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Abstract We derive conservation laws in Symmetric Telepar-
allel Equivalent of General Relativity (STEGR) with direct
application of Noether’s theorem. This approach allows us to
construct covariant conserved currents, corresponding super-
potentials and invariant charges. A necessary component of
our constructions is the concept of “turning off” gravity,
introduced in the framework of STEGR to define the flat
and torsionless connection. By calculating currents, one can
obtain local characteristics of gravitational field like energy
density. Surface integration of superpotentials gives charges
which correspond to global quantities of the system like
mass, momentum, etc. To test our results for the obtained
currents and superpotentials, we calculate the energy den-
sity measured by freely falling observer in the simple solu-
tions (Friedman universe, Schwartzchild black hole) and total
mass of the Schwartzchild black hole. We find ambiguities in
obtaining the connection, which explicitly affect the values
of conserved quantities, and discuss possible solutions to this
problem.

1 Introduction

General Relativity (GR) quite accurately describes mod-
ern astrophysical observations. However, at the cosmolog-
ical level, to satisfy the observations, one has to introduce
phenomenologically additional structures: dark matter – to
explain galaxy rotation curves, dark energy – to explain the
accelerated expansion of the universe. Theoretical explana-
tion of dark matter and dark energy can be made by intro-
ducing various exotic models of elementary particles, or by
different modified theories of gravity.

a e-mail: ed.emcova@physics.msu.ru
b e-mail: alex.petrov55@gmail.com
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Most of modified gravity theories are based on the Rie-
mannian curvature, but one can also modify general relativ-
ity basing on its equivalent formulations, such as Telepar-
allel Equivalent of General Relativity (TEGR), Symmet-
ric Teleparallel Equivalent of General Relativity (STEGR)
and other metric-affine theories [1]. Such modifications like
f (T ), f (Q), and others have attracted growing interest in
recent years. From a theoretical point of view, torsion- and
non-metricity-based theories are interesting because their
field equations are second-order equations.

Torsion-based teleparallel theories of gravity including
TEGR itself [2], and its various modifications, such as f (T )

gravity [3] and other models [4,5] have been more devel-
oped and studied than non-metricity-based theories includ-
ing STEGR with it’s modification. However, the latter have
been developing more and more intensively in recent years
[6–19]. In the framework of symmetric teleparallel gravity,
there are considered black hole solutions [20–23], cosmo-
logical problems [23–29], PPN formalism [30] etc. It often
happens that problems which have arisen in torsion-based
teleparallel theories remain relevant in non-metricity-based
theories.

In general relativity, there are problems in construction
of covariant conserved quantities: taking the Lagrangian
of the first derivatives of dynamical variables only, it is
impossible to construct them without introducing additional
structures. Indeed, then one obtains either coordinate non-
covariant quantities in metric GR, or coordinate covariant
but Lorentz non-covariant quantities in tetrad GR [31]. In
TEGR, this problem has been solved. For example, in papers
[32,33], using Noether’s theorem, fully covariant conserved
quantities are constructed in the formalism of differential
forms, which is not so popular in astrophysical and cosmo-
logical applications. In [34,35] covariant Noether conserved
quantities were constructed for general metric-affine grav-
ity including TEGR and STEGR but their correspondence
to physically expected values was not studied. In [36,37],
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first, fully covariant conserved quantities in TEGR were con-
structed in the tensorial formalism by direct application of the
Noether theorem. And, second, it was shown that Noether’s
current describes the Einstein equivalence principle for the
freely falling observers “frozen” into the Hubble flow in
Friedmann–Lemaître–Robertson–Walker (FRLW) universe
and (anti-)de Sitter space, and Noether’s charge gives correct
black hole mass for the Schwarzschild black hole. In [38,39],
in TEGR, the Noether conserved quantities were studied in
detail in different coordinate frames of the Schwarzschild
solution, and the cases when they corresponded to physically
meaningful ones where identified. In [40,41] it was shown
that the Noether conserved quantities give correct mass and
momentum for the moving Schwarzschild black hole.1

The purpose of this article is to begin a development of
the research program carried out the framework of TEGR
[36–39] within the framework of STEGR. That is, using
Noether’s theorem, we derive conservation laws and corre-
sponding conserved quantities in STEGR, and then study
their applications on the examples of the FRLW universe of
the Schwarzschild black hole. The basis of the constructions
in [36–39] was also the definition of generalized and univer-
sal “turning off” gravity principle and generalized concept
of “gauges” in TEGR. Then the use of these constructions
in applications was presented. Even within the framework of
generalized and universal principles, problems and ambigu-
ities have been found. These ambiguities have been studied
and their interpretation have been given. Here, the “turning
off” gravity principle, similar to that in TEGR, is introduced
and applied; the results of its application are discussed.

The paper is organized as follows. In the next Sect. 2 we
introduce the main quantities of STEGR. In Sect. 3 we (i)
describe the Noether procedure, (ii) construct covariant con-
served quantities with direct application of Noether’s theo-
rem in STEGR, (iii) introduce the “turning off” gravity prin-
ciple to obtain the flat and torsionless connection in STEGR.
In Sect. 4 we first find that the Noether current is in a cor-
respondence with the Einstein equivalence principle for the
freely falling observer in the FRLW universe. Then we study
if the Noether conserved quantities give physically expected
results in different coordinates of the Schwarzschild solution:
total black hole mass and a correspondance to the Einstein
equivalence principle for the freely falling observer. In Sect. 5
we outline new results.

1 Noether’s procedure can be useful not only for construction of con-
served quantities. For example, in [42], assuming a set of Noether’s
symmetries in the framework of f (T ) theory, the authors find new
solutions. The static spherically symmetric spacetime in f (T ) gravity
is written in terms of the well-known Schwarzschild spacetime modi-
fied by a distortion function that depends on a characteristic radius. The
obtained solutions are new ones and cannot be obtained by the usual
methods.

