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Abstract Galaxy rotation curves are considered to be con-
vincing evidence for dark matter or some dynamically equiv-
alent alternative mechanism. Starting only from the rotation
curve data, we present a model independent approach of test-
ing a general hypothesis that dark matter has the properties of
a barotropic fluid. It is shown how the speed of sound squared
can be expressed in terms of rotation curve data and their
radial derivatives and how model independent constraints
can be obtained from the requirements that it is confined
between 0 and c2. Using the Milky Way rotation curve data
available in the literature, we obtain the constraints on the
barotropic fluid speed of sound and illustrate the potential
of this approach. Technical challenges, limitations and pos-
sible future extensions and improvements of the proposed
approach are discussed.

1 Introduction

The most intriguing aspect of modern cosmology is the
unknown nature of its dark sector. Available observational
data (see e.g. [1–5]), increasing both in quality and quan-
tity, reveal effects in global cosmic expansion, large scale
structure formation, galaxy cluster and galaxy dynamics, the
explanation of which requires novel cosmic mechanisms.
The precise mechanism(s) behind these effects are currently
not known and they are sometimes referred to as the cosmic
dark sector. A majority of proposed solutions to late-time
accelerated cosmic expansion are either based on an addi-
tional cosmic component with a negative pressure, called
dark energy (DE) [6–10] or on modifications of gravitational
interaction beyond General Relativity [11–13]. The effects
at the level of cosmic structures are most frequently modeled
in terms of additional matter component, called dark matter
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[14–20], but alternative mechanisms of modified dynamics,
such as MOND and its generalizations [21–25], have been
proposed and are currently being actively investigated. A
conceptually simple realization of the cosmic dark sector is
used in the presently standard cosmological model, �CDM
model, in which the cosmological constant serves as dark
energy and the dark matter component is cold dark matter.
Despite being simple and in overall accordance with avail-
able observational data, tensions in the values of the Hubble
constant H0 measured at low and high redshift [26–29], have
recently triggered various (re)evaluations of alternative mod-
els of the cosmic dark sector.

The research of the dark sector of the universe is in a
situation where the fundamental properties of these mecha-
nisms are still not settled e.g. whether they are cosmic compo-
nents or manifestations of modified gravitational interaction
or more generally modified dynamics. Even for the most stud-
ied options (such as dark matter or dark energy components)
the available data cannot discriminate among numerous pro-
posed models. In such circumstances more generic, model
independent tests of the nature of the cosmic dark sector are
welcome.

One of most widely used assumptions for cosmic com-
ponents is that they behave as perfect fluids. An additional,
frequently employed requirement is that the perfect fluid is
barotropic, i.e. that its pressure is a function of its energy
density only, p = p(ρ). In this broad class of models, the
fluid speed of sound follows directly form the fluid equation
of state (EoS), c2

s = d p
d ρ

. Numerous recent models of dark
matter go beyond the WIMP hypothesis and allow a consid-
erable interaction between DM particles [30–32]. Some of
these models have the properties of barotropic fluids with a
non-negligible pressure. Prominent examples are the Bose
Einstein condensate (BEC) models of dark matter [33–38],
with p ∼ ρ2 and superfluid dark matter [39–43] with
p ∼ ρ3. Given the physical meaning of c2

s , a requirement
0 ≤ c2

s ≤ c2 can be imposed, where c denotes speed of
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light.1 This research program was systematically applied to
parametrizations of dark energy EoS available in the litera-
ture in [44]. The result of this analysis is that a large propor-
tion of dark energy EoS parametrizations is not compatible
with dark energy being a barotropic perfect fluid. It should
be stressed that our approach is not applicable to models in
which the fluid description is an effective approach and speed
of sound, as defined above, may not be physically meaning-
ful.

In this paper we apply the line of reasoning elaborated in
[44–48] to astrophysical systems. In particular, we develop
a model independent framework of testing the hypothesis of
dark matter being a barotropic perfect fluid using the galaxy
rotation curve observational data.

