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Abstract Applying the system of linear partial differen-
tial equations derived from the Mellin—Barnes representa-
tion and the Miller transformation, we present the GKZ-
system of the Feynman integral of the 2-loop self energy
diagram with 4 propagators. The codimension of the derived
GKZ-system equals the number of independent dimension-
less ratios among the external momentum squared and vir-
tual mass squared. In total 536 hypergeometric functions
are obtained in the neighborhoods of the origin and infinity,
in which 30 linearly independent hypergeometric functions
whose convergent regions have nonempty intersection con-
stitute a fundamental solution system in a proper subset of
the whole parameter space.
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1 Introduction

One of the main goals of high energy physics is to test the
standard model (SM) and to search for new physics (NP)
beyond the SM [1-3] after the discovery of the Higgs boson
[4,5]. Before the collision energy of the center of mass of the
running collider reaches the threshold energy of new physics,
the SM theoretical predictions of various physical observa-
tions should be accurately calculated [6]. In order to predict
the observables precisely, one should evaluate Feynman inte-
grals exactly in the spacetime dimension D = 4 — 2¢ [7] at
first.

Taking Feynman integrals as the generalized hyperge-
ometric functions [8], one finds that the D-module of a
Feynman diagram [9] is isomorphic to Gel’fand—Kapranov—
Zelevinsky (GKZ) D-module [10-14]. Correspondingly the
Feynman integral satisfies a system of holonomic linear par-
tial differential equations (PDEs) [15] whose singularities are
determined by the Landau singularities.

Some progress has been made on the subject in the past
decades. Under the assumption of zero virtual masses, the
Feynman integral of the 1-loop triangle diagram is formu-
lated as a linear combination of the fourth kind of Appell
function [16] whose arguments are the dimensionless ratios
among the external momentum squared, and is simplified
further as the linear combination of the Gauss function 7 F,
through the quadratic transformation in the literature [17]. An
algorithm to obtain the power series in the external momen-
tum of 2-loop self-energy diagrams with arbitrary masses of
the internal particles is examined in Ref. [18]. Taking some
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special assumptions on the parameter space, the authors of
Ref. [19] obtain the multiple hypergeometric expressions of
the scalar integral C; through the Mellin—Barnes represen-
tation. An algorithm to evaluate the scalar integral of the
1-loop vertex-type Feynman diagram is given in Ref. [20],
and the geometrical interpretation of the analytic expression
of the scalar integral of the 1-loop N-point diagram is also
presented in Ref. [21]. Certainly the expressions of the func-
tion C, can also be derived from the expression of the 1-loop
massive N-point diagram [22,23]. Furthermore the Feynman
integrals of ladder diagrams with 3 or 4 external lines can
be evaluated through the Feynman parametric representation
and the Mellin—Barnes contour integrals [24]. In fact the 1-
loop 2-point function B, can be formulated as a linear combi-
nation of the Gauss function 5 F*; through the recurrence rela-
tions respecting the spacetime dimension, the 1-loop 3-point
function C, similarly is presented as a linear combination of
the Appell function F), and the 1-loop 4-point function D,
is given as a linear combination of the Lauricella function
F, [25,26], respectively. The expression of C, is convenient
for analytic continuation and numerical evaluation because
the continuation of F| has been analyzed thoroughly. How-
ever, how to perform continuation of the Lauricella function
F, outside its convergent domain is still a challenge. Taking
Feynman integrals as the generalized hypergeometric func-
tions in dimension regularization, the authors of Ref. [27]
analyze the Laurent expansion of these hypergeometric func-
tions around D = 4. The differential-reduction algorithm
to evaluate those hypergeometric functions can be found in
Refs. [28-32]. A system of linear partial differential equa-
tions (PDEs) is given through the Mellin—Barnes represen-
tation [33], and some irreducible master integrals of the sun-
set and bubble Feynman diagrams are explicitly evaluated
through the Mellin—Barnes contour [34]. In addition, some
problems related to the constructions of the & expansion of
dimensionally regulated Feynman integrals are discussed in
Refs. [35,36]. Adopting the negative dimensional integra-
tion method, Refs. [37,38] present the complete massless
and massive 1-loop triangle diagrams results. Proof of the
equivalence between the Mellin—Barnes representation and
the Feynman parametric representation is given in Ref. [39],
and the inverse binomial sums relating to the & expansion of
massive Feynman integrals are presented in Ref. [40]. Those
results are applied to calculate the O(««,) corrections to the
relationship between the M S mass and the pole of top prop-
agator in the SM [41].

Some GKZ-systems of the Feynman integrals with
codimension= 0, 1 are presented in Refs. [42,43] through
the Lee—Pomeransky parametric representation [44]. To
obtain hypergeometric series solutions with suitable indepen-
dent variables, one should compute the restricted D-module
of the GKZ-system originating from the Lee—Pomeransky
representation on the corresponding hyperplane in the param-
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eter space [45-47]. In addition, the GKZ-systems of some
Feynman diagrams can also be derived from their Mellin—
Barnes representation [48-50] through the Miller transfor-
mation [51,52]. Reference [53] explores the idea of boot-
strap Feynman integrals using integrability, the authors of
Ref. [54] apply the GKZ description of periods to solve the /-
loop banana amplitudes with their general mass dependence,
and completely clarify the analytic structure of all banana
amplitudes with arbitrary masses [55]. The updated sum-
mary on some classical and modern aspects of hypergeomet-
ric differential equations is given in literature [56]. A Math-
ematica package for integrating families of Feynman inte-
grals order by order in the dimensional regulator from their
GKZ-systems is also given in literature [57]. A specialized
integration algorithm for parametric Feynman integrals with
tame kinematics is also presented in literature [58]. Actu-
ally the Cohen-Macaulay property of the Feynman integrals
indicates that the process of finding a series representation of
these integrals is fully algorithmic [59], and regular singular-
ities of the Feynman integrals are determined by its Landau
discriminant [60]. Reference [61] introduces a class of poly-
topes to analyze the structure of UV and IR divergences of
general Feynman integrals in the Schwinger parameter space.
Furthermore, Ref. [62] elaborates on the connection among
the GKZ-systems, de Rham theory for twisted cohomology
groups, and the Pfaffian equations for Feynman integrals, and
Ref. [63] presents a Mathematica package to find the linear
transformations for some classes of multivariable hypergeo-
metric functions. In literature [64] a class of N-loop massive
scalar self-energy diagrams with N+ 1 propagatorsis studied,
and the new convergent series representation for the 2-loop
sunset diagram with three different propagator masses and
external momentum is obtained in Ref. [65]. The relationship
between Feynman diagrams and generalized hypergeomet-
ric functions is reviewed in Ref. [66]. Using the GKZ sys-
tem and its relation to D-module theory, Ref. [67] proposes
a novel method to obtain differential equations for master
integrals. Adopting some assumptions on the virtual masses,
Ref. [68] investigates the analytical expression of a 3-loop
vacuum integral. A new methodology to perform the expan-
sion of multi-variable hypergeometric functions around the
spacetime dimension D = 4 is given in Ref. [69]. Using
an algorithm that extends the Griffiths—Dwork reduction for
the case of projective hypersurfaces with singularities, the
authors of Ref. [70] derive a system of Fuchsian linear dif-
ferential equations with respect to kinematic parameters for
a large class of massive multi-loop Feynman integrals.
Basing on the Mellin—Barnes representation of the 2-loop
self energy with 4 propagators, we derive the GKZ-system
of the diagram through the Miller transformation, where the
codimension of the GKZ-system equals the number of inde-
pendent dimensionless ratios among the external momentum
squared and virtual mass squared. As the Feynman integral
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is regarded as an analytic function of the square of exter-
nal momentum, the thresholds are the branch-points of the
analytic function in the complex p>-plane [71]. Applying the
residue theorem, one can only construct the analytic solutions
of the kinematic regions where the external energy is lower
than the minimum threshold or higher than the maximum
threshold. This is the fundamental reason why the combina-
torial information contained in the GKZ-system derived here
can only be used to obtain the hypergeometric solutions in
the neighborhoods of ml2 /p? = 0and p?/ ml2 = 0, respec-
tively. Applying the alpha parametric representation in the
Ref. [72], we can embed the integral in some subvarieties
of the Grassmannians G, and derive the GKZ-systems
on those subvarieties. Abundant combinatorial information
carried by the GKZ-systems on those subvarieties enables
us to obtain the fundamental solution systems in the neigh-
borhoods of all regular singularities, especially to obtain the
fundamental solution systems when the absolute value of
external momentum is located in the range surrounded by
two adjacent thresholds (pseudo-thresholds). As the thresh-
old coincides with the regular singularity of the Feynman
integral, we can apply this approach to derive the analyti-
cal expression of the Feynman integral in the correspond-
ing parameter space. Generally we should investigate further
whether or not the obtained hypergeometric functions can be
analytically continued to the threshold hypersurface. Nev-
ertheless, we can always apply the heavy mass and large
momentum expansion [73] to approximate the expression of
the Feynman integral on the threshold hypersurface.