2 Elements of STEGR

The Lagrangian in STEGR has the form [1]:

L =
√−g

2κ
gμν(Lα

βμL
β

να − Lα
βαL

β
μν), (2.1)

where κ = 8π , and disformation is

Lα
μν = 1

2
Qα

μν − 1

2
Qμ

α
ν − 1

2
Qν

α
μ. (2.2)

Here, Greek indices are spacetime ones: α, β, . . . = (0, 1, 2,

3); Latin indices will denote only space ones: i, j, . . . =
(1, 2, 3); the non-metricity Qαμν is defined as follows:

Qαμν ≡ ∇αgμν, (2.3)

where the covariant derivative ∇α is defined with the use of
the connection �α

μν which is symmetric in lower indices and
the corresponding torsion is zero: T α

μν ≡ �α
μν−�α

νμ = 0.
The curvature tensor of this connection is zero as well:

Rα
βμν(�) = ∂μ�α

νβ − ∂ν�
α

μβ + �α
μλ�

λ
νβ

−�α
νλ�

λ
μβ = 0. (2.4)

One can easily verify that the decomposition of a general
connection �β

μν into the Levi-Civita, contortion and the dis-
formation terms, see [1], reduces to

Lβ
μν ≡ �β

μν−
◦
�

β
μν, (2.5)

where Lβ
μν and

◦
� β

μν are just the disformation and the
Levi-Civita connection, respectively.

With the use of (2.2)–(2.5) one can rewrite (2.1) as

L = LHilb +
√−ggμν

2κ
Rμν + L′

≡ −
√−g

2κ

◦
R +

√−ggμν

2κ
Rμν + ∂αDα, (2.6)

where the first term is the Hilbert Lagrangian and the third
term L′ is a total divergence:

L′ = −
√−g

2κ

◦∇α (Qα − Q̂α)

= ∂α

(
− 1

2κ

√−g(Qα − Q̂α)

)
, (2.7)

and Qα = gμνQαμν , Q̂α = gμνQμαν ,
◦∇α is the Levi-Civita

covariant derivative.
Let us discuss the second term +

√−ggμν

2κ
Rμν in (2.6). If

we vary (2.1) directly we vary this term anyway, but only not
explicitly. First, because Rα

μαν = Rμν = 0 variation of this
term with respect to gμν does not contribute into the field

equations. Thus, in this sense, the term +
√−ggμν

2κ
Rμν is not

sensible. On the other hand, the variation of (2.6), the same
(2.1) with respect to �α

μν gives the equation δL/δ�α
μν = 0

that determines the teleparallel connection as �α
μν = ◦

� α
μν .
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Due to (2.5) this restriction is very radical, and therefore
impermissible. Thus, finally, under variation we consider the
Lagrangian

L = −
√−g

2κ

◦
R +∂αDα (2.8)

instead of (2.6), the same (2.1), where

Dα ≡ −
√−g

2κ
(Qα − Q̂α). (2.9)

3 Conservation laws for STEGR Lagrangian

Lagrangian (2.8) is a scalar density, therefore one can apply
directly a Noether theorem to obtain the related conserved
current and superpotential.

3.1 Noether conserved quantities in general theory

The derivation of conserved quantities and related conserva-
tion laws for an arbitrary covariant theory of fields ψ A with
an action

S =
∫

dy4xL(ψ A;ψ A
,α;ψ A

,αβ) (3.1)

follows from diffeomorphic invariance and can be found in
[31,43,44]. Here, the fields ψ A are an arbitrary tensor den-
sity or a set of such densities, and A is a collective index.
Considering invariance of the theory (3.1) with respect to
diffeomorphisms, using the variations of fields ψ A in the
form of Lie derivatives of the fields ψ A [31] one derives the
conservation law for the Noether current J α(ξ):

∂αJ α(ξ) ≡ 0, (3.2)

from which follows that

J α(ξ) = ∂βJ αβ(ξ), (3.3)

where Noether superpotential J αβ(ξ) is an antisymmetric
tensor density.

Introducing the coefficients Uσ
α , Mσ

ατ , Nσ
ατβ

expressed through the Lagrangian derivatives in the form

Uσ
α ≡ Lδα

σ + δL
δψ B

ψ B
∣∣∣α
σ

− δL
δψ B

,α

∂σ ψ B

− ∂L
∂ψ B

,βα

∂βσ ψ B , (3.4)

Mσ
ατ ≡ δL

δψ B
,α

ψ B
∣∣∣τ
σ

− ∂L
∂ψ B

,τα

∂σ ψ B

+ ∂L
∂ψ B

,βα

∂β(ψ B
∣∣∣τ
σ
) , (3.5)

Nσ
ατβ ≡ 1

2

[
∂L

∂ψ B
,βα

ψ B
∣∣∣τ
σ

+ ∂L
∂ψ B

,τα

ψ B
∣∣∣β
σ

]
, (3.6)

where the operation of the vertical line is defined as fol-
lows, see [31]. We consider the Lie derivative of ψ A in the
form £ξψ

A = −ξα∂αψ A + ψ A
∣∣α
β
∂αξβ , note that we use

the opposite signs with respect to the standard ones. The
notation ψ A

∣∣α
β

is defined by a concrete transformation prop-

erties of ψ A, for example, for the vector ψ A = ψσ one has
ψσ |αβ = δσ

β ψα . Then the conserved current in (3.2) has a
form

J α(ξ) ≡ −(Uσ
αξσ + Mσ

ατ ∂τ ξ
σ r + Nσ

ατβ∂τβξσ ), (3.7)

and the superpotential in (3.3) is

J αβ(ξ)=−
(
Mσ

[αβ]ξσ − 2

3
∂λNσ

[αβ]λξσ + 4

3
Nσ

[αβ]λ∂λξ
σ

)
.