The necessary assumptions for the study of astrophysi-
cal systems (primarily galaxies) in this paper are that they
are spherically symmetric, all components in the system are
barotropic fluids, the components are non-interacting and
that non-relativistic effects are negligible. Furthermore, it is
assumed that rotation curve data of sufficient quality and
radial extension are available. These assumptions are clearly
idealizations used to simplify the calculations and the com-
parison with the data. Though unrealistic at smaller radial
distances, we will argue that at larger radial distances approx-
imate spherical symmetry may be used for the illustration of
our approach.

The main contributions of this paper are the following:
we demonstrate how a general concept of dark matter as a
barotropic fluid can be tested in a model independent way;
The potential of this approach using Milky Way rotation
curve data is illustrated; Some challenges in numerical com-
putation of c2

s are investigated; The extension of this approach
to non-spherical systems and its application to single com-
ponent systems such as ultra diffuse galaxies is discussed.

In our considerations we focus our attention to Milky way
for several reasons. The rotation curve for Milky Way is avail-
able for large radial distances, where the analysis presented
in this paper is most adequate for the study of dark matter
properties. The measurements of galactic properties impor-
tant for future refinements of our approach (such as baryonic
mass density) are more detailed for Milky Way compared to
other galaxies. Finally, as Milky Way is our domicile galaxy,
new ways of testing its properties are intrinsically important
and interesting.

The outline of the paper is the following. The first section
brings the introduction and an overview of the idea of model
independent testing of dark matter being a barotropic fluid.
In the second section the formalism of the testing approach is

1 The results obtained in this paper may also be compared with other
constraints stemming from specific models of dark matter barotropic
fluids. As our main goal is in model independent analyses, we restrict
ourselves to this fundamental constraint.

elaborated. In the third section the Milky Way rotation curve
data are discussed and the computational methodology is
presented. The fourth section brings the results for the Milky
Way galaxy. In the final fifth section we discuss the obtained
results, outline possible extensions of the presented approach
and close the paper with conclusions.

2 Fluid dark matter quantities in terms of rotation
curve properties

The hydrostatic equilibrium of a single relativistic fluid com-
ponent in a spherically symmetric configuration is given by
the famous Tolman–Oppenheimer–Volkoff (TOV) equation

−r2 d p(r)

d r
=GM(r)

(
ρ(r)+ p(r)

c2

)(
1−2GM

c2r

)−1

, (1)

where ρ(r) and p(r) correspond to mass density and pressure
of the fluid, with M(r) = 4π

∫ r
0 ρ(r ′)r ′2d r ′ being the mass

enclosed within a sphere of radius r .
If relativistic effects are negligible, and p(r)

c2 is much
smaller than ρ(r), the equilibrium configuration is given by
the equation

− r2 d p(r)

d r
= GM(r)ρ(r). (2)

If the considered fluid is barotropic (the fluid pressure
is a function of mass density only, p = p(ρ)), using the
definition of the speed of sound for a barotropic fluid, c2

s =
d p
d ρ

, Eq. (2) can be written as

− r2c2
s
d ρ(r)

d r
= GM(r)ρ(r). (3)

In a non-relativistic Newtonian approximation the circular
orbit at radius r of a test particle of mass m is determined by
the equation

mv(r)2

r
= G

mM(r)

r2 . (4)

This allows us to express the mass with a sphere of radius r
as

M(r) = rv(r)2

G
. (5)

Using the definition of M, one can obtain the expression
for ρ(r) in terms of v(r) and r :

ρ(r) = 1

4πGr2

(
v2 + r

d v(r)2

d r

)
. (6)

Then it is straightforward to obtain the expression for the
derivative of energy density

d ρ

d r
= 1

4πG

(
−2v(r)2

r3 + 1

r

d2 v(r)2

dr2

)
. (7)
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After inserting (5), (6) and (7) into (3) the expression for
the speed of sound as a function of rotation speed and radius
then follows:

c2
s = v(r)2 v(r)2 + r d v(r)2

d r

2v(r)2 − r2 d2 v(r)2

dr2

. (8)

If we adopt the physical bound 0 ≤ c2
s ≤ c2, then the

requirement that matter be a barotropic fluid puts constrains
on the shape of the rotation curve v(r). As discussed in more
detail in the remainder of the paper, the practical usefulness
of this constraint is closely related to data quality.