The most general case of the 2-loop 2-point functions
can be approximated through the expansion of the external
momentum squared p2, where the coefficients of the expan-
sion can be expressed in terms of the 2-loop vacuum integrals
[18]. For the 2-loop self energy which is obtained through
inserting the self energy into one virtual particle of the 1-
loop self energy, the corresponding Feynman integral can
be reduced to the considered topology here by partial frac-
tioning. Using the Mellin—Barnes representation of the gen-
eral 5-propagator topology with a rung, we similarly derive
the GKZ-system satisfied by the Feynman integral. Unfor-
tunately the codimension of the GKZ-system is larger than
the number of independent dimensionless ratios among the
external momentum squared and virtual mass squared. This
is the reason why we cannot construct the fundamental solu-
tion system composed of canonical series through the GKZ-
system of the general 5-propagator topology which origi-
nates from the Mellin—Barnes representation. Applying the
alpha parametric representation in Ref. [72], we can embed
the integral in some subvarieties of the Grassmannian G |,
and derive the GKZ-systems on those subvarieties. In the
neighborhoods of all regular singularities, the fundamental
solution systems are expressed in canonical series.

q,,mM,

Fig. 1 The 2-loop self energy with 4 propagators

The general strategy for analysing the Feynman integral
includes three steps here. Firstly we obtain the holonomic
system of the linear PDEs satisfied by the Feynman integral
through its Mellin—Barnes representation, then find the GKZ-
system via the Miller transformation, finally construct the
hypergeometric series solutions. The integration constants,
i.e. the combination coefficients, are determined from the
Feynman integral at an ordinary point or some regular sin-
gularities.

Our presentation is organized as following. Through the
Miller transformation [33,49,50], we derive the GKZ-system
of the Feynman integral of the 2-loop self energy with 4 prop-
agates in Sect. 2. Then we present in detail how to obtain
the hypergeometric series solutions of the GKZ-system in
Sect. 3. Assuming only one virtual nonzero mass, we eluci-
date how to obtain the combination coefficients in Sect. 4.
The conclusions are summarized in Sect. 5, and some tedious
formulas are presented in the appendices.

2 Mellin—Barnes representation of the 2-loop self energy

The Feynman diagram for the 2-loop self energy with 4 prop-
agators is drawn in Fig. 1. The general analytic expression for
the Feynman integral of the 2-loop self energy can be written
as

4-D dD‘I] dD‘Iz
@m)P @2m)P
» 1
(> —mH(g? —mH)((q, +q, + p)* —mD)’
((q, + p)? —md)

iy (P’ = (AiE)

ey

where D = 4 — 2¢ is the dimension in dimensional regu-
larization and A, denotes the renormalization energy scale.
Adopting the notation of Refs. [49,50], one can write

2:1234(1’2)
A2 )4D  r4ico

= L/ ds,ds,ds,ds,
Qriy* Jis
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@

Here, the Feynman integral for the two-loop massless self
energy can be calculated as

/ dD‘]] dD‘]z 1
(ZJT)D (27T)D (q2)l+s] (q2)1+x2 ((ql +q7 + p)2>1+.v3 ((q + p)2)1+.v4
OPTQ—2 +5,+s)I' (¥ —1- sz)r(7 —1-s,)

% Z Z Z lellxnzxnzxm 3F(3—D+n2 +Vl;)

D
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r(z—§+n2+n3)F<4—D+Z?=|n-)F<5—QJFZL'"")

X

F4-D+Xion)r(3-2+Xi,n)
®)

m?
Loi=1,2, 3, 4 (6)

X = —
i 27
p
For convenience in the following discussion, we reformulate

the term as

- 4 DF1+7F1+§FD 1 4w A2 \4-D 7% sin 322
@4m)PT(1 +5,) (D s0( — 5, —5;) S (0?5 — 4( 122) 371; F(a, b |x),
r4—-np+Y4 ls)l"(f—]—s)l"(D—3—Z 5 (4m)*\ —p =
X
P +5)PG =2 + Xl s)MCP —4-%Ls) @
(pHPH i, 3)
where
The Mellin—Barnes representation of the 2-loop self energy o o o oo
i L Ao Fa bo=3" 3 3 3 4,00l
X (p?) = —(27”,)4(47_[)4( 7 > n;=0n,=0n,=0n,=0
+ico 8)
X/, ds,ds,ds,ds,
e Here, the coefficient is
4 4
r <a1 + Zlnl) r <a2 + Zln,) I'(ay +n, +n,)'(a, +n, +n,)' (a5 +n,)
1= 1=
nympngny 3 4 4 ’ ®)
nnynytn T Db, +n,)T <b4 + > ni> r <b5 + > n,.)
i=1 i=2 i=2
TR witha = (a,,...,a).b=(b,,....b), X = (x,.....x,).
<[T1(=5) r=sp]ra+s) and
i=1
3 3D D
XHF(g—l—sl) =4-D.a,=5-"-.a=2-7.a,=3-D. a =1
- bo=b=b=2-2 p=3-2 b —4_p (10)
P@ = B, 45T (D-3-Tiys )T (4= D+ X s)) e 20 5T '
X .
I(D—2—s,—s,)T" (3—7-1- 4, s,,) r (371’—4— > s,.) Through adjacent relations of the coefficient A, , .

“

It should be emphasized that this expression directly follows
from the method presented in the Ref. [19], just by substitut-
ing the contour variables s, — 1 —s,.

It is well known that negative integers and zero are simple
poles of the function I'(z). As all s; contours are closed to
the right in corresponding complex planes, one finds that the
analytic expression of the two-loop self-energy can be writ-
ten as a linear combination of generalized hypergeometric
functions, in which an independent linear term is

1 4 A2 \4-D 2 gin 3Z2
Z ()3 g (o) T
@m)*\ —p sin® 7=
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the difference-differential operators can be written as

4
<Zl9x +a1> F(av b|X)=d1F(a—|—e“ b|X),

i=1

4
(Zl’xi +az> F(a, b|x) =a,F(a+e,, b|x),
i=1
@, +9,, +a)F(@, b|x)=a,Fa+e, b|x),
@, +0, +a)F@ b|x)=a,F(@ate, b|x),
@, +a)F(a, b|x)=a;Fa+e. b|x),
@, +b, —DF(@, b|x)

=(®b,—1F(a, b—e |x), k=1,2,3,
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4
(Zﬂ)i +b, — 1) F(a, b|x)

=2
— (b, — DF(a. b—e, | x), k=4.5,

0, Fa. b|x) = al‘)iF(a—l—el +e, bte |x),
1

_ 44,434,
a"ZF(a’MX)_—bbb Fa+e +e, +e;
+e,, b+e, +e, +e |X),

a,da
39 F(a, b = DG b e +e
L F( | x) bbb, (ate +e,
+e, +e, bte +e e |Xx),
3, Fa b|x) = ;Z5F(a+el+e2
405

+e,, b+e, +e | Xx), (11

where e, € R’ denotes the row vector whose entry is zero

except that the j-thentryis 1,9, = x;d, denotes the Euler
i

operator, and 9, = 9/9x; respectively. In order to proceed

with our analysis, we deﬁne an auxiliary function,

®(a, b|x, u, v) =u?v’"¢F(a, b |x), (12)

with the intermediate variablesu = v=e= (1, 1, 1, 1, 1).

To avoid cumbersome symbols, here we adopt the multiple

. . a; .
index notations u? = ]_[;-5=1 u;', etc. Then the relations can

be obtained easily
z?ujCD(a, b|x, u v)= ajCD(a, b|x, u, v),
z?ijD(a, b|x, u v)= (bj —D®(@, b|x, u, v). (13)

In addition, the contiguous relations of Eq. (11) can be rewrit-
ten as

@IQD(a, b|x, u, v)=a®(@+e, b|x, u, v),
0,0, b|x, u, v)=a,P(a+e, b|x, u, v),
O,d(a, b|x, u, V) =a,P(a+e, b|x, u, v),
@4d>(a, b|x, u v)=aq,®(@a+e, b|x, u, v),
O,d(a, b|x, u, V) =a,da+e;, b|x, u, v),

5+kq>(a b|x, u, v)

=(b, —1HP@ b—e |x, u V), k=123,

5+kq>(a b|x, u, v)

=(b, — 1P, b—e |x, u V), k=45,
@nq)(a’ b|x, u, v)

a,a,
=b—<l>(a+el te, b+te [X u V),
1
@lzd)(a, b|x, u, v)
a,a,a,a
=#<D(a+e e, b+e +e +e |x, u v),
@]3®(a, b|x, u, v)
(102113614
_mq)(a'i‘e 5,b+e3+e4+e5|X9 u, v),

@14(1)(3’ b|X7 u’ V)
a a,a
=125 dpate +e +e, bte +e |x u v,

b,b,
(14)
where the operators are
4
0, = u, (Z 9, + 191,1> ,
i=1
4
0, =u, (Z 9, + ﬁuz) ,
Oy =u, (0, +9, +0,),
O, =u, 0, +9,_ +9,,),
OS = M5 (ﬂx4 + ﬁus)’
A 1
05+k = a(l}xk + 29vk)7 k = 11 27 3,
1 4
05+k = a (Zﬂxi + ﬂvk> , k=4,5,
@11 =uu v18¥ ,
0, = ”1"‘2”3”‘4”2”4”58X2,
O, = ”1“2”3”4v3v4vsax3,
@14 = U, Uy U5V, V50 (15)

x4'

The operators above together with ¢, uo , ¥, define the Lie
algebra of the GKZ-system [51,52]. Through the transfor-
mations of indeterminacy