(3.8)

Finally, one defines a conserved quantity P(ξ) called as
the Noether charge:

P(ξ) =
∫

�

d3xJ 0(ξ), (3.9)

and using (3.3) and (3.8) it effectively reduced to a surface
integral

P(ξ) =
∮

∂�

dsiJ 0i (ξ), (3.10)

where ∂� is a boundary of � =: x0 = t = const.
According to [31, chapter 7], for every additional total

divergence div = ∂αDα , without considering its inner struc-
ture, it is possible to construct the corresponding additional
parts of the current and the superpotential in the form:

J α
div(ξ) = ∂βJ αβ

div(ξ) = ◦∇β J αβ
div(ξ). (3.11)

Here, the additional current J α
div and superpotential J αβ

div
for the divergence of Dα are defined as:

J α
div = ◦∇β (−M(div)σ

[αβ]ξσ )

= −U(div)σ
αξσ − M(div)σ

[αβ] ◦∇β ξσ , (3.12)

J αβ
div = −M(div)σ

[αβ]ξσ , (3.13)

where

M(div)σ
αβ = 2δ[α

σ Dβ], (3.14)

U(div)σ
α = 2

◦∇β (δ[α
σ Dβ]) ≡ 2∂β(δ[α

σ Dβ]). (3.15)

The additional Noether charge can be defined in analogy to
(3.9), (3.10):

P(div)(ξ) =
∫

�

d3xJ 0
(div)(ξ) =

∮
∂�

dsiJ 0i
(div)(ξ). (3.16)
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So, despite the fact that adding total divergence to the
Lagrangian does not affect the field equations, this divergence
is explicitly added to the Noether current, superpotential, and
charge.

3.2 STEGR conserved quantities

Because all items in (2.8) are scalar densities, it is natural
to consider each item in (2.8) separately under application
of the Noether theorem. Considering the Hilbert Lagrangian,
the current and superpotential are already derived in [43] and
[31]. Thus, the Noether current for the Hilbert Lagrangian is

J α
GR(ξ) ≡ − (Uσ

αξσ + Mσ
ατ ∂τ ξ

σ + Nσ
ατβ∂τβξσ

)
,

(3.17)

where

Nσ
ατβ =

√−g

4κ

(
2gτβδα

σ − gαβδτ
σ − gατ δβ

σ

)
, (3.18)

Mσ
ατ =

√−g

2κ

(
2

◦
�

α
σωg

τω− ◦
�

ω
σωg

ατ− ◦
�

τ
ωεg

ωεδα
σ

)
,

(3.19)

Uσ
α =

√−g

2κ

(
gαλgωε − gαεgωλ

)

×
(
gλσ,ωε+

◦
�

ν
ωε

◦
� ν|λσ − ◦

�
ν
ωε

◦
� λ|νσ

)

= −
√−g

κ

(
Gα

σ + 1

2
δα
σ R + 1

2
gαω

◦
�

ρ
ρ(ω,σ )

−1

2
gωε

◦
�

α
ωε,σ

)
, (3.20)

where the notation
◦
� α|βγ means

◦
� α|βγ = gαρ

◦
�

ρ

βγ .
To represent the current and the superpotential in an

explicitly covariant form we use the evident identities

∂βξσ ≡ ◦∇β ξσ − ◦
�

σ
λβξλ, (3.21)

∂τ ∂βξσ ≡ ◦∇τ

◦∇β ξσ +
[
δσ
λ

◦
�

ρ
βτ − δρ

τ

◦
�

σ
λβ − δ

ρ
β

◦
�

σ
λτ

] ◦∇ρ ξλ

−
[ ◦
�

σ
λβ,τ −

◦
�

σ
ρβ

◦
�

ρ
λτ

]
ξλ. (3.22)

Substituting (3.21) and (3.22) into (3.17), one rewrites the
GR current in a covariant form:

J α
GR(ξ) ≡ −(U∗σ

αξσ + M∗σ
ατ

◦∇τ ξσ

+N∗σ
ατβ

◦∇(τ

◦∇β) ξσ ), (3.23)

with

N∗σ
ατβ = Nσ

ατβ, (3.24)

M∗σ
ατ = Mσ

ατ − 2Nλ
ατβ

◦
�

λ
σβ

+Nσ
αλβ

◦
�

τ
βλ = 0, (3.25)

U∗σ
α = Uσ

α − Mλ
ατ

◦
�

λ
στ − Nλ

ατβ∂τ

◦
�

λ
σβ

+Nκ
ατβ

◦
�

κ
λβ

◦
�

λ
στ

= −
√−g

4κ
gαω

◦
R ωσ . (3.26)

The superporential for the Hilbert Lagrangian after sub-
stituting (3.21), (3.19) and (3.18) into (3.8) has the form

J αβ
GR = Kαβ =

√−g

κ

◦∇ [αξβ], (3.27)

that is well-known Komar’s superpotential [31,43].
Applying Noether’s theorem to the divergence L′ in (2.7)

with (2.9), with the use of (3.15) and (3.14) one calculates
additional Noether current (3.12), superpotential (3.13) and
charge (3.16). Thus, the additional superpotential for L′ in
STEGR has an easy expression:

J αβ
div =

√−g

κ
δ[α
σ (Qβ] − Q̂β])ξσ . (3.28)

Integrating it by (3.16) we get the additional Noether charge.
Taking the divergence of (3.28) as (3.3) we get the additional
Noether current same as (3.12).

Finally, the construction of the current and superpotential
of the Lagrangian (2.8) in STEGR is:

J α = J α
GR + J α

div, (3.29)

J αβ = J αβ
GR + J αβ

div. (3.30)

By construction, the current J α(ξ) is a vector density, the
superpotential J αβ(ξ) is an antisymmetric tensor density,
and both are covariant. The Noether current is conserved:

∂αJ α(ξ) = ◦∇α J α(ξ) = 0. (3.31)

Integrating each part of (3.30) one gets

P(ξ) = PGR(ξ) + Pdiv(ξ), (3.32)

where P(ξ) is (3.10) and

PGR(ξ) =
∮

∂�

dsiJ 0i
GR(ξ), (3.33)

where J 0i
GR(ξ) is Komar superpotential (3.27);

Pdiv(ξ) =
∮

∂�

dsiJ 0i
div(ξ), (3.34)

where J 0i
div(ξ) is (3.28).