Next we consider a spherically symmetric configuration
with two components which interact only gravitationally. The
hydrostatic equilibrium equations for each of components,
denoted by subscripts 1 and 2 is

− r2 d p1,2(r)

d r
= GM(r)ρ1,2(r), (9)

where M(r) = 4π
∫ r

0 ρ(r ′)r ′2d r ′ is the mass of both com-
ponents enclosed in a sphere of radius r . Here we also use
ρ(r) = ρ1(r)+ρ2(r) and M(r) = M1(r)+M2(r), where
M1,2(r) = 4π

∫ r
0 ρ1,2(r ′)r ′2d r ′.

A circular orbit at radius r of a test particle of mass m is
also determined by the equation

mv(r)2

r
= G

mM(r)

r2 , (10)

which leads to expressions

M(r) = M1(r) + M2(r) = rv(r)2

G
(11)

and

ρ(r) = ρ1(r) + ρ2(r) = 1

4πGr2

(
v2 + r

d v(r)2

d r

)
. (12)

Combining both equations given in (9), one easily obtains

− r2
(
c2
s,1

d ρ1(r)

d r
+ c2

s,2
d ρ2(r)

d r

)
= GM(r)ρ(r). (13)

The right-hand side of this equation can be readily expressed
in terms of v(r)2 and r using (11) and (12).

A considerable simplification of (13) is obtained if there
is a region of large r where ρ2(r) and p2(r) are negligible.
Then in this region of sufficiently large r the expression (13)
takes the form

− r2c2
s,1

d ρ1(r)

d r
= G(M1(r) + M2)ρ1(r). (14)

Here M2 is the total mass of the component 2 in the sys-
tem. In this regime the expressions for ρ1 and c2

s,1 are given
as functions of orbital velocity and ts radial derivatives by
expressions (6) and (8), respectively.

For a two component system, even more realistic testing
of dark matter properties can be made if additional informa-
tion on one of components can be independently obtained. A
particular instance of this situation is if baryonic matter dis-
tribution is (precisely) known from direct observations (other
that rotation curves). Namely, for a rotation curve velocity
one can write

v2 = v2
1 + v2

2, (15)

where v2
1,2 = GM1,2

r . If v2
2 can be calculated from addition-

ally available information (e.g. from known matter distribu-
tion), v2

1 can be calculated from measured v2 and calculated
v2

2 as v2
1 = v2 − v2

2. Then it is straightforward to obtain

c2
s,1 = v(r)2 v1(r)2 + r d v1(r)2

d r

2v1(r)2 − r2 d2 v1(r)2

dr2

. (16)

The developed formalism presented above allows for test-
ing several hypotheses using rotation curve data only. The
first one starts from the requirement that energy density
should not be negative, i.e. ρ ≥ 0 which can be tested using
(6). Such attempts of reconstructing the energy density from
the rotation curve data have already been described in the
literature (see e.g. [50]). Finding statistically significant neg-
ative values of ρ may point to some alternative mechanism
behind rotation curve dynamics other than dark matter as
a barotropic fluid. A hypothesis that matter producing rota-
tion curve dynamics behaves as a barotropic fluid can be
tested using expression (8), where we are interested if the null
hypothesis of 0 ≤ c2

s ≤ c2 can be rejected. In particular, it
can be studied if statistically significant negative values of c2

s
can be found at some radial distance values. Should empirical
rotation curves reveal statistically significant negative values
of c2

s , the component producing the rotation curve dynam-
ics cannot be a stable barotropic fluid, i.e. it should exhibit
instabilities. An additional advantage of this approach is that
the speed of sound expression is valid for any r so this pro-
vides an opportunity to test the requirement for c2

s for a range
of r i.e. for an entire rotation curve.