1
Zj:u_’ 5, =5, (G=1,...,9),
J
X _ )
Zl] - 9 le - —7
U Uy, U Uy Uy U, Uy, s
X X
3 4
3 = » Ly = — (16)
U Uy Uy U, Vg0, Vs U Uy U5V, Vs
one derives
7 =1 =1
X 1’ 2 12 3 137 4 14”7
9 =—0v. -9, -9 —-v. -0 ,
“ 1 <13 14
9 =—-v. -9 -9 —-v. -0 ,
) 1 2 43 14
9 =—0v. -9, -0, v =-0 -0 -9 ,
u3 43 " 4 12 13
9 =—-0v. =9 , ¥ = -9, U = -0,
s vy 11 v2 12
Y 9. —0. , v =09 -9 -9 =9 ,
U3 8 1 Vg 1 13 14
1 d
Vg = Vg =0y, =0y =0 B = ’
5 ! 13 u,u,v, 97,
1 d 1 0
oo Uy Uy Uz Uy Uy Uy Vs 8112’ = Uy Uz Uy V30, Vs azl3’
1 d
S S (17)
4 U Uy U5V, V5 02,
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Furthermore, the operators in Eq. (15) are transformed into

Actually the PDEs constitute a Grobner basis of the toric ideal
of the matrix A presented in Eq. (21). Defining the combined

@j =—5= —0.. (= 1,...,9), variables
g y, = 2611
A 0 11— ’
O, =—=0_, (j=6.....14), (18) %1%
% b — Bl
' 2 32,252,
and the relations in Eq. (13) are changed as b - 229210213
3 - 9
A-9® =Bo, (19) ;1212?14
9%10%14
Vo= """ (23)
where ! 212,25
1 0 0 06 0 00 0 0 0 1 1 1 1
o 1 0 0 0 O O O 0o O 1 1 1 1
0o o0 1 0 0 0 O 0O O O O 1 1 0
0o 0 0 1 0 O O O O O o0 1 1 0
A— o 0 0 0 1 0 O 0O 0 O O 0 0 1
10 0 0 0 01 0 0O O O -1 0 0 0 V|
o 0o o o0 o o 1 0o o0 O o -1 0 0
o 0 0 0 0 o0 O 1 0 O O 0o -1 0
o o o0 o0 o o0 o0 o0 1 0 0 -1 -1 -1
o 0o o o 0o 00 0601 0 -1 -1 -1
T =@ , 0,0 .0 ,0 .0 .0 ,0 .0 .0 09 ,0 .09 ,0 )
“1 2 “3 “4 “5 “6 7 “8 <9 <10 “11 “12 “13 “14
B! = (-a,, —a,, —a,, —a,, —a;, b, —1,b, — 1, by — 1, b, — 1, b, — 1). (20)
Correspondingly the dual matrix A of A is
-1 -1 0 0 0o 1 0 0 0 O 1 O O O
~ -1 -1 -1 -1 0 O 1 O 1 1 O 1 0 O
A= -1 -1 -1 -1 0 O O I 1 1 0 0 1 O @h
-1 -1 0 0o -1 0 0 0o 1 1 0 0 O 1
The row vectors of the matrix A induce the integer sublat-
tice which can be used to obtain the formal solutions in the ) ' o
hypergeometric series. Actually the integer sublattice indi- ~ We write the solutions satisfying Eqs. (19) and (22) as
cates that the solutions of the system should satisfy the Euler 14
equations in Eq. (19) and the following hyperbolic equations ®(z) = ( 1_[ Zf‘i ) OO YVas Vas V), (24)
i=1

simultaneously

P’d 9D
37,0z, 97,0z,
P e 9D
92,02,  92,02,5
Pe o
02,02,0z,, 02502407,
Pe P
0250240z, B 92992,002,,
G _ G . 2
07,07,02,02,, 02402402,,02,5
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where o = (a,, a,,.
plex number such that

.., a,,) denotes a sequence of com-

A-a=B. (25)

Substituting Eq. (24) into Eq. (22), we obtain the indepen-
dent PDEs iigo =0, (G =1,...,5), where the linear
partial differential operators ii are presented in Eq. (A2).
It should be emphasized that the system of PDEs can also
be derived through the approach presented in the literature
[33]. Although the above system of linear PDEs is too com-
plicated to construct the solutions in the neighborhoods of
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the ordinary points, it gives the number of linear indepen- -1 0 0 0
dent solutions of the system. Differentiating those equations A - -1 -1 0 1 @7
in Eq. (A2), one finds easily that any derivative of ¢ can be 137 -1 -1 0 0
formulated as a linear combination of ¢ and the following 29 -0 -1 0
partial derivatives ) ~
Obviously detA,.;, = —1 # 0, and
1 1.0 0 0 -1 0 0 0 -1 0 0 0
< < o o 1 1 0 1 0 -1 -1 -1 1 0 -1 0
_ A1 R
Bissi =8 A=10 0 0 0 1 1 o0 -1 -1 1 0 0 -1 @8)
0o 0o 0o 00 0 1 -1 0 0 o 1 -1 0
Taking 4 row vectors of the matrix B ,, as the basis of integer
lattice, one constructs the hypergeometric series solution in
dp 92 3% e . ! the neighborhoods of the regular singularities O and oo in
ay. a’ E’ 3y, 0y, @#D, the parameter space. For example, we take the set of column
52 ) 52 52 indices I, = [2,4,6,8,...,14], i.e. the implement J, =
3 ;0 ' 3 ;0 ' 3 (;p , [1,14]\ 1, = [1,3,5,7]. The choice of the set of indices
3)’2 Y . Y20Y,4 s Y304 5 implies the exponent numbers ¢, = o, = oy = o, = 0, and
e ¢ ¢ %
8)’33 , 8)’18)’32, 8)’23)’32, 8y18y42, w =a; —a,, @y =0y —a,, &g =a; +as+b —a -1,
33(P 83(p 33g0 ag =b,+b,—a, -2, ay=b, —a, —a; — 1,
3y28yf’ 8y38yf’ 0y, 0,0y, ’ 0w =bs—ay;—a; -1, o, =a,+as—a,, a,=1-b,,
33¢ 33(,0 33(p 84go 84go a3 =b, —a; =1, a, = —a,. (29)
3y, dy,dy, " 3y, dy,dy,  9y,0y;dy, 3y, 3)’3 " Ay, 3)’3 ’ The corresponding hypergeometric series solutions with
M) M) M) quadruple independent variables can be written as
0y, 0y,0y3" 9y, 9y,0y;" 9y,0y,0y] . b R R e
a 2 — —
M%) 3% ) 43[1357](0( 2) _yl Yoo Y3, Z Z Z Z
7 5 ( 6) n,=0n,=0n,=0n,=0
0y,0y;0y;  0y,0y,0y;9y,
1 1 y4 nZ yl n} }’2 n4
e ()" ()" ()" (2)
withi = 1, ..., 4. In other words, the dimension of the solu- * )

tion space of the system in Eq. (A2) is 30. Furthermore, the

D_
Db, z) = y,2

[1357]

'U

2 oo oo oo oo

22 y3 y4IZZZZ

dimension of the solution space of the PDEs decreases in the
singular locus. At the regular singularity, the dimension of
the solution space is one. The fact implies that we can deter-
mine the linear combination constants through the Feynman
integral at those regular singularities.

3 The hypergeometric solutions of GKZ-system of the
2-loop self energy

To construct the hypergeometric series solutions of the GKZ-
system of Eq. (19) and the hyperbolic equations Eq. (22)
through triangulation is equivalent to choosing a set of lin-
early independent column vectors of the matrix in Eq. (21)
which spans the dual space. We denote the submatrix com-
posed of the first, third, fifth, and seventh column vectors of
the dual matrix of Eq. (21) as A

1357’

"1_0”2—0 n3_0 n4_0
n.os1\n, y1\n n
ceem ()" () ()" ()"
Y Y3 Vs Y3
(30)
Where the coefficients are

4 (. m)

I]'$57]

=(=)4T(+n, +n)1 +n, +n4):nl!n2!n3!n4!
D D D
<0 (5 +m)r(5 +m)r(1 =5 —n =)
D D D B
xF(l -5 M fn3>l"<5 +n3)1"(5 +n4)

(Db
Cliss7) (o, m)

= (=" +n)TA +n, + )0 +n, +n,)

D
{nz'n4‘1’(2+n +n, +n, )1"( +1+n, +n,+n3)
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XF(%—I—nz)F(l—g—nz—n3)l_‘(l—§—n2—n4>
D D !
< (5= 1=n)r (S +n)} (31)
1 1.0 0 O
B . =diag(l,1,—1,1) B, = 8 8 (1) é _01
0O 0 0 0 O

—1
1
—1
0

we obtain 48 hypergeometric series solutions in the neigh-
borhoods of regular singularities 0 and co. In order to shorten
the length of text, we collect the tedious expressions in the
supplementary material.

Taking 4 row vectors of the following matrix as the basis
of the integer lattice,

0 0 0 0o -1 0 0 O
O -1 -1 -1 1 0 -1 0
0 0 1 1 -1 0 0 1} 34
I -1 0 0 0 I -1 0

Obviously the intersection of the convergent regions of

ic series i (1).b
two hypergeometric series is nonempty. Furthermore ® -

. (l),ﬂ . .
is equal to <I>“357] up to a constant scalar multiple in the

nonempty intersection because they originate from the same

B

1357

= diag(1,1,1,-1)-B

1357

[l
[N eeilS
(=i =]
oS o = O
o= O O
O = =

one derives 46 hypergeometric series solutions in the neigh-
borhoods of regular singularities 0 and co. The concrete
expressions are collected in the supplementary material.

Taking 4 row vectors of the following matrix as the basis
of the integer lattice,

0 0 0 0o -1 0 0 0
o -1 -1 -1 1 0 -1 0
0 o -1 -1 1 0 0o -1\ (35)
-1 1 0 0 0o -1 1 0

exponent vector presented in Eq. (29). In a similar way, we
can give other 46 hypergeometric solutions which are con-
sistent with the basis of the integer lattice B,,5,. In order to
shorten the length of text, we collect all the hypergeometric
solutions of the integer lattice B ,, together in the supple-
mentary material.