3.3 Defining the connection

To define the connection which is not a dynamical quantity
we adapt for STEGR the “turning off” gravity principle we
developed in TEGR [36–39]. Assuming that Qαμν and Lα

μν

vanish in the absence of gravity and taking into account that
◦
R α

βμν in GR vanishes in the absence of gravity too we find
the connection in STEGR as follows:
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(1) for known GR solution, construct related Riemann cur-
vature tensor of the Levi-Civita connection:

◦
R α

βμν = ∂μ

◦
�

α
βν − ∂ν

◦
�

α
βμ

+ ◦
�

α
κμ

◦
�

κ
βν−

◦
�

α
κν

◦
�

κ
βμ; (3.35)

(2) to “switch off” gravity solving the absent gravity equation
◦
R α

βμν = 0 for parameters of the chosen GR solution;

(3) when the parameters satisfying
◦
R α

βμν = 0 are found,

we take �α
μν = ◦

� α
μν for the found parameter values.

Torsion of the found connection should be zero because
we take it from the Levi-Civita connection for some parame-
ter values, and Levi-Civita connection is always symmetric.
Curvature of the found connection should be zero too because
we found it from the equation

◦
R α

βγ δ = 0.

4 Applications

4.1 Preliminary remarks

Noether currents and superpotentials depend on the vector
field ξ that is not fixed a priori, so we need to find a way
to determine it to obtain physically meaningful quantities.
A lot of ways to define ξ exist, but which are physically
meaningful?

a) In the standard metric formulation of GR the physically
preferred choice is to use Killing fields of the reference geom-
etry [45]. Time-like Killing vectors coincide with observers’
proper vectors at the spatial infinity for isolated systems and
we use them to obtain global characteristics of the object
under consideration, which are total the Noether charges in
the studied approach. � in (3.9), (3.32) is the whole infinite
hypersurface of constant time in this case. It is expected that
the result obtained by this way coincides with the mass of
the object under consideration [36,38].

b) Obtaining local characteristics of the gravitational field
we use the observer’s proper vector (observer’s 4-velocity).
It is expected that the components of Noether current (3.29)
give energy-momentum densities measured by the chosen
observer [36,38]. The main experimental basis of general
relativity (and other metric theories) is the weak equivalence
principle. Of course, STERG as an equivalent representa-
tion of GR has to possess it. This means that a freely falling
observer feels himself locally in Minkowski space. Thus,
he does not measure any energetic characteristics. Calcu-
lating energy densities measured by freely falling observes,
we check an applicability of suggested by us expressions
for conserved quantities. In the case if the weak equivalence
principle is not satisfied this means that the presumed inter-

pretation of the obtained conservation laws are invalid, and
have to be changed or specified. Note, for example, that the
current explicitly depends on flat torsionless connection, see
(3.11) for (3.28) with (2.3), so we will try to obtain such
flat connections which give zero current for a freely falling
observer.

We calculate energy density measured by the freely falling
observer in FRLW universe, energy desity measured by the
freely falling observer into the Schwarzschild black hole and
Schwarzschild black hole total mass. For the Schwarzschild
solution we take static coordinates and general radially
falling coordinates introduced by us in [38,39] which can
be reduced to the Lemaitre coordinates in a particular case.

4.2 FRLW universe

We take the FRLW metric in the form:

ds2 = −dt2 + a2(t)

(
1

1 − kr2 dr
2

+r2
(
dθ2 + sin2 θdφ2

))
(4.1)

where k = +1 for a positively curved space, k = 0 for a flat
space and k = −1 for a negatively curved space.

The non-zero components of Levi-Civita connection are:

◦
�

0
11 = a(t)a′(t)

1 − kr2 ; ◦
�

0
22 = r2a(t)a′(t);

◦
�

0
33 = r2a(t)a′(t) sin2 θ;

◦
�

1
01 = ◦

�
1

10 = ◦
�

2
02 = ◦

�
2

20 = ◦
�

3
03 = ◦

�
3

30 = a′(t)
a(t)

;
◦
�

1
11 = kr

1 − kr2 ;
◦
�

1
22 = r

(
kr2 − 1

)
; ◦

�
1

33 = r sin2 θ
(
kr2 − 1

)
;

◦
�

2
12 = ◦

�
2

21 = ◦
�

3
13 = ◦

�
3

31 = 1

r
;

◦
�

2
33 = − sin θ cos θ; ◦

�
3

23 = ◦
�

3
32 = cot θ; (4.2)

where numeration of coordinates is (x0, x1, x2, x3) ≡
(t, r, θ, φ).

Non-zero components of Riemann tensor are proportional
to:

◦
R 0

i0i ∼ − ◦
R 0

i i0 ∼

◦
R i

00i ∼ − ◦
R i

0i0 ∼

ä

a
, (4.3)

◦
R i

ji j ∼ − ◦
R i

j ji ∼

k + ȧ2

a2 (4.4)

where i, j = 1, 2, 3. Equating these components to zero we
got two equations which “turn off” gravity: ȧ2 + k = 0 and
ä = 0. All solutions to the first equation satisfy the second
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equation, so only

ȧ2 + k = 0 (4.5)

makes sense. Note that “vacuum” Friedmann equation

H2 = ρcurv or

(
ȧ

a

)2

= − k

a2 , (4.6)

is equivalent to (4.5). The same condition was used to “turn
off” gravity in TEGR in FRLW universe [36,37].

Taking a(t) = √−kt in Levi-Civita connection we get
the symmetric teleparallel connection:

�0
11 = kt

kr2 − 1
; �0

22 = −kr2t;
�0

33 = −kr2t sin2 θ;
�1

01 = �1
10 = �2

02 = �2
20

= �3
03 = �3

30 = 1

t
;

�1
11 = kr

1 − kr2 ; �1
22 = r

(
kr2 − 1

)
;

�1
33 = r sin2 θ

(
kr2 − 1

)
;

�2
12 = �2

21 = �3
13

= �3
31 = 1

r
;

�2
33 = − sin θ cos θ;

�3
23 = �3

32 = cot θ. (4.7)

Then we can obtain the non-metricity (2.3) and disformation
(2.5).

We consider a freely falling observer which is static in co-
moving coordinates of the metric (4.1). Then components of
his proper vector are:

ξσ = (−1, 0, 0, 0). (4.8)

We calculate the Noether current from the Noether superpo-
tential (3.30) using (3.3), where GR term is Komar super-
potential (3.27) and additional term is (3.28). The same
result can be obtained calculating the Noether current (3.29)
directly where GR term is obtained from (3.17)–(3.20) or
(3.23), (3.25), (3.26); and additional term is obtained from
(3.12), (3.14), (3.15), (2.9). The result for Noether current is:

•
J α(ξ) = (0, 0, 0, 0). (4.9)

This means that the freely falling observer with the proper
vector (4.8) does not measure energy and momentum densi-
ties what corresponds to Einstein equivalence principle.

