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Abstract In this paper we perform a semi-tetrad
decomposition of the Kerr spacetime. We apply the 1+1+2
covariant method to the Kerr spacetime in order to describe
its geometry outside the horizon. Comparisons are drawn
between an observer belonging to the Killing frame and a
ZAMO (zero angular momentum observer), a locally non-
rotating observer in a zero angular momentum frame, and
their resulting geometrical quantities that generate the evo-
lution and propagation equations. This enhances the study of
the Kerr geometry as the results are valid in the ergoregion
from where energy can be extracted. Using this formalism
allows us to present the kinematic and dynamic quantities
in a transparent geometrical manner not present in alternate
approaches. We find significant relationships between the
properties of shear, vorticity and acceleration. Additionally
we observe that in the Killing frame, the gravitational wave
is a direct consequence of vorticity and in the ZAMO frame,
the gravitational wave is a direct consequence of shear. To
our knowledge, using the 1+1+2 formalism to investigate the
Kerr spacetime is a novel approach, and this provides new
insights into the spacetime geometry in an easier manner
than alternate approaches. Furthermore we make corrections
to earlier equations in the 1+1+2 formalism applied to the
Kerr spacetime.

1 Introduction

The Kerr spacetime, discovered in 1963 by Roy Kerr, is
extremely relevant to the understanding of black hole physics
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and modern astrophysics. It is known that outside a rotating
star the geometry asymptotically approaches the Kerr geom-
etry. Hence, to a very good approximation, the spacetime near
each rotating black hole in the observable universe is given
by the Kerr solution. The Kerr metric [1] is a unique exact
solution of Einstein’s vacuum field equations which extends
the Schwarzschild metric to include angular momentum. It is
crucially important to study the effects of gravity in the Kerr
geometry. Only then will it be possible to build a complete
model of a rotating isolated body in general relativity which
is an unsolved problem in astrophysics.

Examples of well known tetrad or semi-tetrad methods are
the complex null tetrads of Newman and Penrose [2], the 1+3
covariant approach developed by Ehlers and Ellis [3,4] and
the 1+1+2 covariant approach developed by Clarkson and
Barrett [5]. The 1+3 formalism has generated new results in
areas like gauge-invariant study [6,7], the cosmic microwave
background [8] and specific spacetimes [9–12]. An exten-
sion of the 1+3 covariant approach is the 1+1+2 covariant
approach which has generated new results in locally rota-
tionally symmetric spacetimes in general relativity [13] and
f (R) gravity [14], and spacetimes with conformal symmetry
[15]. In a breakthrough manner the 1+1+2 covariant approach
was utilized to prove that tidal forces are gravitational waves
[16]. It is clear that the 1+1+2 formalism is capable of gen-
erating new results when applied to current and previously
analyzed astrophysical problems.

Through the years particular interest in the Kerr geome-
try has been generated through various studies [17–19]. In
[17] the Newman-Penrose formalism involving null tetrads
was used to explore the solution of Maxwell’s equations in
the Kerr geometry. However, our approach in this paper is
different, here we use both the 1+3 and 1+1+2 semi-tetrad
covariant approaches to describe the Kerr spacetime geom-
etry. The advantage of using these approaches is that the
physics and geometry of the spacetime are described by ten-
sor quantities and relations which remain valid in all coor-
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dinate systems. The purpose of using these methods is to
extract the geometrical features of the spacetime in an easier
manner as the geometric variables have well defined physical
interpretations. These geometric variables have been defined
explicitly in this paper. A partial study of the Kerr metric
in the 1+3 formalism was done in [20]; we complete this
analysis and write down the full set of 1+3 equations for the
Kerr metric. Noteworthily, we apply the 1+1+2 formalism
to the Kerr spacetime and explicitly write down the 1+1+2
Kerr geometrical quantities and the evolution and propaga-
tion equations they satisfy. This application is done in two
frame choices, the Killing frame and a zero angular momen-
tum frame, to provide a well rounded description of the Kerr
geometry. To our knowledge, using the 1+1+2 formalism to
investigate the Kerr spacetime is a novel approach and it pro-
vides new insights into the spacetime geometry. All quanti-
ties and equations have been validated with the mathematical
software Maple and the software package GRTensorIII [21].

The paper is structured as follows: in Sect. 2 we define the
Kerr metric, consider its key features, and explain our frame
choices. In Sect. 3 and Appendix A, we briefly review the 1+3
formalism. Then, in Sect. 4 we explicitly write down the 1+3
Kerr quantities and the equations they satisfy. Section 5 and
Appendix B contain a brief review of the 1+1+2 formalism. In
Sect. 6 and Appendix C, we apply the 1+1+2 formalism to the
Kerr spacetime, a novel approach, and explicitly write down
the 1+1+2 Kerr geometrical quantities and the evolution and
propagation equations. Some errors in the 1+1+2 formalism
equations found earlier are identified and corrected for the
Kerr spacetime. Note that these corrections do not alter the
linear perturbation results presented in [5,22]. In Sect. 7, we
comment on interesting results arising from Sects. 4 and 6.
Concluding remarks are made in Sect. 8.