Multiplying one or more of the row vectors of the matrix
B,,;,; by -1, the induced integer matrix can also be chosen as
a basis of the integer lattice space of certain hypergeometric
series. Taking 4 row vectors of the following matrix as the
basis of the integer lattice, for example,

one obtains 48 hypergeometric series solutions in the neigh-
borhoods of regular singularities 0 and co. Similarly we col-
lect those concrete expressions in the supplementary mate-
rial.

-1 -1 0 0 0 1 0 O 0 0 1 0 O 0
. 0 o 11010 -1 -1 -1 10 -1 0
By =diag=L LD Bos =109 o 00110 0 -1 -1 10 0 —1] (32)
0 0O 00 001 -1 0 0o 01 -1 0
one obtains 14 hypergeometric series solutions in the neigh-
borhoods of regular singularities 0 and oo similarly. In order
to shorten the length of text, we collect the expressions in the
supplementary material.
Choosing 4 row vectors of the following matrix as the
basis of the integer lattice,
1 1 0 0 0 -1 0 O 0 0 -1 0 O 0
. 0o 0 -1 -1 0 -1 0 1 1 1 -1 0 1 0
B =diag(,=LLD-Biy=l65 o o 0 1 1 0 0 -1 -1 1 0 0 —1]| (33)
0 0 0 0O 0 0 1 -1 O 0 0O 1 -1 0

@ Springer
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Taking 4 row vectors of the following matrix as the basis
of the integer lattice,

-1 -1 0 0 O

. 0 0O -1 -1 0

B, =diag(=1, -1, 1,1)-B35; = 0 0 0 0 1
0 0 0 0 O

we obtain 46 hypergeometric series solutions in the neighbor-
hoods of regular singularities 0 and oco. In order to shorten

1 0 O 0 0 1 0 O 0
-1 0 1 1 1 -1 0 1 0
/1 0o 0 -1 -1 1 0 0 -1} (36)
0o 1 -1 0 0 0 1 -1 0

one derives 32 hypergeometric series solutions in the neigh-
borhoods of regular singularities 0 and oo, which are col-
lected in the supplementary material.

Choosing 4 row vectors of the following matrix as the
basis of the integer lattice,

—
—_

B. . =diag(-1,1,-1,1)-B;5, =

1357

coco
coo |l
co—o
co—o

the length of text, we put those tedious expressions in the
supplementary material.

Choosing 4 row vectors of the following matrix as the
basis of the integer lattice,

. (37

-0 O O
-_ o O O
oS = O O

we obtain 38 hypergeometric series solutions in the neigh-
borhoods of regular singularities 0 and co, whose concrete
expressions are collected in the supplementary material.

Choosing 4 row vectors of the following matrix as the
basis of the integer lattice,

—
—_

1357

B =diag(~1,1,1,-1)-B

coo !l
coo |l
co~o
co~o
oc—~oco
O = = =

—1
—1

-1

O (38)

O = = =

we construct 14 hypergeometric series solutions in the neigh-
borhoods of regular singularities 0 and oo, whose concrete
expressions are collected in the supplementary material.

Taking 4 row vectors of the following matrix as the basis
of the integer lattice,

B

1357

=diag(l, -1, -1,1)-B;;; =

(= eNel s
(=l e

-1
-1

| , (39)

-0 O O

S = O
S == O
S = = O
-0 O O

S = O
SO = O O
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B .. =diag(l,-1,1,—-1)-B,5, =

1357

oo o~
oo o~
o |
—_

o |
—_
o~ oo

-1
-1

S O O

-1
-1

oS O O

(40)

we obtain 14 hypergeometric series solutions in the neigh-
borhoods of regular singularities 0 and co, whose concrete
expressions are presented in the supplementary material.

Choosing 4 row vectors of the following matrix as the
basis of the integer lattice,

0
B =diag(1,1, -1, -1) - B ;,, =

1357

-1
0

S O O =
oS O O =
oS O = O
o o = O

D)

(= e}

one derives 46 hypergeometric series solutions in the neigh-
borhoods of regular singularities 0 and co. In order to shorten
the length of text, we presented the concrete expressions in
the supplementary material.

Taking 4 row vectors of the following matrix as the basis
of the integer lattice,

. 0
B, =diag(—1,—1,—1.1)- B,y = |
0

-1 -1

o
|
—
—oc oo

o = O

S = = O

S = = O

-1
-1

-0 o O
—

o

(=)

oS = O O

(42)

one obtains totally 46 hypergeometric series solutions in the
neighborhoods of regular singularities 0 and co, whose con-
crete expressions are presented in the supplementary mate-
rial.

Choosing 4 row vectors of the following matrix as the
basis of the integer lattice,

B =diag(—1,—1,1,-1) B, =

1357

cocol

o~ oo
|
—_

— o = O

—_ o = O

oS O

(43)

o |

one obtains 14 hypergeometric series solutions in the neigh-
borhoods of regular singularities O and co, whose concrete
expressions are presented in the supplementary material.

Choosing 4 row vectors of the following matrix as the
basis of the integer lattice,

—
—_

B =diag(—1,1,-1,-1)-B,, =

1357

coco |l
coo !
co—~o
co~o

. (44)

S - O O
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one derives totally 38 hypergeometric series solutions in the
neighborhoods of regular singularities 0 and co. In order to
shorten the length of text, we put those concrete expressions
in the supplementary material.

Choosing 4 row vectors of the following matrix as the
basis of the integer lattice,

eter space, and the scalar integral can be expressed as a lin-
ear combination of the 30 hypergeometric solutions. Those
nonempty proper subsets together with the fundamental solu-
tion systems are presented as follows.

e In the nonempty proper subset of the whole parameter

space,
1 1 0 0 0 —1 o 0 0 0 -1 0O 0 O
o o0 -1 -1 0 —1 0 1 1 1 -1 0 1 0
Bag =diagl=L.=1=D-By=10o o o 0o -1 -1 0 0 1 1 -1 0o o 1] 45)
0 O 0 0 0 0 -1 1 0 O 0 -1 1 0
one obtains 22 hypergeometric series solutions in the neigh- ol 2= M.
borhoods of regular singularities 0 and co. In order to shorten =T Pl e T Yor Jan Follle
the length of text, we present those concrete expressions in <yl L<Iyl <yl <1yl (48)
the supplementary material.
Choosing 4 row vectors of the following matrix as the the fundamental solution system is composed of the 30
basis of the integer lattice, hypergeometric functions <I>(:)5;l] an d CID(IQSH with i =
L.... 4.7, ..., 13.15.j=5.6.17. ..., 32.
-1 -1 0 0 O 1 0 0 0 O I 0 0 O
. 0 0 -1 -1 0 -1 0 1 1 1 -1 0 1 0
By =diag-L-L-L-D-Buy =1 ¢ o 0o -1 -1 0 0 1 1 -1 o o 1] “O
0 0 0 0 0 0 -1 1 0 O 0 -1 1 0

we obtain 22 hypergeometric series solutions in the neighbor-
hoods of regular singularities 0 and oco. Similarly we present
those tedious expressions in the supplementary material.

In summary, we construct totally 536 hypergeometric
functions in some proper subsets of the whole parameter
space. In a proper subset of the whole parameter space,
we choose 30 linearly independent hypergeometric functions
constituting the fundamental solution system. The Feynman
integral can be expressed as a linear combination of hyper-
geometric functions of the fundamental solution system in
the parameter space. The combination coefficients can be
uniquely determined by the values of the Feynman integral
together with its some partial derivatives at an ordinary point,
or some values at the regular singularities. In order to obtain
the fundamental solution system of the GKZ-system, we
investigate the convergent region of the hypergeometric func-
tion constructed above. For example, the convergent region

of the hypergeometric functions <I>(113)57" (o, z) in Eq. (30) is
R (R A [ IR AR A
< Iyl Il <yl Iyl < 1ysl)- (47)

In order to shorten the length of text, we present all conver-
gent regions of the hypergeometric functions together in the
supplementary material.

The above analysis implies that the fundamental solution
system is composed of 30 linear independent hypergeometric
solutions in a nonempty proper subset of the whole param-

e In the nonempty proper subset of the whole parameter
space,

2 _ ~2
=11357)

=
=

m [1357] m [1357] m [1357] m [1357] m [1357]

(s Y2 Y50 YD,
< Iyl T<Iy | <yl <lysl}

(49)

the fundamental solution system is composed of the 30

hypergeometric functions @ffg;i’], CI>[(1/'3)57], [({(3)5*701, Q[(il;;’;],
cb[(l";;f and c1>f">°], with i = 1,...,4,7,8, j =
5,6, k = 9,10,11,13, 1 = 1,...,4,7,8, m =
25,26,27,29,30,31, and n = 17,...,20,23,24,
respectively.

In the nonempty proper subset of the whole parameter
space,

I )
=T Yssy) [13571 [1357]
M MNE, MNE;
[1357] [1357] [1357] msﬂ
={» Y2» Y3» YIIIMI
< Iyl T<Iyl <yl < Iyl (50

the fundamental solution system is composed of the 30
i i (0),b )] k), (OF
hypergeometric functions CD“’m], <I>“f357], <I>“357C], CIJMS;,
oMb b oand 0L with i = 1,...,4,7,8,
[1357] [1357] [1357]

j = 14,16, k = 9,10,11,13, 1 = 1,2,3,5, m
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25,26,27,29,30,31, and n
tively.