4.3 Schwarzschild black hole

The Schwarzschild metric in static coordinates has a form:

ds2 = − f dt2 + f −1dr2 + r2(dθ2 + sin2 θdφ2), (4.10)

where

f = f (r) = 1 − rg
r

= 1 − 2M

r
(4.11)

and we keep (t, r, θ, φ) = (x0, x1, x2, x3), respectively. The
components of the timelike Killing vector in static coordi-
nates are:

ξα = (−1, 0, 0, 0). (4.12)

After applying the coordinate transformations from the
Schwarzschild static coordinates (t, r, θ, φ) to Lemaitre
freely falling coordinates (τ, ρ, θ, φ), preserving the numer-
ation from 0 to 3,

dρ = dt + dr

f
√

1 − f
,

dτ = dt + dr

f

√
1 − f , (4.13)

with f (r) is defined in (4.11), the Schwarzschild static metric
(4.10) transforms to

ds2 =−dτ 2 + (1 − f )dρ2+r2dθ2+r2 sin2 θdφ2, (4.14)

where

r = r(τ, ρ) =
[

3

2
(ρ − τ)

]2/3

(2M)1/3. (4.15)

Here, we are able to write r as a function of ρ and τ directly.
Solving the geodesic equation in general form for a radi-

ally freely falling observer towards the Schwarzschild black
hole in the coordinates (4.10), one obtains the 4-velocity of
radially freely falling observers with arbitrary energy param-
eter e. Written in Schwarzschild static coordinates expression
of this 4-velocity is:

ξα
f all =

(
− e

f
,

√
e2 − f , 0, 0

)

=
(

− e

1 − 2M/r
,

√
e2 − (1 − 2M/r), 0, 0

)
. (4.16)

The parameter e characterizes the initial state of the in-falling
observer. In the case of e > 1 the observer has a nonzero
velocity directed to the black hole at spatial infinity r → ∞
and thus can reach each region of r . The observer with e = 1
is connected to Lemaitre coordinates in (4.14), has a zero
velocity at the infinity r → ∞ and still able to achieve each
point of space. In the case of e < 1 the observer has zero
velocity at some finite r0 = r0(e) and cannot achieve the
space region r > r0(e), and the proper vector of this observer
does not exist at r > r0(e).

Basing on such observers (4.16), one can construct the
coordinate transformation from Schwarzschild static coor-
dinates to general radially falling coordinates (which we
call e-Lemaitre coordinates for brevity) – the freely falling
observers’ proper coordinates (in which the observers’ 4-
velocities would be ξα

f all = (−1, 0, 0, 0)):
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dτe = edt +
√
e2 − 1 + 2M

r

1 − 2M
r

dr,

dρe = dt + e(
1 − 2M

r

) √
e2 − 1 + 2M

r

dr. (4.17)

Then, using (4.17), one transforms the Schwarzschild met-
ric (4.10) to the form:

ds2 = −dτ 2
e +

(
e2 − 1 + 2M

r

)
dρ2

e

+r2
(
dθ2 + sin2 θdφ2

)
, (4.18)

where r = r(τe, ρe).
These coordinates contain the classical Lemaitre coordi-

nates as a particular case (e = 1), being in its turn a par-
ticular example of more general construction [46,47]. In the
e-Lemaitre metric the dependence of r as a function of ρe and
τe is not so simple as in the classical Lemaitre case (4.15),
and we will try to avoid to use this function directly in what
follows.

4.4 Calculations in static case

Non-zero Levi-Civita connection components calculated for
the metric (4.10) are:

◦
�

0
01 = ◦

�
1

11 = rg
2r2

1

1 − rg/r
;

◦
�

1
00 = rg

2r2

(
1 − rg

r

)
; ◦

�
2

12 = ◦
�

3
13 = 1

r
;

◦
�

1
22 = −r

(
1 − rg

r

)
;

◦
�

1
33 = −r

(
1 − rg

r

)
sin2 θ;

◦
�

2
33 = − sin θ cos θ;

◦
�

3
23 = cot θ. (4.19)

Then only non-zero components of the Komar superpo-
tential of GR (3.27) for Killing vector (4.12) are

K01 = −K10 = rg
16π

sin θ. (4.20)

“Turning off” gravity in (4.19) by rg → 0 we get:

◦
�

2
12 = ◦

�
3

13 = 1/r; ◦
�

1
22 = −r; ◦

�
1

33 = −r sin2 θ;
◦
�

2
33 = − sin θ cos θ; ◦

�
3

23 = cot θ. (4.21)

Recently, see (33) in [48], the same teleparallel connection
components have been derived in f (Q) theories for the static
spherical solutions in the standard coordinates by “turning
off” gravity. For (4.19) and (4.21) for 01-component and 10-
component of (3.13) with (3.14) and (2.9) and the Killing
vector (4.12) one has

J 01
div(ξkill) = −J 10

div(ξkill) = rg
16π

sin θ. (4.22)

Summing (4.20) and (4.22) by (3.30) and providing the
calculation of charge (3.10), (3.32), we obtain for the total
mass:

E = lim
r→∞

∮
∂�

J 01(ξkill)dθdφ = M

2
+ M

2
= M, (4.23)

that is the acceptable result.
Let us consider a freely falling observers. Then the 01-

component and 10-component of the Komar superpotantial
of GR (3.27) with the freely falling observer’s vector (4.16)
are zero

K01 = −K10 = 0 (4.24)

without dependence on e the same as other components
Kαβ = 0. As a result, the related current by (3.3) is zero
too.