Apart from testing the aforementioned hypotheses, addi-
tional interesting information can be achieved using the rota-
tion curve data. Direct integration of (2) yields an expression
for the pressure as a function of radial distance:

p(r)=p0−
∫ r

r0

v(r ′)2

4πGr ′3

(
v(r ′)2+r ′ d v(r ′)2

d r ′

)
d r ′, (17)

where the subscript 0 refers to some arbitrary rotation curve
point. This result shows that if the value of pressure at some
radial distance r0 is known, the pressure function p(r) can
be reconstructed from the rotation curve data. The expres-
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sion (17) can be readily integrated by parts which results in
an expression for p(r) without derivatives of rotation curve
speed function:

p(r)=p0− 1

8πG

[
v(r)4

r2 −v(r0)
4

r2
0

+4
∫ r

r0

v(r ′)4

r ′3 d r ′
]

.

(18)

Compared to expressions for mass density and speed of
sound, the expression for pressure given in (18) is more stable
since it does not require calculation of orbital speed deriva-
tives. However, it is dependent on the value p0 which has to be
determined by some other method. Once the pressure func-
tion is known, it is straightforward to obtain the parameter of
Equation of State w(r) = p(r)/ρ(r). Finally, one can plot
the (c2

s , w) relation to obtain a deeper insight into the nature
of the matter component producing rotation curve dynam-
ics in the c2

s (w) formalism [44,46–48]. Spherical symmetry
assumed in this section may not be adequate for the descrip-
tion of some systems, such as galaxies at smaller radial dis-
tances. However, in the following section we show in which
circumstances certain systems can have approximate spher-
ical symmetry.

3 Data and computational methods

3.1 Milky Way data

As an illustration of the proposed approach we apply the
developed testing scheme to the data publicly available in
Ref. [49]. In this reference a rotation curve for the Milky Way
is constructed for radial distances from the galactic center in
the range from ∼ 0.2 kpc to ∼ 200 kpc. As stated in [49],
datasets for several different types of tracer objects, both disk
tracers and non-disk tracers, need to be combined in a com-
mon methodological framework to produce a rotation curve
with such a large radial range. Furthermore, the construc-
tion of the rotation curve of the Milky Way in [49] is made
without assuming any specific dark matter model or halo
structure model. These features of rotation curve construc-
tion are particularly convenient for the analysis presented in
this paper since: (i) a single rotation curve dataset is available
and there is no need to work with multiple, possibly quite dis-
parate, observational datasets, (ii) the dataset extends to very
large radial values (∼ 200 kpc) where the conditions for test-
ing dark matter properties are the best and influence of the
baryonic matter is expected to be small and (iii) we aim at
model independent testing of general properties of dark mat-
ter what also requires data obtained in a model independent
way. In our testing if the dark matter can have properties of a
barotropic fluid, in this paper we confine our analysis to radial
distances above 28 kpc. In this way we avoid the region of

radial distances where peculiarities of galactic baryon distri-
bution might significantly interfere with the applicability of
simple expressions such as (6) and (8). Namely, we assume
that the dark matter halo is spherical and with increasing
radial distance the influence of non-spherical baryonic dis-
tribution is progressively smaller. In this way at sufficiently
large radii the system may be taken as approximately spher-
ically symmetric. In this paper we assume that 28 kpc is
the lower limit of this region of approximate spherical sym-
metry. Owing to large interval of radial distances for which
measurements of orbital distances are available in [49], even
such a restricted dataset is still sufficiently large for system-
atic application of the proposed test if dark matter has the
properties of a barotropic fluid.

3.2 Computational methods

The aim of this paper is to compare the values of physi-
cal quantities such as ρ and c2

s calculated from the galaxy
rotation curve measurements with the fundamental hypothe-
ses such as ρ ≥ 0 and 0 ≤ c2

s ≤ c2. Statistical testing
of these hypotheses requires knowing the scope of system-
atic uncertainties, mainly related to numerical calculation of
derivatives, and statistical distributions of calculated quanti-
ties such as ρ and c2

s coming from statistical uncertainties of
galaxy rotation curves, v(r).