In the nonempty proper subset of the whole parameter
space,

= 2 2 N5 N2, N
= o
[1357] [1357] [1357] [1357) [1357]
ﬂ [1357] ﬂ [1357] ﬂ [1357]

={(, Y2r Y5 YIIY,I
<yl 1<yl < Iyl < lyal}s (51

= 25,26, 27,29, respec-

(1]

the fundamental solution system is composed of the 30

(O8N (e k) (ONY
hypergeometric functions CI>[1357 CI>[1357] d>[l§57] d>[l§57]
®:b and <1><">b where i = 1,...,4,7,8,15, j =

9,10, 11, 13k_481_56725 26,27, 29, 30, 31,
m = 125,26,27,29,and n = 1, 2, 3, 5, respectively.

In the nonempty proper subset of the whole parameter
space,

g’ = c‘[1357] ﬂ = 3s7) ﬂ “3s7) ﬂ [1357]
& NE;
—d - —_
[1357] [1357]

={(;, Y2r Y5» VDI
< Iyvl, T <lIy | <yl < lysl}, (52)

the fundamental solution system is composed of the 30

i i (0.0 ) k).c Db
hypergeometric functions q)mm’ CDHW], CDHW] CIJMW]

<I>[(I”:371‘ and <I>(m)h wherei = 1,...,4,7,8, j = 5,6,
k = 9,10, 11 13 [ =125, 2627293031 and m =
17, ..., 20, 23, 24, respectively.

In the nonempty proper subset of the whole parameter

space,

u - [13571 ﬂ [1357] ﬂ [1357)] ﬂ [1357] ﬂ [1357)

= {(yl, Yos Y3 y4)||y2|
< Iyl T<lyl < lygl < Inl}, (53)

the fundamental solution system is composed of the 30

i i .0 o) (k) 0.b
hypergeometric functions ® (3571 (I)[lésﬂ, (Duisn’ (Dui%n’

and @fggéf, where i = 1,...,4,7,8, j = 28,32, k =
17,...,24,1 = 32, and m = 1,2,3,5,6,7,
respectively.

In the nonempty proper subset of the whole parameter
space,

[I]

=27 —
o=

mmﬂ l13571ﬂ msnﬂ [1357] [13571
m [1357) ﬂ [1357) ﬂ [1357)

={(s Y2 Vs YOI
< Iyl Iyl <yl <1 < Iyl (54)

@ Springer

the fundamental solution system is composed of the

@i),b ()b k)b
30 hypergeometric functions CI>1357] <1>[1357] 49[1%57] and

oD plm c1><">b, where i = 9,...,13,15, j =
[I357J [l357] [135

1,....4,7 8k—25262729l_1235m=

4,8,andn =6,7,9, 10, 11, 13, 14, 15, respectively.

In the nonempty proper subset of the whole parameter

space,

s os,, N2, NEL, NE
= 1357) [1357] [1357] [i357]

= {(yls Yas Vi y4)|1 < |y4|v |y1|
< Iyl 1ysl < Iyl < lygllh (55)

the fundamental solution system is composed of the 30

i i .0 pUi)b k) .b
hypergeometric functions CD[BS”, <I>[1357J <I>[1357J <I>“35?J

and @f{;;f, where i = 9,...,13, j = 1,2,3, k =
9,...,24,1 =28,30,and m = 1, 2, 3, 5, respectively.
In the nonempty proper subset of the whole parameter

space,

[I]

':4'
o=

57] m [1357) m [1357) ﬂ [1357]
ﬂ &l 5
[1357] [i357) 1357]

= {0, Yoo ¥3o VDIV
< Iy, T<lIyl <1yl < Iyl (56)

the fundamental solution system is composed of the 30

.0 pU)b pk) (ON
hypergeometric functions ® (3571 (bmsﬂ q)msﬂ <I>“§57J

q><m>”andq>[<">’; wherei =9,...,13,j =1,2,3,4,7,
8,25,26,27,29,k =31,32,1=5,6,7,m=1,2,3,5,
andn =1,2,3,5,6,7, respectively.

In the nonempty proper subset of the whole parameter
space,

=g NE]
137 [1357) 1357]

={(y» Y20 Y3 YOIV <1
< yls 1yl < Iyl < 1yl Iy ] < 1,1}, (57)

[
I

the fundamental solution system is composed of the
30 hypergeometric functions Q(:Zsf] Q[(lfj)s*g, Q[(f‘j)m, and
CD[(II;S’;],Wherel =9,...,13,j=1,2,3,k=9,...,24,
l=1,...,4,7, 8, respectively.

In the nonempty proper subset of the whole parameter
space,

1 _ 4 ( l [ l
—_ =
[1357] [1357] [1357] 1357]

= {1, Y20 ¥3o YOIV <1
<yl 1yl < 1y, | < 1y} (58)

[
|
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the fundamental solution system is composed of the 30

@),b (b k) b
hypergeometric functions & (3571 CI>[1§57], CI>[1§57], CD[Izs?]

and cbfg;z where i = 9,...,13, j = 1,2,3, k =
9,...,24,1=5,6,and m = 1, 2, 3, 5, respectively.

In the nonempty proper subset of the whole parameter
space,

12

[
Il
o,

[1357) ﬂ [1357) ﬂ [1357] 1357]

{15 ¥s y3o YOI
Loyl <1 <yl < Iy} (59)

the fundamental solution system is composed of the 30

hypergeometric functions CD(’) b)) kb pl)
035717 (135717 3571 (1337

and d)l(;’;;f’, where i = 1,...,4,7,8, j = 5,6, k =
24,1 =25,...,32,and m = 9, 10, 11, 13, 14,

15, respectively.

In the nonempty proper subset of the whole parameter

space,

13 _ =2 ( ] ( ]
= o
[i357] [1357) RESTLI e

={(, Y2 Y3» YD
<yl Iyl < 1yl < Iyl < 1}, (60)

[x]

the fundamental solution system is composed of the 30

hypergeometric functions CD(’) booWe o® phb

357] [1357] [1357] [1357]
and CD[(’”) ]b, where i = 1,...,4,7,8, j = 1,2,3,5,
k=17,...,24,1 = 25,26, 27, 29,30,31, and m =

1,2,3,5, 6, 7, respectively.
In the nonempty proper subset of the whole parameter
space,

=14 _ 52

= - 1357 m 1357 ﬂ 1357 m 1"557 1"557]
={0s Y2 s> YD,
< |)73|, |y1| < |J’3| < |y4| < 1}, (61)

the fundamental solution system is composed of the 30

hypergeometric functions d>(’ 2b e k)b gD
[1357] [1357] [1357] [1357]

<I>(l”3’5)7b, and CD(”)b, where i = 1,...,4,7,8, ] =

235k_91011 13, 14, 15,1 = 25, 26, 26, 29,
30, 31,m =28,32,andn = 1,2, 3,5, 6,7, respectively.
In the nonempty proper subset of the whole parameter

space,

=T L‘[15571 ﬂ L‘[15571 u[1§S7]
={0s Y20 Y3 YOI < Iyl [yl
< Iysl < Iyl <y lh (62)

the fundamental solution system is composed of the 30

hypergeometrlc functions d>(’) a W and d>(1 16),
357] [1357 ?57]

where i = 1,2,3,5,6,7,25,26,27,29,30,31, j =
28,32,and k =1, ..., 16, respectively.

In the nonempty proper subset of the whole parameter
space,

T
=

[I]

[1357)] m [1357] m [1357] m [1357] 1357]
ﬂ [1357) ﬂ [1357] [I357]

={(, Y2 Y3» VDIV
< Inl 1 <1yl < Iyl < Iy}, (63)

the fundamental solution system is composed of the 30

hypergeometric functions - o) pK.b @b
[1357] [1357] [1357] [1357]

q>[<1§5’;] and CD[(’”)] where i = 1,2,3,5, j = 4,8,k =
1,....4,7,8,25,...,30,1l = 1,2,3,5,6,7,and m =
4.8, respectlvely.

In the nonempty proper subset of the whole parameter

space,

=17 _ 56

= T [1357] ﬂ [1357] ﬂ [1357] m [1357] [|357J
={(, Y2 Y3» YD
<yl <yl <1 <y} (64)

the fundamental solution system is composed of the

30 hypergeometric functions <I>(’)b o) d® and
357] [1357] [1357]

®@:¢ wherei = 25,26, 27,29, 30,31, j =28, 32,and

[1357]
k= 1 , 16, respectively.

In the nonempty proper subset of the whole parameter
space,

g8 _ 56 =1
“[1§571 u[1357]
= {(yl, Yoy V3 y4)||y2| < |y4|
<yl Il <1yl T <y lh (65)

the fundamental solution system is composed of the
30 hypergeometric functions CIJ(’) b @) and oK.a,

[1357] [13571 (13571

where i = 25,26,27,29,30,31, j = 1,...,16, and
k=17,...,24, respectively.

In the nonempty proper subset of the whole parameter
space,

19

&)
Il
)

6 ﬂ =2 =3
- = ~
[1357] [1357] [1357]

= {(y., Yas V3 )’4)|1 < |y1|» |y2|
< Iyl < Inl <yl (66)

the fundamental solution system is composed of the

30 hypergeometric functions d>(’) booWb o® and
357] [I'§57J [1357]
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<I>[(I"§)§*7‘;,wherei =125,26,27,29,30,31,j =17, ...,
k :“25, ..., 32, respectively.

