in general, qualita-
tively different cosmological dynamics, such as a different
number of dynamical functions appearing in the cosmolog-
ical field equations or a different differential order of these
equations. Further, our findings show that for the f (G) and
scalar-teleparallel theories the cosmological dynamics fully
reduces to that of related metric teleparallel or curvature
based gravity theories, in which nonmetricity and possibly
torsion are absent, such that the results found for the cosmo-
logical dynamics of these simpler theories also apply to their
general teleparallel counterparts as follows:

1. Already without imposing cosmological symmetry, f (G)

gravity reduces to general relativity with a cosmological
constant (GR�) for f ′′ ≡ 0, while the scalar-teleparallel
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theories reduce to scalar-curvature gravity (SCG) for
A′ + C ≡ 0.

2. In the branch 2a, the dynamics reduces to that of the
metric teleparallel counterpart ( f (T ) gravity or scalar-
torsion gravity (STG)) in the “axial” branch [15], and to
its flat limit in the branch 1a. The latter also holds also
for vanishing hypermomentum in the branches 1b and 1c
for L = 0, while one finds the “vector” branch of metric
teleparallel solutions for the branch 2b and L = ±iu.

3. For the spatially curved branch 2b and the two flat
branches 1b and 1c, one finds that if L does not take the
values given in the preceding item, the connection equa-
tions with vanishing hypermomentum inevitably yield a
solution for which the metric field equations reduce to
that of general relativity with a cosmological constant.

It follows that the only possibility to obtain new dynamics in
the aforementioned classes of theories is to consider a non-
trivial coupling between matter and the teleparallel connec-
tion, leading to non-vanishing hypermomentum. For more
general theories, new dynamics is obtained. As an explicit
example, we have shown this for the class of general telepar-
allel quadratic gravity theories, but one may also consider
theories with a more general dependence of the Lagrangian
on the teleparallel geometry or more general scalar field cou-
plings.

Our results allow for several directions of further research.
Starting from the homogeneous and isotropic teleparallel
geometries we have determined, one can derive and study the
cosmological dynamics of further general teleparallel gravity
theories. Also among those classes of theories whose cosmo-
logical field equations we have derived in this article we find
several classes of general teleparallel quadratic gravity theo-
ries whose cosmological dynamics qualitatively differs from
the previously studied metric and symmetric teleparallel the-
ories, and deserves further attention. Finally, going beyond
the cosmological background dynamics one may consider
perturbations of the teleparallel geometry around this back-
ground and study their dynamics. For a general flat connec-
tion one finds that the perturbations are of the form

δ�α
μν = ∇νδ�

α
μ (130)

with δ�α
μ an arbitrary matrix with 16 entries, in addition to

the ten perturbation variables of the metric. Even after gaug-
ing away four of these variables one is left with 22 perturba-
tion variables, leading to a much more cumbersome analysis
compared to the mere three free functions of the cosmological
background metric and connection. An important question to
be addressed in these studies is whether the so-called strong
coupling problem for linear perturbations around highly sym-
metric background, which has been found in metric telepar-
allel gravity theories [19,21–26], is also present in general
teleparallel gravity. FLRW solutions based on non-metricity

seem to provide a promising route for this purpose [27]. We
leave this question for future investigations.
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