For the additional superpotential (3.13) for (4.19) and
(4.21) with the freely falling observer’s vector (4.16) one
has

J 01
div(ξ f all) = −J 10

div(ξ f all) = erg sin θ

16π(1 − rg/r)
(4.25)

with other components of J αβ
div(ξ f all) = 0. Then, by (3.11)

we obtain the current:

J α
div(ξ f all) =

(
− erg2 sin θ

16πr2(1 − rg/r)2 , 0, 0, 0

)
. (4.26)

Thus, the total current components are non-zero that is not
in correspondence with the equivalence principle.

Principally, the results of this subsection repeat the results
obtained in [38,39] in the static gauge in TEGR.

4.5 The e-Lemaitre case

We calculate the Levi-Civita connection components for the
metric (4.18):

◦
�

0
11 = rg

2r2

√
e2 − 1 + rg/r;

◦
�

0
22 = −r

√
e2 − 1 + rg/r;

◦
�

0
33 = −r sin2 θ

√
e2 − 1 + rg/r;

◦
�

1
01 = rg

2r2

(√
e2 − 1 + rg/r

)−1

;
◦
�

1
11 = − erg

2r2

(√
e2 − 1 + rg/r

)−1

;
◦
�

1
22 = −er

(√
e2 − 1 + rg/r

)−1

;
◦
�

1
33 = −er sin2 θ

(√
e2 − 1 + rg/r

)−1

;
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◦
�

2
02 = ◦

�
3

03 = −1

r

√
e2 − 1 + rg/r;

◦
�

2
12 = ◦

�
3

13 = e

r

√
e2 − 1 + rg/r;

◦
�

2
33 = − sin θ cos θ; ◦

�
3

23 = cot θ. (4.27)

“Turning off” gravity by rg → 0, where r is an indepen-
dent on rg coordinate (function) we get the teleparallel con-
nection components with the e-case indices in coordinates
(τe, ρe, θ, φ):

�0
22 = −r

√
e2 − 1;

�0
33 = −r sin2 θ

√
e2 − 1;

�1
22 = −er

(√
e2 − 1

)−1 ;

�1
33 = −er sin2 θ

(√
e2 − 1

)−1 ;

�2
02 = ◦

�
3

03 = −1

r

√
e2 − 1;

�2
12 = �3

13 = e

r

√
e2 − 1;

�2
33 = − sin θ cos θ;

�3
23 = cot θ. (4.28)

Then transforming this connection components to the
Schwarzschild coordinates by the usual way we get it for
the further calculations in convenient Schwarzschild coordi-
nates:

�0
11 = − erg

r2(r − rg/r)2

1√
e2 − 1 + rg/r

;

�0
22 = erg

1 − rg/r

1√
e2 − 1

;

�0
33 = erg sin2 θ

1 − rg/r

1√
e2 − 1

;

�1
11 = rg

2r2

1

e2 − 1 + rg/r
;

�1
22 = −r

√
e2 − 1 + rg/r

e2 − 1
;

�1
33 = −r

√
e2 − 1 + rg/r

e2 − 1
sin2 θ;

�2
12 = �3

13 = 1

r

√
e2 − 1

e2 − 1 + rg/r
;

�2
33 = − sin θ cos θ; �3

23 = cot θ. (4.29)

It turns out that this way of the “switching-off” is not correct
because Riemannian tensor is not zero for this connection
and thus we cannot use it anymore.

We think that the reason of this unacceptable result is that
we did not “turn off” gravity totally, i.e. we did not provide
rg → 0 inside function r(τe, ρe) because really it is not inde-

pendent function, since we made a coordinate transformation
to freely falling coordinates (τe, ρe, θ, φ). Calculating Rie-
mann tensor (3.35) of the connection (4.28) directly one can
use partial derivatives taken from (4.17) and see that Riemann
tensor components depend on rg .

To provide a correct “switching off” gravity setting rg = 0

we introduce the operation r(τe, ρe)
rg→0−→ r̃(τe, ρe) where

r̃(τe, ρe) totally does not depend on rg . To define the function
r̃(τe, ρe) we do the following. From the coordinate transfor-
mations (4.17) we have

d(τe − eρe) =
⎛
⎝

√
e2 − 1 + rg

r

1 − rg
r

− e2

(
1 − rg

r

) √
e2 − 1 + rg

r

⎞
⎠ dr

= − dr√
e2 − 1 + rg

r

. (4.30)

After integration one has

τe − eρe = −
√
r
(
r(e2 − 1) + rg

)
e2 − 1

+ rg
(e2 − 1)3/2

{
log

[√
r(e2 − 1) + rg

+
√
r(e2 − 1)

]
+ C

}
, (4.31)

where C is the integration constant and log is a natural loga-
rithm. Let us “switch off” gravity in this relation by rg = 0,
as usual. Then, we obtain r̃ without dependence on rg as

τe − eρe = − r̃√
e2 − 1

. (4.32)

So, comparing last two equations we get

r̃ =
√
r
(
r(e2 − 1) + rg

)
√
e2 − 1

− rg
e2 − 1

{
log

[√
r(e2 − 1) + rg +

√
r(e2 − 1)

]
+ C

}
.

(4.33)

Substituting the last expression into (4.28), and replacing
r by r̃ we are “turning off” gravity in external way and in
internal way inside r that goes to r̃ . Under this paradigma,
the teleparallel connection in e-falling coordinates is

�0
22 = −r̃

√
e2 − 1; �0

33 = −r̃
√
e2 − 1 sin2 θ;

�1
22 = − er̃√

e2 − 1
;

�1
33 = − er̃ sin2 θ√

e2 − 1
;

�2
02 = �3

03 = −
√
e2 − 1

r̃
;
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�2
12 = �3

13 = e
√
e2 − 1

r̃
;

�2
33 = − sin θ cos θ; �3

23 = cot θ. (4.34)

So, after writing the expression for r̃ the connection in e-
falling coordinates is (4.35):

�0
22 = −

√
r
(
r
(
e2 − 1

) + rg
) +

rg log
(√

r
(
e2 − 1

) + rg +
√
r
(
e2 − 1

)) + C
√
e2 − 1

;

�0
33 =

⎡
⎢⎣−

√
r
(
r
(
e2 − 1

) + rg
) +

rg log
(√

r
(
e2 − 1

) + rg +
√
r
(
e2 − 1

)) + C
√
e2 − 1

⎤
⎥⎦ sin2 θ;