In the nonempty proper subset of the whole parameter
space,

24,

20

@
|
)

[1357] m [1357] ﬂ [1357] ﬂ [1357)

{01 y20 v YOIV <1, |3l
Loyl <1yl < lysls T < 1y5l},

(67)

the fundamental solution system is composed of the 30

hypergeometric functions <I>(’) booW) kb phe
135717 (133717 (1357 [1357]
andcb<m>b wherei = 17,...,24, j =25,...,32,k =

9, 10, 11 ]13 14,15,1 =
21, 22, respectively.
In the nonempty proper subset of the whole parameter
space,

21 2 m =6 =3
= - (R [
[1357] [1357] [1357]

{rs Y20 Vs YUY
Loy, <y, <1 <y}

...,20,23,24, and m =

@
Il
@

(68)

the fundamental solution system is composed of the

30 hypergeometric functions CD(’ 2b o pl) k)b gpd
57] [1357] [1357]
<I>(f3)7b, where i = 17,. 24 j=25...32k =

57)
9,10, 11,13, 14, 15, respectlvely
In the nonempty proper subset of the whole parameter
space,

=22 _ ol m =3
— —_— - (=] ~
[1357) [1357]

= {(yla Yoy Y3 y4)||y'§|

<l <yl < Iyl <yl (69)

the fundamental solution system is composed of the

30 hypergeometric functions dbl(‘gs‘jj dD[(]j%)Sﬂ, where i =
1,...,4,7,8,25,...,30,and j = 5, 6,9,...,24,respec-
tively.

In the nonempty proper subset of the whole parameter
space,

=23 _ g2
= - L‘[1'\357] m [1357 m []357] [1’%57]
={(, Y2 Y3s VDIV
< Iyl T<Iyl <yl <y (70)

the fundamental solution system is composed of the

30 hypergeometric functions CD(l) bW ke and
357] [1357] [1357]
®® wherei =1,...,4,7,8,j = .16, k =

[1357]
2,3,5,6,7,and [ = 4, 8, respectively.

@ Springer

e In the nonempty proper subset of the whole parameter

space,

24 _ 52
B = | | | ] ( |
[l357| |l357] [1357] [l357| [1157

= {(ylv Y3, y4)||Y;|
<yl T<iyl <yl <Iynlh

[1357]

(71)

the fundamental solution system is composed of the 30

hypergeometric functions d>(’) b oW ke plb,
0357’ p3si’ o 3sh o (1357
®m.c and CD(’")]b wherei = 1,...,4,7,8,j = 5,6,

1357’

k = 25,. 27291:1235,6,7,andm=
17, ..., 20, 23, 24, respectively.

In the nonempty proper subset of the whole parameter
space,

=25 _ =2 =1
ST M m 1357
={(ys Yoo Yo YOI < 1y,ls 1y,
< il Dl < Iyl 1ysl < Iyl (72)

the fundamental solution system is composed of the

30 hypergeometric functions dD(‘) b o) and d®).a,
'557] [1357] [1357]

where i = 1,...,4,7,8, j = 1 ,16, and £k =

17,...,24, respectively.

In the nonempty proper subset of the whole parameter

space,

26 =2 f ] f ] { ]
—_—
[1357]  [1357] [1357] [1357)] [1357)]

={(s Y2 Y3» VDIV
< Iyl <yl <Iyl

@
[
m

L<lyl <l  (73)

the fundamental solution system is composed of the 30

hypergeometric functions CI>(’) booW) | e®b b

135717 (135717 (1357 [1357]
and c1>[<g§>?f, where i = 1,...,4,7,8, j=56k=
17,...,24,1 =25,...,32,andm = 17, ..., 20, 23, 24,
respectively.

In the nonempty proper subset of the whole parameter
space,

227 _ m2 =3

= - L‘[]357] u[1357] ﬂ []357] ﬂ [1357 1’%57]
={s Y2 Y50 YOI,
< Iyl T <lIyl <lyd < Iy,1}, (74)

the fundamental solution system is composed of the 30
hypergeometric functions d>(’ »bpl) @b k)b
"557] [1357] [1357] [1357]
and ®O_ ,where i = 1,...,
[1357]

4,7,8, ] = 5,6,k =
17,...,24,and [ = 25, ..., 32, respectively.
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e In the nonempty proper subset of the whole parameter
space,

= - L‘[1357] ﬂ 1357 ﬂ 1357 ﬂ 1’%57
={(s Y2 Y3» VDIV
< Iyl 1T <lyd < Iyl < Iy,1}, (75)

the fundamental solution system is composed of the 30

hypergeometric functions d>(’) b ol)a and ®®)-b and
57] []357] []357]

@ffggﬂ, where i = 1,...,4,7,8, j=1..8%k=
...,24,and[ =25, ..., 32, respectively.
In the nonempty proper subset of the whole parameter

space,

29

@
[
&)

1 =7 =1

[1357] m u[1557] u[iééu

{Os Y20 y3s YOI

Loy, < Iyl <yl <1} (76)

the fundamental solution system is composed of the

30 hypergeometric functions - &) | and &*)
1357] [1357] [l"ﬁﬂ

where i = 1,2,3,5,6,7,9,10,11,13,14,15, j =
12,16,and k =1, ..., 16, respectively.

In the nonempty proper subset of the whole parameter
space,

30 6 =1

.

[1357] u[TsSﬂ
={0» 5 Y3» YN
Loyl <lInl <L [yl < Iyl (77)

o)
Il
o]

the fundamental solution system is composed of the

30 hypergeometric functions Cb(‘) b oW and R4
357] [1357] 1"657]

where i = 9,10,11,13,14,15, j = 1,...,16, and

k=17,..., 14, respectively.

In the nonempty proper subset of the whole parameter

space,

31 _ g6 ( l ( l [ l oL
= [
[1357) [1357) [1357) [1357)

={(, Y2 Y3» YD
L |y, <yl < Iy, < 1}, (78)

o)
[

the fundamental solution system is composed of the
30 hypergeometric functions dD(‘) b oW | o® and

(135717 [1357] [1357]
cb[(i’gsgj, where i = 9,10, 11,13,14,15, j = 12, 16,
k= 1,...,16,and ! =1, 2, 3, 5, 6, 7, respectively.

In the nonempty proper subset of the whole parameter
space,

32

2 Hl
[1357] [1357 1

[x]
[x]

={(, Y2 Y5» YD
<yl <Ly, < Iyl sl < x,1} (79)

the fundamental solution system is composed of the
30 hypergeometric functions d>(’) b o) and oK)-a,
1357] [I'§57J [1357]
where i = 1,...,4,7,8, = 1,...,16, and k =
17,..., 24, respectively.
e In the nonempty proper subset of the whole parameter
space,

3 _ gl [ l [ l
= o
[1357] [1357] [1357] [I’557J

={(» Y2 Y5 YD <Iyls |35l
< |yl < Iy, < Iy 1}, (80)

(1]

the fundamental solution system is composed of the
30 hypergeometric functions d>(’) , @)L pU)e and
357] [1357] [1357]
q’fﬁ)sl] where i = 1,...,16, j = 1,2,3,5,6,7, and
k=48, respectlvely.
e In the nonempty proper subset of the whole parameter

space,

34

o)
Il
of

[1357] ﬂ [1357] ﬂ [1357] ﬂ [1357] [1'%57]

={(, Y2 Y5» YD
Loyl < lysl <1 < |y,l}, (81)

the fundamental solution system is composed of the 30
hypergeometric functions CI>(’) , @0 pBe )b
357] [1357] [1357] [1357]
and c1><"1>a where i = 25,...,32,j =1,2,3,5,6,7,
k_17 , 20,23, 241_21,22,andm=1,...,8,
respectlvely.
e In the nonempty proper subset of the whole parameter
space,

35

@
Il
O}

msum 1357m 1357m [1357) msn

={(s Y2 Y3» YD
Loyl < Iy, < Iy, < 1}, (82)

the fundamental solution system is composed of the 30

hypergeometric functions @ Wb o®.b @)
[1357] [13571 [1357] [1357]

q><_’<_>~f, and <I><l> b], where i = 17,...,24, j =
252627293031 k=1,2,3,5,6,7,and ] = 4,8,
respectively.

Some analytic expressions of the 2-loop self energy are
givenin Ref. [75], where the multiple power series expression
of the small p2-region is derived from the dispersion relation,
and that of the large p>-region is derived from the Mellin—
Barnes representation, respectively. Certainly the expres-
sions satisfy the system of PDEs I:,.(p =0, (i=1,...,5).
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Obviously the convergent region of the multiple power series
expression of the small p?-region in Ref. [75] has a nonempty
intersection with the proper subset E° defined in Eq. (50).
The analytic expression of the small p?-region in Ref. [75]
can be written as a linear combination of the generalized
hypergeometric functions of the fundamental solution sys-
tem presented below Eq. (50) in the nonempty intersection.
Requiring that the expression of the small p?-region in Ref.
[75] and its partial derivatives presented in Eq. (26) equal that
of the linear combination of the generalized hypergeometric
functions, one obtains the combination coefficients uniquely.
Similarly the convergent region of the multiple power series
of the large p?-region in Ref. [75] has a nonempty inter-
section with the proper subset £'# defined in Eq. (61). The
analytic expression of the large p?-region in Ref. [75] can
be written as a linear combination of the generalized hyper-
geometric functions of the fundamental solution system pre-
sented below Eq. (61) in the nonempty intersection. Assum-
ing only one virtual particle with non-zero mass, we briefly
elucidate how to determine the coefficients in the following
Sect. 4.

4 The analytical expressions of the integral with one
nonzero virtual mass

When the masses of virtual particles are all zero, we can use
the properties of the Bessel function to obtain the analytical
expression of any self energy integral [49,50]. On the other
hand, one can also use the Bessel function to obtain the ana-
lytical expression of the Feynman integral when the mass
squared of a virtual particle is much larger than the absolute
value of the 4-momentum squared of the outgoing particle. In
the parameter space, any solution of the GKZ hypergeomet-
ric system in Eq. (19) can be expanded as a linear combina-
tion of 30 functionally independent solutions. Two analytical
expressions mentioned above can be taken as the boundary
conditions to determine those linear combination coefficients
concretely.