The main challenge in using expressions like (6) and (8)
to calculate observable quantities such as ρ and c2

s lies in the
numerical calculation of first and second spatial derivative
of the v(r) function. It is important to assess how sensitive
the results for ρ, c2

s and other relevant quantities are to the
method of calculation of the said derivatives. Furthermore,
as the rotation curve data measurements have some asso-
ciated uncertainties, an essential question that needs to be
addressed is how the uncertainties in the v(r) functions are
translated into distributions of calculated values such as ρ

and c2
s . We approach this issue from several directions and

propose methodologies of quantifying dispersion of the cal-
culated physical values. We employ several schemes of cal-
culating derivatives to estimate the level of robustness of our
results.

For the purpose of numerical processing of (6) and (8), we
use two approaches relying on second-order and fourth order
Lagrange interpolation polynomials. In the first approach
v2(r) around ri is represented by a second-order Lagrange
interpolation polynomial with three points:

v2(r) = (r − ri )(r − ri+1)

(ri−1 − ri )(ri−1 − ri+1)
v2
i−1

+ (r − ri−1)(r − ri+1)

(ri − ri−1)(ri − ri+1)
v2
i

+ (r − ri−1)(r − ri )

(ri+1 − ri−1)(ri+1 − ri )
v2
i+1. (19)
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For the fourth-order Lagrange interpolation polynomial
with five points the expression for v2(r) around ri is:

v2(r) = (r−ri−2)(r−ri−1)(r−ri )(r−ri+1)

(ri+2−ri−2)(ri+2−ri−1)(ri+2−ri )(ri+2−ri+1)
v2
i+2

+ (r−ri−2)(r−ri−1)(r−ri )(r−ri+2)

(ri+1−ri−2)(ri+1−ri−1)(ri+1−ri )(ri+1−ri+2)
v2
i+1

+ (r−ri−2)(r−ri−1)(r−ri+1)(r−ri+2)

(ri−ri−2)(ri−ri−1)(ri−ri+1)(ri−ri+2)
v2
i

+ (r−ri−2)(r−ri )(r−ri+1)(r−ri+2)

(ri−1−ri−2)(ri−1−ri )(ri−1−ri+1)(ri−1−ri+2)
v2
i−1

+ (r−ri−1)(r−ri )(r−ri+1)(r−ri+2)

(ri−2−ri−1)(ri−2−ri )(ri−2−ri+1)(ri−2−ri+2)
v2
i−2.

(20)

All required derivatives are obtained by analytical differ-
entiation of expressions (19) and (20).

To assess the importance of local details in the rotation
curve (as opposed to the average trend of the rotation curve),
rotation curve data were also smoothed using weighted mov-
ing average with a moving window whose width was 20 kpc.
To create a new smooth velocity curve, a point was created
for each kpc, using all available measured data within 10
kpc on each side. The statistical weight of the measured data
was linear with the distance of the measured data from the
newly constructed point. For example, a point 10 kpc from
the newly constructed point or further away had zero statis-
tical weight, a point at exactly the same radius as a newly
constructed point had a maximum statistical weight, while a
point 5 kpc away from the newly constructed point had half
of the maximum statistical weight.

Finally, for each of four chosen approaches (three point
and five point, without and with smoothing), an ensamble of
values for ρ and c2

s is calculated using the following proce-
dure. For a three-point approach the required quantities are
calculated for all radial values except the first and the last one.
For a five-point approach the required quantities are calcu-
lated for all radial values except the first two and the last two.
The required values for the speed triplet in (19) (quintuplet
in (20)) are drawn from normal distributions with expected
value and standard deviation from dataset available in [49].
The values in the ensamble are sorted and boundaries of 68%,
95% and 99% confidence intervals are determined.

4 Milky Way results

In this section we present results obtained from the Milky
Way rotation curve data described in the preceding section.
We start with a general observation that for the flat part of
the rotation curve, characterized by v = const , from (8)
it follows c2

s = v2/2 ≡ α = const . In the flat part of
the rotation curve the EoS of the dark matter fluid is then

Fig. 1 First radial derivatives of orbital speed squared d v2

dr , calculated
using the three-point scheme for the calculation of derivatives (19)
and the five-point scheme for the calculation of derivatives (20), with
smoothing (referred to as weighted average) and without smoothing
(referred to as original data)

p = αρ + β. As an illustration of the order of magnitude
for the parameter α, its value for the Milky Way rotation
curve data, assuming the flat part for the studied area with
r0 > 28 kpc, is α = (2.3 ± 0.1) · 1010m2/s2. As values
of the rotation speed for the flat part of rotation curve in a
large majority of spiral galaxies is in the range from 100 to
300 km/s, the corresponding values for α for spiral galaxies
are of the order of 1010m2/s2.