�1
22 = e

⎡
⎢⎣−

√
r
(
r
(
e2 − 1

) + rg
)

e2 − 1
+

rg log
(√

r
(
e2 − 1

) + rg +
√
r
(
e2 − 1

)) + C

e2 − 1

⎤
⎥⎦ ;

�1
33 = e

⎡
⎢⎣−

√
r
(
r
(
e2 − 1

) + rg
)

e2 − 1
+

rg log
(√

r
(
e2 − 1

) + rg +
√
r
(
e2 − 1

)) + C

e2 − 1

⎤
⎥⎦ sin2 θ;

�2
02 = �3

03 = e2 − 1

−
√
r
((
e2 − 1

)
r + rg

) + rg log
(√(

e2 − 1
)
r + rg +

√
r
(
e2 − 1

)) + C
;

�2
12 = �3

13 = e
(
e2 − 1

)
√
r
((
e2 − 1

)
r + rg

) − rg log
(√(

e2 − 1
)
r + rg +

√
r
(
e2 − 1

)) − C
;

�2
33 = − sin θ cos θ; �3

23 = cot θ. (4.35)

Connection after transformation to static coordinates takes
the form (4.36).

�0
11 = − erg

√
r

(r − rg)2
√
r(e2 − 1) + rg

; �1
11 = rg

2r
((
e2 − 1

)
r + rg

) ;

�0
22 = erg

⎡
⎢⎣

√
r
(
r
(
e2 − 1

) + rg
)

(
e2 − 1

)
(r − rg)

−
rg log

(√(
r
(
e2 − 1

) + rg
) +

√
r
(
e2 − 1

)) − C(
e2 − 1

)
(r − rg)

⎤
⎥⎦ ;

�0
33 = erg

⎡
⎢⎣

√
r
((
e2 − 1

)
r + rg

)
(
e2 − 1

)
(r − rg)

−
rg log

(√(
r
(
e2 − 1

) + rg
) +

√
r
(
e2 − 1

)) − C(
e2 − 1

)
(r − rg)

⎤
⎥⎦ sin2 θ;

�1
22 = −

√
e2 + rg

r
− 1

⎡
⎢⎣

√
r
((
e2 − 1

)
r + rg

)
(
e2 − 1

) −
rg log

(√(
r
(
e2 − 1

) + rg
) +

√
r
(
e2 − 1

)) − C(
e2 − 1

)
⎤
⎥⎦ ;

�1
33 = −

√
e2 + rg

r
− 1

⎡
⎢⎣

√
r
((
e2 − 1

)
r + rg

)
(
e2 − 1

) −
rg log

(√(
r
(
e2 − 1

) + rg
) +

√
r
(
e2 − 1

)) − C(
e2 − 1

)
⎤
⎥⎦ sin2 θ;

�2
12 = �3

13 = e2 − 1√
e2 + rg

r − 1
(√

r
((
e2 − 1

)
r + rg

) − rg log
(√(

e2 − 1
)
r + rg +

√
r
(
e2 − 1

)) − C
) ;

�2
33 = − sin θ cos θ; �3

23 = cot θ. (4.36)

123



366 Page 10 of 12 Eur. Phys. J. C (2023) 83 :366

Calculating the Riemannian tensor components for this
connection we find that all of them present fractions where
the numerators are equal to zero identically. This means that
despite the denominators can vanish for some particular r =
r(C), the curvature equals zero for all permissible r . So that,
the connection (4.36), despite it is singular at the point when
the denominator vanishes, is a teleparallel connection.

For the sake of simplicity and certainty let us choose C =
− 1

2rg log
√
e2 − 1. Then, the only non-zero components of

the additional divergence superpotential with Killing vector
(4.12) are

J 01
div(ξkill ) = −J 10

div(ξkill )

=
(
rgr

2 sin θ

(
2r

(
e2 − 1

)3
r + e2 (

3e2 − 4
)
rg + rg

)

+rg

[
2 log

(√(
e2 − 1

)
r + rg +

√
r
(
e2 − 1

)) − log
√
e2 − 1

]

∗
((

3e2 + 1
) √

r(e2 − 1)(r(e2 − 1) + rg)

+
((

e2 − 1

)
r + rg

) [
2 log

(√(
e2 − 1

)
r + rg

+
√
r
(
e2 − 1

)) − log
√
e2 − 1

]))
/

(16π
(
e2 − 1

)
r3 (

2
(
e2 − 1

) ((
e2 − 1

)
r + rg

)
+(rg/r)

√
r(e2 − 1)(r(e2 − 1) + rg)

∗ log

[
2 log

(√(
e2 − 1

)
r + rg +

√
r
(
e2 − 1

)) − log
√
e2 − 1

])
).

(4.37)

This gives the additional +M/2 to Komar M/2 to obtain the
acceptable value M . This result is valid for all C introduced
in (4.31) as well.

The only non zero components of the additional diver-
gence superpotential with a free falling observer’s vector
(4.16) are

J 01
div(ξ f all) = −J 10

div(ξ f all) =
(
erg

2r2 sin θ

((
e2 − 1

)
r + rg

)

∗
[

2 log

(√(
e2 − 1

)
r + rg +

√
r
(
e2 − 1

)) − log
√
e2 − 1

]2

+4
√
r(e2 − 1)(r(e2 − 1) + rg)

∗
[

2 log

(√(
e2 − 1

)
r + rg +

√
r
(
e2 − 1

))

− log
√
e2 − 1

]
+ 4

(
e2 − 1

))
/

(16π
(
e2 − 1

)
r3 (

2
(
e2 − 1

) ((
e2 − 1

)
r + rg

)
+(rg/r)

√
r(e2 − 1)(r(e2 − 1) + rg)

∗ log

[
2 log

(√(
e2 − 1

)
r + rg +

√
r
(
e2 − 1

))

− log
√
e2 − 1

]))
. (4.38)

So, the 0-component of current is not zero. We see that unlike
the TEGR, we got the correct black hole mass in static case
like in TEGR, but, unlike the TEGR, we couldn’t get Einstein
equivalence principle for the freely falling observer not only
in static case but in the freely falling case too.