In order to elucidate how to obtain the analytical expres-
sion clearly, we assume that there is only one nonzero vir-
tual mass in the 2-loop self energy. The corresponding scalar
integral can be expressed as a linear combination of Gauss
functions or a linear combination of Pochammer functions.

4.1 The analytical expressions with m, # 0,
m,=m,; =m, =0

In this case, the GKZ-hypergeometric system is simplified
as

A, -0,® = BO, (83)

@ Springer

where the vector of Euler operators is defined as

fle:(ﬁzl,ﬁ NSNS SN N

2 3 “4 5 ‘6 7
018’1939’19210’19211)’ (34)
and the matrix A, is

10000000O00O0 1
0100000000 1
0010000000 O
0001000000 O
A_OOOOIOOOOOO
710000010000 —1
0000001000 O
0000000100 O
0000000010 O
0000000001 O

(85)

The integer sublattice is determined by the dual matrix Al of
A

1°
A=(-1-1000100001). (86)

This integer sublattice induces the first hyperbolic equation
in Eq. (22), which implies that the system of fundamental
solutions is composed of two linear independent hypergeo-
metric functions. In this case, the only threshold is | p| = m,.
In the region |y,| < 1, the fundamental solution system is
composed of two Gauss functions:

)

4—-DpD,5-3L
)’1):2F1< 2_é
YJ>

2
y1> ; 87)

a,, a,

q)/lﬂ()’l): 2F1< b

|
1 I+a, —b,

- l+a, —b
q)/zﬂ(yl) = (_Y1)1 b o F ( ] 2—b,

_ 3-2 4-p
= (_Y1)D/2 lZFl ( 2 D
2

withy, =x, = ml2 / p*. Correspondingly the scalar integral
is a linear combination of two fundamental solutions:

®, (y)=Cy ®, (y)+C; 2 (). (88)

In the region |y, | > 1, the fundamental solution system is
similarly composed of two Gauss functions:
)
N

)
v/’

3 _ (_ —a a171+a|_b|
q)Al()’1)—( ) '2F1( 1+a, —a,

_ 4—-D,3-2
=(_Y1)D 42F1( D2

2

4 o \—a a,, 1 +a, —b, i
CDAI()H)—( yi) 22F1( l—a, +a,|y,
5-32 4_pJ1
= (—y,)3D/2"5 F( > D _>'
1 251 2_7 yl

(89)
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Correspondingly the scalar integral is a linear combination

of two fundamental solutions:
o, (y)=C; &) (1) +C; D} (). (90)

Asml2 < |p2|, m,=m, =m, =0,

I = dPq1 dPq, 1
@m)P 2m)P (g2—mD)(q1+p)*q2(q1+q2+P)>
=L+, (29)
where
’ @2m)P 2m)P g2 (q1 + p)*q*(q1 + q2 + p)?
_ _;<M)%
(4m)*\ —p?
7?2 - Hr@E - D)
X — 7 D=3 . (92)
sint(2— 2r3-2riop -4
As ml2 > [p?l, my, =my; =m, =0,
r_ N4E qu] dD‘]z 1
! Qm)P 2m)P (gf — mD(q1 + p)?a3(q1 + q2 + p)?
:1{,0+..., (93)
where
I/ — 45/ dD‘Il dD‘]z 1
1o Q2m)P 2m)P ¢2(q? — m?)q%(q, + q,)?
1 /4mp*\2627T (22— D
L (g are D) o9
(4m)* N\ m> sin(2— %)

Since the unique threshold is p? = ml2 under our assumption
on the parameter space, the Feynman integral is an analytic
function of p? in the neighborhood of p> = 0. The fact
indicates

3 1 /4mpu?\2¢ 27T (2 — D)
CAI:(4T[)4(— 2) - D
14 sinz(2 — 3)
C4, =0. (95)
Using the well-known relation
(@)L (b) a, b
— b z
I'(c) c
_T'@r®—a) —a a,l1+a—c|1
=S a ()
I'(b)I'(a — b) b b,1+b—c|1
(= F -
Te—p 9 2 1( l—a+b z)’
(96)
we obtain
p_ ! (M)Ze
A (47.[)4 _p2

7?2 - Hr@E - D)
X 9
sint2 - 9HrEe-2)rEo -4

2 _ 1 (471 MZ)ZS
Ay (47.[)4 _ p2
272
x , 97)
sin Z2 sinw (2 — 2)I' (D — 1)
where C j] = I, obviously. Actually the Mellin-Barnes

representation of the Feynman integral can be obtained from
Eq. (4) as

1 47 A% \4-D
D) 2y _ ( RE
1234 (P7) G\ 2 )
(& -1
X
(D—3)sint2—2)ra-2)
1 +ioco m2 |
X — ds, (—1>Y1
270 J oo —p?
y I(—s)T'(® —1—s)T@4—D+s))
rép-4-s) '

(98)
under this special assumption on the parameter space. The
residue of simple pole of I"(—s, ) provides Cil D il (y,), that
of simple pole of I'(D /2 — 1 —s, ) provides Cil <1>§l (y,),and
that of simple pole of I'(4 — D + s,) provides Cil @il o),

respectively.
Combining the transformation
Z
z—1
99)

, b _ —a, b
2F|<a C‘Z>=(1_Z) szl(c . ¢

with the relation Eq. (96), one derives the analytic expression
in the neighborhood of y, = 1, i.e. the analytic expression
in the neighborhood of the threshold. Note that the threshold
exactly coincides with the regular singularity z = 1 of the
PDE:s satisfied by the Feynman integral in this special case.
Taking the Feynman integral as a function of some subvari-
eties of Grassmannians [72], we can get the similar relations
of Eq. (99) among the generalized hypergeometric functions
through the algorithm in combinatorial geometry.

4.2 The analytical expressions with m, # 0,
m o =m,=my; =0
In the parameter space, the GKZ hypergeometric system is
simplified as
A, U,® =Bo, (100)
where the vector of Euler operators is defined as

El

9, = ., v, 0, 00D

7
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Vs Ugs Ds 02D (101)
and the matrix A, is
1 0 0 0 0 0 0 0 O0 O 1
01 0 0 00 00 0 0 1
0 0 1 0600 0 0 0 0 O
o o6 o0 1 0 0 O O O O O
A — o 06 0 0 1 0 0 O 0 O 1
*~1o o o 0 0 I 0 O O O O
o 06 o0 0 o0 o0 1 0 O 0O O
o o0 o0 0 o0 o0 0 1 0 O O
o 0 0 0 0 0 O O 1 0 -1
o 06 0 0 0 0 O 0 0 1 -1
(102)

The integer sublattice is determined by the dual matrix A4
of A,,

A, =(-1-100-1000111) (103)

This integer sublattice B induces the fourth hyperbolic equa-
tion in Eq. (22). With the assumption on the parameter space,
the Feynman integral contains a zero threshold |p|,, = 0
and a nonzero threshold |p|, .. = m,. In the region |y,| <
1, the fundamental solution system is composed of three
Pochammer functions , F, which are simplified as the Gauss
functions under the special exponents of Eq. (10):

)
2)

—bs, 1+a, —b;, 1 +a, — b
2—b,, 1+b,— b
_ 1,2-2
= (—y)” 32F1( P
2

y4> ’
() = (=y)'

< F l+a —b,, 14+a,—b,, 1 +a;,—b,
32 2—b,, 1—=b,+0b

= (—y)PP21 - y)P3,

1 _ ap, Ay, ds

1,5-32
F(’ 2
271 3_7

o3 () = (=y)' s

X3Fz<l—f—a1

)

)

(104)

withy, =x, = mf / p*. Correspondingly the Feynman inte-
gral is formulated as a linear combination

1 1 2 2 3 3
®,, () =C} @, () +C2 @2 (3) +C3 @ ()
(105)

in the region |y,| < 1.

In the region |y,| > 1, the fundamental solution system
is similarly composed of three Pochammer functions , F,
which are simplified as the Gauss functions under the special
exponents of Eq. (10):

@ Springer

q>14 () = (_M)_al

< F a,l1+a —b,, 1+a, — b
itz l+a, —a,, 14+a, —a

>
y4 '
Ay (y4) ( y4)

< F as, 1 +a; —b,, 1 +a; — b,
2 l—a,+as, 1—a, +a

—1 (1 DL _q 1)
=— F( 3 —).
251 D y4

V4
O (7)) = (=)™

—b,, 1 +a, — b,
l—a, +a,, 1+a, —a

<. F, (az, 1+a,

1)

Y4
D

L2—-7

= (—y)P R, ( D
2

)
Y4

)
Y4
= (—y )PP (1 =y P, (106)

The Feynman integral is formulated as a linear combination

4 4 5 5 3 6
®,, () = Ch &} () +C @3 (v) +C3 @, ()