We further organize our results in four subsections. In
the first subsection we present results for radial derivatives of
rotation curve orbital speeds and compare various techniques
of their calculation. In the second subsection we present
results for the matter density while the third subsection con-
tains results for the speed of sound squared. Finally, in the
fourth subsection we bring results for the dark matter fluid
pressure.

4.1 Derivatives

Extracting the first and the second derivatives of v2 with
respect to radial distance represents the most challenging
part of calculating physical quantities such as mass density
ρ and speed of sound squared c2

s . We use two schemes for
the calculation of derivatives, based on three point and five
point Lagrange interpolation polynomials and apply each of
these schemes to original and smoothed data.

The results for the first derivative are presented in Fig. 1,
whereas the results for the second derivative are presented in
Fig. 2. The values of the first and the second radial deriva-
tive of v2, presented in Figs. 1 and 2, exhibit two important
features. In the first place, the results obtained for original
data (without smoothing) differ significantly from the results
obtained for the smoothed data. This result is somewhat

123



306 Page 6 of 10 Eur. Phys. J. C (2023) 83 :306

Fig. 2 Second radial derivatives of orbital speed squared d2 v2

dr2 , calcu-
lated using the three-point scheme for the calculation of derivatives (19)
and the five-point scheme for the calculation of derivatives (20), with
smoothing (referred to as weighted average) and without smoothing
(referred to as original data)

expected, given that the derivatives are calculated numer-
ically. Secondly, the differences between results obtained
using three-point and five-point schemes (both for original
and smoothed data), though they exist, for most radial dis-
tances are not large. In particular, there is no difference in
sign of derivatives at any radial value for both first and sec-
ond derivatives.

Since important information for testing of hypotheses may
be obtained from just a subset of radial values where the
quantities of interest are calculated, smoothing of the original
data may be unjustified. In the remainder of the paper we
focus on the results for the original data.

4.2 Matter density

The matter density distribution is calculated using expression
(6) which employs the first radial derivative of the rotation
curve orbital speed. The results for the matter density are
presented in Figs. 3 and 4. In both figures no smoothing is
applied. Both figures consist of three separate plots for dif-
ferent assumptions on Earth radial distance from the galactic
center and its orbital speed, as presented in [49]. Both fig-
ures present median (black line) and lower and upper bound
of 68% (green lines), 95% (red lines) and 99% (orange
lines) confidence intervals. In Fig. 3 results for the three-point
scheme for the calculation of derivatives (19) are presented,
whereas in Fig. 4 results for the five-point scheme for the
calculation of derivatives (20) are displayed.

4.3 Speed of sound

The results for the speed of sound squared are given in
Figs. 5 and 6. Both figures contain separate plots for three

Fig. 3 Median (black line) and lower and upper bounds of 68% (green
lines), 95% (red lines) and 99% (orange lines) confidence intervals of ρ

calculated using three-point scheme for the calculation of derivatives for
three combinations of distance of Sun from the galactic center and Sun
orbital velocity around the galactic center: (R0 = 8.0 kpc, v0 = 200
km/s) (top), (R0 = 8.3 kpc, v0 = 244 km/s) (middle) and (R0 = 8.5
kpc, v0 = 220 km/s) (bottom). Even though it was declared that we
have confined the analysis to radial distances above 28 kpc, a few points
below this limit are drawn in these graphs in order to show the downward
trend of ρ at lower radii

assumptions on Earth radial distance from the galactic cen-
ter and its orbital speed, as explained in [49]. In both figures
median (black line) and lower and upper bound of 68%
(green lines), 95% (red lines) and 99% (orange lines) con-
fidence intervals are displayed and no smoothing is applied.
Figure 5 contains results for the three-point scheme for the
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Fig. 4 Median (black line) and lower and upper bounds of 68% (green
lines), 95% (red lines) and 99% (orange lines) confidence intervals of ρ