Note, that some components in (4.34) tend to infinity when
e → +1. Thus, substituting this connection into the expres-
sions for current and superpotential which explicitly depend
on the flat torsionless connection, see (3.11) for (3.28) with
(2.3), we get infinite values too, although the flat connec-
tion components are not observable. “Turning off” gravity
in Lemaitre coordinates directly leads also to infinite con-
nection or non-zero Riemann tensor values, although it has
to be zero for the flat connection. So, “turning off” grav-
ity principle might be unsuccessful in certain cases. Here,
for example, it is unsuccessful with making the use of the
Lemaitre coordinates for the Schwarzschild solution. In this
particular case, the reason is in that the transformation (4.13)
is singular with respect to rg . This is a problem of calculation
methods only, and has to be resolved by a related regulariza-
tion procedure. This suggests also that we could probe other
ways of obtaining the connection in STEGR.

5 Conclusions

Applying Noether’s theorem we have constructed in tenso-
rial form covariant conserved quantities in STEGR: currents,
superpotentials and charges. Because STEGR Lagrangian
can be written as the Hilbert Lagrangian plus the total diver-
gence, these quantities consist of two components: GR term
plus the divergent term, see (3.29), (3.30), (3.32). Each
term is expressed in evidently covariant form: (3.27) and
(3.28) for the Noether superpotential, covariant derivatives
of (3.27) and (3.28) give the Noether current, integration
(3.10) of (3.27) and (3.28) gives the Noether charge. All
these expressions are covariant under coordinate transfor-
mations: GR parts are covariant due to the covariance of
the Komar superpotential and covariant derivatives of it; the
superpotential (3.28) related to the divergent term and the
corresponding current J α

div(ξ) = ∂βJ αβ
div(ξ) is proportional

to non-metricity (2.3); the same, to the disformation tensor
(2.5) (which are coordinate-covariant due to introducing of
flat torsionless connection) and their covariant derivatives.
However, the flat torsionless connection in STEGR is unde-
termined – it cannot be obtained by the field equations. To
solve this problem we find the connection using the “turn-
ing off” gravity principle, the idea for which was taken from
TEGR “turning off” gravity principle, and the method itself
was then adapted for STEGR. Usually, authors aim to find
a “coincident” gauge with zero connection corresponding
to particular coordinates [20,49]. In our case of covariant
expressions, we can obtain the necessary teleparallel connec-
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tion for each coordinates, and then make coordinate transfor-
mation to “coincident” gauge.

To test the applications for the new Noether conserved
quantities we consider FRLW and Schwartzchild solutions.
For the Friedmann solution we obtained zero Noether cur-
rent for the freely falling observers “frozen” into the Hubble
flow. This means that such observer measures zero energy
and momentum densities what corresponds to the Einstein
equivalence principle. The same result was obtained in the
FRLW solution in TEGR [36,37]. Schwartzchild solution
was considered in different coordinates: static and general
radially freely falling coordinates. “Turning off” gravity in
different coordinates we obtained different connections (dif-
ferent when expressed at the same coordinates). Such kind of
ambiguities in “turning off” gravity principle was also found
in TEGR [38,39]. However, in the Schwartzchild solution,
in TEGR there were more physically expected results than in
STEGR. In static case the situations in TEGR and STEGR
are the same: Noether charge gives the correct black hole
mass M but non-zero Noether current for the freely falling
observer that means that the Einstein equivalence principle
is not satisfied. In the Lemaitre coordinates (general radially
freely falling coordinates with e = 1) it is impossible to “turn
off” gravity in STEGR while in TEGR the Einstein equiv-
alence principle was obtained. In the general radially freely
falling coordinates, in STEGR, the correct black hole mass M
was obtained, but not the Einstein equivalence principle for
the freely falling observer; while in TEGR both the correct
black hole mass M and the Einstein equivalence principle for
the freely falling observer were satisfied.

In a more complicated case of axially symmetric solu-
tions in f (T, B, φ, X) theories our “turning off gravity” pro-
cedure elaborated in [36,37] has been applied to find the
correct connection in [50]. The resulting tetrads and con-
nections solved the field equations (including antisymmetric
parts of them) for Taub-NUT solution, but not for Kerr and
C-metric solutions. It could be interesting to examine these
solutions in constructing conserved quantities in the frame-
work of STEGR with the “turning off gravity” procedure
outlined in Sect. 3.3.

Can we satisfy both the correct black hole mass M and the
Einstein equivalence principle in STEGR? In fact, one can
take more general set of flat torsionless connections without
the “turning off” gravity principle. Thus, the components of
such a connection in general form were found in [51], and
the most generic static spherical connections in symmetric
teleparallel geometry were worked out in [52]. Basing on the
results [51,52] one can try to solve the equations of zero cur-
rent for the freely falling observer and condition for Noether’s
charge M inside an unique set of appropriate teleparallel con-
nections.

It is well known that, for example, cosmological and astro-
physical models considered in GR, equivalently in STEGR,

differ from those considered in f (Q) theories [53]. There-
fore, it would be interesting to apply the methods developed
in STEGR to f (Q) gravity and compare results of their appli-
cations. First, because f (Q) theories are covariant ones we
can apply the Noether procedure to derive the conservation
laws and conserved quantities as well. At the moment, we
do not know their connection with those in STEGR, and it
would be interesting to study it. Second, the definitions of a
flat torsionless connection in STEGR and in f (Q) gravity
differ. Recall the situation in TEGR and f (T ). The inertial
spin connection in TEGR is defined by the external princi-
ple of “turning off” gravity, without taking into account field
equations, see [36,37]. Unlike this, in covariant f (T ) theo-
ries (see, for example, [54]), inertial spin connection has to
follow after solving the related system of field equations that
can be not so simple. Concerning STEGR and f (Q) theories,
the situation has to be analogous. For example, it could be
very difficult to find a related flat connection for the FRLW
solution in the framework of f (Q) theory. We think also that
in the case of some spacetime symmetries in the process of
the “turning off” gravity one can satisfy the field equations in
f (Q) gravity, and it would be interesting to find such sym-
metries and then study the Noether conserved quantities for
them.

We leave the above problems for a future work.
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