(107)
in the region |y,| > 1.
As mf > [p?l, m, =m, =m,; =0,
14/ — M46
dDQl dD‘Iz 1
Qm)P 2m)P g2 ((q, + p)* —mHqX(q, +q, + p)?
=1, 4+, (108)
where
1 dmu®\2627T Q2 — D
L= i () SO (109)
' (47) my sinw(2 — 3)
The results of Egs. (92) and (109) induce
o 1 (471/1,2)26
Ay (47.[)4 _p2
2/D
5 722 —nr@E - p)
sint(2 - 2r3-2riop -4
1 /4mp®\2¢272T (2~ D
4 _ 4( ’”‘2) I D). (110)
M @)t —p* /) sinm(2 - 3)
Furthermore, the relation Eq. (96) indicates
p _ 1 <4m2)2s 272 — D)
A4 @m)*\ —p* /) sinm2-2)’
S 1 <4n,u2)28
v (47.[)4 _p2
ar’ @ —nra-no
(57 = DI'( ) (111

iz Ore-2rEp-3)
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In this case, the values of the Feynman integral at p> #
0, m, =0and p>=0,m . 7 0 can not uniquely determine
the combination coefficient C34. Nevertheless, the Mellin—
Barnes representation of the Feynman integral gives C 34 =0
under the assumption on the whole parameter space. In fact,
the Mellin—Barnes representation of the Feynman integral is
written as

2:1234(172) =

2
_ 1 <4JTARE )4*D
@m)*\ —p?
L) 1 e
% =
sint(2 — 2)yr(p —2) 27i Joioo

( m; )3-4 I(—s)I(1+5)0(D—3—s)[(4—D+s,)

r@-2+s)rép-4-s,)

ds,

_p2
(112)

The residue of simple pole of I'(—s, ) provides C:u @1‘4 (Ve)s
that of simple pole of I'(D — 3 — s,) provides Ci‘ CID%‘4 ),
that of simple pole of I' (4—D+-s, ) provides C j4 CID‘;4 (y,),and
that of simple pole of I'(14-s,) provides Ci4 ©i4 (y,), respec-
tively. Applying the relations Egs. (96) and (99), we obtain
the analytic expression in the neighborhood of y, = 1, i.e.
the analytic expression of the neighborhood of the maximum
threshold. It should be emphasized that the analytic expres-
sion Eq. (107) in the neighborhood of the zero-threshold is
consistent with that obtained by the heavy mass expansion
approach [74].

4.3 The analytical expressions with m, # 0,
m,=my;=m, =0

In the parameter space, the GKZ hypergeometric system is
simplified as

A, 9,0 =B, (113)
where the vector of Euler operators is defined as
R C AN A N N
g0 Voo Vo Vg Vi Vs Vg
19Z8, 1959, ﬁzlo’ ﬁzlz), (114)
and the matrix A, is
1 0 0 0 0 0 0 O 0 O 1
o 1 0 0 0 0 O O 0 O 1
o 0 1 0 0 0 0 0O 0 O 1
o 0 0 1 0 0 0 O 0 O 1
A — o o0 o0 o0 1 0 O O O O O
o o 0 0 01 0 0 0 0 O
o o0 o o o0 0 1 0 0 0 -1
o o0 o0 o0 0 0 O 1 O O O
o o0 o0 o0 0 0 O O 1 0 -1
o o0 o0 o0 0 0 0 O 0 1 -1
(115)

Correspondingly the dual matrix [&2 of A, is
AZ:(—I -1 -1 —10010111) (116)

This integer sublattice B induces the second hyperbolic equa-
tion in Eq. (22). Under the assumption, the Feynman integral
contains a zero threshold |p|,,, = 0 and a nonzero thresh-
old |p|,.. = m,.In the region |y,| < 1, the fundamental
solution system is composed of four Pochammer functions

I
y2)

L),
% (1) = ()

< F I4a,—-b,, 14+a,-b,, 1 +a,—b,, 1 +a, — b,
403 2—b,, 1=b,+b,, 1 —b,+b,

}’z) ’
@ () = (—y)'

< F l+a —-b,, 14+a,-b,, 1 +a,—b,, 1 +a, — b,
403 2—-b,, 1+b,—b,, 1—b,+b

Y2> s
% () = (=)'

l4+a, —b,1+a,—b;, 1+a
><4F3< T ) ’

a,, a,, a,, a,

1 _
QAZ()’Q) = 4F3< b,, b,, b,

3-D,5-32
= F( ’ %
2 3-73

)

_ ,2—-2 4-p
= (_yz)D/2 13F2( 2 2 D
’ 2

)

_ 1-2.3-p
:(_Y2)D/2 2zFl( : D _q
2

—bs, 1 +a, —b;
14b,—b,, 1+b,—b,

)

(117)

=P,

where y, = x, = mg/ p?. Correspondingly the Feynman
integral is formulated as a linear combination
1 gl 2 52
cI)A2 () = CA2 CDAz () + CAz (DAZ ()
3 3 4 g4
+C3 @3 () +Ch @Y () (118)

in the region |y,| < 1.

In the region |y, | > 1, the fundamental solution system is
similarly composed of four Pochammer functions , F,:
5 () = (=)™

a,l+a —b,, 1+a, —b,, 1 4+a, —b,
3 By l+ta —a, l4+a —a, l+a —a,
1 2 I 3 i 4

_ 1,4—D,2-2|1
:(_yz)D 43Fz( 2 ;)’
2
5 (1) = (=3)™ s

D

2, 5
< F a,, 1+a,—b,, 1 +a,—-b,, 1 +a, — b,
473 l-—a,+a,1—a, +a,, 1+a, —a
) T a3, | 3 3 T4

)
V)

7

Y2
= (3777,

O] () = (=)™

< F a,, 1 +a,—b,, 1 +a, —b,, 1 +a, — b
473 l1—a, +a,, 1+a, —a,, 1 +a, —a
1 2 ) —a;, ) Ty

)
Y2’
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)
Y2
_ 3-D,5-3L
:(—Y2)3D/2 52F1< 3_&
2
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@5 () = (=y,)

a,, 1+a,—-b,, 14+a,—-b,, 1 +a, — b,
< By l—a,+a, l—a +a,, 1 —a, +a,
2 4 1 4 3 4

_ 3-D,1-2
:(_yz)D 32F1< %_21

)
V)

1>, (119)

A%

The Feynman integral is formulated as a linear combination

— S H»S 6 56
®,, () = € 5 () +C8 @5 (3)
7 &7 8 58
+C] @7 (1) + €8 8 ()

A

(120)

in the region |y,| > 1. The value of the Feynman integral at
p*#0,m>=0, (i =1,...,4) induces

I _;<M)2“f
A2 Am)*\ —p2
7?2 - Hr@3 - D)
X D D /3 g
sint2 - 2r3-2rénp -4

(121)

and the value of the Feynman integral at mg £0,p>=m? =

0, (i = 1,3, 4) induces '

2 2¢ _
5 1 (471,u )2 2nT'2 — D) (122)

2T @\ =p?) sinz - D)’

respectively. Because there is no relation among the Pocham-
mer functions ,F, which is similar to the relation among
the Gauss functions , F, presented in Eq. (96), one cannot
derive the constraints on the combination coefficients. How-
ever, the combination coefficients can be obtained through
the Mellin—Barnes representation:

2D 2
S 2):_F (7 =D 4mAg, 4D 1
1234 (P Gmr 2 i
+ioco m2 s
X[ ds2<—22)521"(—s2)
—ioco -p

F(2-1-s)r@-2 +5,)I'(D —3—s5,)['(4 — D+s,)
X
M(D—2-s5)FG—24s)r3n—-4-5)

(123)

where the coefficient C /1‘2 is determined from the residue of
the simple pole of I'(—s, ), and the coefficient C 32 is deter-
mined from the residue of the simple pole of I'(4 — D +5,),

respectively. In addition, the residue of the simple pole of
I'(D/2 — 1 —s,) induces

)

) _ 1 <47m2>2e 27T (4 — D)sin(4 — D)
2 (4m)t\ —p? (D—2)sin* 72— 2)
(124)

the residue of the simple pole of I'(D — 3 — s,) induces

2, 2¢ _
4 1 (471,u )2 2’2 — D) (125)

2T @i\ —p? ) sinz@— L)

@ Springer

and the residue of the simple pole of I'(2— D /2 +s, ) induces

6 1 4mu?\2e 272
CA2=4 4(_2) _ 2y ainl _ Dby’
(47) p (D—2)T(D —2)sin 72— %)
(126)

and C iz = CZZ = C§ = 0 simultaneously. Certainly the
analytic expression Eq. %120) in the neighborhood of the zero-
threshold is consistent with that obtained by the heavy mass
expansion [74] also. A conclusion of the case m, # 0, m, =
m, = m, = 0 is analogous to that of m, # 0, m;, = m, =
m, =0.

5 Conclusions

Using the Miller transformation, we derive the GKZ-
hypergeometric system of the 2-loop self energy with 4 prop-
agators from its Mellin—Barnes representation. The dimen-
sion of dual space of the GKZ-system equals the num-
ber of independent dimensionless ratios among the external
momentum squared and virtual mass squared. In the neigh-
borhoods of the origin and infinity, we obtain 536 hypergeo-
metric series solutions totally. In the nonempty intersections
of the convergent regions of those hypergeometric series, the
fundamental solution system is composed of 30 linear inde-
pendent hypergeometric functions. In other words, the Feyn-
man integral of the 2-loop self energy can be formulated as a
linear combination of those hypergeometric functions from
the fundamental solution system in the convergent region.
The combination coefficients are determined by the Feyn-
man integral at some ordinary points or regular singularities.
We elucidate how to derive the combination coefficients in
some special cases with one nonzero virtual mass.

Using the GKZ-systems on general manifold, we only
obtain the hypergeometric solutions in the neighborhoods of
the origin and infinity. In order to derive the fundamental
solutions in the neighborhoods of all possible regular sin-
gularities, we should embed the Feynman integral in some
subvarieties of the Grassmannians G ,, through its alpha
parametrization. We will present the results elsewhere in
detail.
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