calculated using five-point scheme for the calculation of derivatives for
three combinations of distance of Sun from the galactic center and Sun
orbital velocity around the galactic center: (R0 = 8.0 kpc, v0 = 200
km/s) (top), (R0 = 8.3 kpc, v0 = 244 km/s) (middle) and (R0 = 8.5
kpc, v0 = 220 km/s) (bottom). Even though it was declared that we
have confined the analysis to radial distances above 28 kpc, a few points
below this limit are drawn in these graphs in order to show the downward
trend of ρ at lower radii

calculation of derivatives (19), whereas Fig. 6 brings results
for the five-point scheme for the calculation of derivatives
(20). Finally, in Fig. 7 the medians for c2

s calculated using
(19) and (20) are presented as an illustration of the robust-
ness of calculations to the choice of numerical scheme for
the calculation of derivatives.

Fig. 5 Median (black line) and lower and upper bounds of 68% (green
lines), 95% (red lines) and 99% (orange lines) confidence intervals of
c2
s calculated using three-point scheme for the calculation of derivatives

for three combinations of distance of Sun from the galactic center and
Sun orbital velocity around the galactic center: (R0 = 8.0 kpc, v0 = 200
km/s) (top), (R0 = 8.3 kpc, v0 = 244 km/s) (middle) and (R0 = 8.5
kpc, v0 = 220 km/s) (bottom)

4.4 Pressure

The pressure of dark matter fluid is calculated using the
expression (18). As already mentioned, the pressure is

defined up to a constant. The results for p− p0 − v(r0)
4

8πGr2
0

, for

three assumptions on Earth radial distance from the galac-
tic center and its orbital speed, are presented in Fig. 8. The
results depicted in Fig. 8 were obtained by randomly select-
ing 1000 sets of values of orbital speed from corresponding
normal distributions N (v1, σi ) at each radial value ri . The
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Fig. 6 Median (black line) and lower and upper bounds of 68% (green
lines), 95% (red lines) and 99% (orange lines) confidence intervals of c2

s
calculated using five-point scheme for the calculation of derivatives for
three combinations of distance of Sun from the galactic center and Sun
orbital velocity around the galactic center: (R0 = 8.0 kpc, v0 = 200
km/s) (top), (R0 = 8.3 kpc, v0 = 244 km/s) (middle) and (R0 = 8.5
kpc, v0 = 220 km/s) (bottom)

radial value r0 is chosen as the largest radial value in the

dataset. Median of p− p0− v(r0)
4

8πGr2
0

is denoted by a black line,

whereas intervals of 68%, 95% and 99% confidence intervals
are given in green, red and orange lines, respectively.

5 Discussion and conclusions

The results presented in the preceding section should pri-
marily serve as a pilot study of the proposed approach to the

Fig. 7 Medians of c2
s calculated using three-point (blue line) and five-

point scheme (green line) for the calculation of derivatives, for the
distance of Sun from the galactic center R0 = 8.0 kpc and its orbital
velocity around the galactic center v0 = 200 km/s

testing of dark matter as a barotropic fluid. In the interpreta-
tion of the obtained results one should keep in mind that they
were obtained using the assumption of spherical symmetry
which is only an approximation increasingly more accurate
with the increase of radial distance.

For a concrete barotropic fluid model of dark matter with
an EoS p = p(ρ), it is possible to perform fits to rotation
curve data and obtain estimates of EoS parameters. Some
examples of such analyses are [43] for the superfluid dark
matter in Milky Way or [38] for the BEC dark matter in the
SPARC sample. In this paper, we focus on model independent
analysis and report results which can be obtained without
any additional assumption on the form of dark matter fluid
EoS. However, it would be very interesting to combine the
model independent results obtained here with the analyses
of specific DM models. This interesting possibility is left for
future considerations.

One of the most important results for ρ and c2
s quantities

is that at some radii their values are below 0 at 68% or even
95% and, in very rare cases, 99% confidence levels. There-
fore, it is reasonable to expect that with better (more accurate)
data, larger simulation datasets and better evaluation of the
baryonic contribution this approach might provide stringent
test of dark matter as a barotropic fluid. Furthermore, statis-
tically significant negative values of c2

s at some radii might
provide information on regions of possible dark matter insta-
bility. Beside interest in this fascinating possibility in itself,
it could also provide valuable insight into complex dynamics
of galactic structures.

As already stated, the obtained results can be more reli-
ably used in testing the nature of dark matter at larger radii
where the baryonic component density is negligible and the
baryonic contribution can be accurately approximated as if
all baryonic mass were concentrated in the galactic center.
Furthermore, with the growth of r the assumption of spher-
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Fig. 8 Median (black line) and lower and upper bounds of 68% (green
lines), 95% (red lines) and 99% (orange lines) confidence intervals

of p − p0 − v(r0)4

8πGr2
0

for three combinations of distance of Sun from

the galactic center and Sun orbital velocity around the galactic center:
(R0 = 8.0 kpc, v0 = 200 km/s) (top), (R0 = 8.3 kpc, v0 = 244 km/s)
(middle) and (R0 = 8.5 kpc, v0 = 220 km/s) (bottom)

ical symmetry is an increasingly better approximation. For
this reason we restrict our analysis to Milky Way rotation
data with radial distance from the galactic center larger than
28 kpc.

The single-component approach used in this paper could,
in principle, be of direct interest in modelling systems con-

sisting predominantly of a single component such as in ultra-
diffuse galaxies [51–53].

As already demonstrated in (16), more precise testing for
c2
s can be obtained if the contribution of the baryonic com-

ponent to v2(r) is subtracted from the measured v2(r) data.
Such a step requires detailed knowledge of galactic baryonic
matter distribution and numerical calculation of the corre-
sponding gravitational potential (or force). In that case, it is
necessary to use axisymmetric models for baryonic compo-
nent or in cases of spiral galaxies even non-axisymmetric
models or representations, see e.g. [50]. After this subtrac-
tion, using (16) testing of fundamental properties of c2

s can
be made at all available values of r .

The usefulness of the proposed approach is clearly limited
by the quality of the galaxy rotation curve data. The rotation
speed need to be measured at more densely spaced values of
the radial distance r , with smaller errors i.e. uncertainties, and
at as broad interval of r as possible. A more detailed analy-
sis using present and future observational programs in Milky
Way and other galaxies and more refined methods of calcu-
lation can be reasonably expected to provide more stringent
observational constraints on the nature of dark matter and
possibly (dis)prove the hypothesis of dark matter behaving
like a barotropic fluid.

In conclusion, rotation curves of spiral galaxies provide
a model independent approach to testing of the dark matter
concept. If the dark matter component can be represented as
a barotropic perfect fluid, the expressions for physical quan-
tities of the dark matter component, such as matter density
and speed of sound, can be obtained using the rotation curve
data only. Whereas reconstruction of the dark matter den-
sity has been considered in the literature before, determina-
tion of speed of sound of the dark matter barotropic fluid
from the rotation curve data is a novelty introduced, to the
best of our knowledge, for the first time in this paper. The
biggest systematic challenge is the way radial derivatives of
the rotation speed are numerically calculated and different
schemes of calculation have been used to assess the sensi-
tivity of results on the calculation scheme used. The main
goal of this paper is, apart from the introduction of this novel
approach, to estimate if the approach can be usefully applied
using the observational Milky Way rotation curve data avail-
able in the literature. With this goal in mind, we perform
a simplified analysis which neglects some details of galac-
tic structure and its results describe dark matter properties
only at larger distances from the center of the galaxy. The
results obtained for the Milky Way galaxy show that using
the chosen dataset and the simplified analysis there is hardly
any radial distance at which ρ or c2

s would be negative at a
99% confidence level. With the more precise modeling of all
contributions to rotation curve dynamics and more precise
data, the approach presented in this paper could become a
promising venue for model independent testing of dark mat-
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ter properties. Such refined analyses represent an important
challenge for future work.
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