2 The Kerr metric and frame choice

The Kerr metric describes the vacuum, stationary axisym-
metric solution corresponding to stationary rotating black
holes and depends on angular momentum (relating to a)
and the physical mass (m) of the central object as parame-
ters. One of the key features of the Kerr spacetime geom-
etry is that it is Ricci flat (Rab = 0). Additionally, there
are three off-diagonal terms in the first version of the line
element in [1]. Considering the Kerr spacetime in Boyer–
Lindquist [23] coordinates which involves a coordinate sub-
stitution, results in only one off-diagonal term. Starting from
the Boyer–Lindquist coordinates (t, r, θ, ϕ), a new coordi-
nate χ = cos θ so that χ ∈ [−1; 1] is introduced, and we
can write the Kerr spacetime in terms of “rational polyno-

mial” coordinates (t, r, χ, ϕ) as

ds2 =
(

2mr

r2 + a2χ2 − 1

)
dt2 −

[
4mar

(
1 − χ2

)
r2 + a2χ2

]
dtdϕ

+
(

r2 + a2χ2

r2 − 2mr + a2

)
dr2 +

(
r2 + a2χ2

1 − χ2

)
dχ2

+
(

1 − χ2
) [

r2 + a2 + 2ma2r
(
1 − χ2

)
r2 + a2χ2

]
dϕ2. (1)

For the purpose of this paper we will consider the Kerr
spacetime in rational polynomial coordinates. The advan-
tage of using these coordinates is that it eliminates trigono-
metric functions so that computational calculations can be
performed more efficiently. Recent studies on the Kerr space-
time have been done in the context of unit-lapse forms [24],
vortex forms [25], its topology [26] and coding simulations
[27]. For a comprehensive review of the Kerr spacetime the
reader is referred to [28].

In order to further highlight the geometrical properties
of the Kerr spacetime, we consider two different types of
observers in two different frames. Firstly, we consider a
Killing observer belonging to the Killing reference frame
(referred to as the chronometric reference frame in [20]). It is
named accordingly because the worldlines of the observers in
the Killing reference frame are along the timelike Killing vec-
tor field of the Kerr spacetime. Secondly we consider what is
called a ‘ZAMO’ (zero angular momentum observer) which
is a locally non-rotating observer belonging to a zero angular
momentum frame. ZAMOs have zero angular momentum in
their proper frame but as they approach any compact object
with nonzero angular momentum, frame dragging pulls it
along with the geometry so that they acquire the frame drag-
ging angular velocity. At the spatial infinity both frames are
the same. For more information about the Kerr spacetime
in the context of the ZAMO frame we refer the reader to
[29].

In the Kerr model two surfaces have coordinate singu-
larities and the main singularity is a strong curvature ring
singularity. The Kerr metric has two physically relevant sur-
faces on which it appears to be singular: the horizon and the
ergosphere. The definition of a Killing frame is that the time
axis is along the Killing direction. The frame is moving rela-
tive to the black hole so angular momentum is not zero but the
observer is staying still in the frame. However this is not pos-
sible within the ergoregion which mandates that the observer
must co-rotate with the inner mass. Hence the Killing frame
only holds outside the ergoregion which is a limitation. This
restriction will arise later in our description of a timelike
vector which entirely depends on r2 − 2mr + a2χ2. How-
ever the ZAMO frame extends till the outer event horizon
and consequently our results are valid till the outer event
horizon. This means that our results explore the ergoregion
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Fig. 1 Diagram illustrating the 1+3 formalism. The 4D spacetime is
split according to the timelike vector ua into ‘time’ and a 3D hypersur-
face

which has generated specific research interest in the context
of rotating black holes as this is where energy can be extracted
from.

3 1+3 formalism

In the 1+3 formalism, the timelike unit vectorua (uaua = −1)

is split in the form R ⊗ V , where R is the timeline along ua

andV is the 3-space perpendicular toua . The 1+3 covariantly
decomposed spacetime is represented by

gab = hab − uaub, (2)

where hab is a tensor that projects onto the rest space of an
observer moving with 4-velocity ua . A visual representation
of the 1+3 spacetime is given in Fig. 1.

The covariant time derivative along the observers’ world-
lines, denoted by ‘ · ’, is defined using the vector ua , as

Ż a...b
c...d = ue∇e Z

a...b
c...d , (3)

for any tensor Za...b
c...d . The fully orthogonally projected

covariant spatial derivative, denoted by ‘ D ’, is defined using
the spatial projection tensor hab, as

DeZ
a...b

c...d = hr eh
p
c...h

q
dh

a
f ...h

b
g∇r Z

f...g
p...q , (4)

with total projection on all the free indices. The covariant
derivative of the 4-velocity vector ua is decomposed irre-
ducibly as follows

∇aub = −uau̇b + 1

3
habΘ + σab + εabcω

c, (5)

where u̇b is the acceleration, Θ is the expansion of ua , σab
is the shear tensor, ωa is the vorticity vector representing
rotation and εabc is the effective volume element in the rest
space of the comoving observer. The Weyl tensor may be
split relative to ua as

Eab = Cacbdu
cud , (6)

Hab = 1

2
εadeC

de
bcu

c, (7)

where Eab represents the electric part and Hab represents
the magnetic part of Weyl curvature and more information
can be found in [30]. We refer the reader to [31] for a more
detailed review of the 1+3 formalism.

4 The 1+3 Kerr quantities and equations

We apply the 1+3 formalism to the Kerr metric and find the
following quantities which have been confirmed by the math-
ematical software Maple and GRTensorIII [21]. The timelike
unit vector for the Killing frame is defined as

ua =
√

r2 + a2χ2

r2 − 2mr + a2χ2 δa0

=
[√

r2+a2χ2

r2−2mr+a2χ2 , 0, 0, 0
]

where uaua = −1, (8)

and for the ZAMO frame it is defined as

ua =
√

Z

F
(
r2 − 2mr + a2

)
(

1,
2mar

Z
δi 3

)

=
[√

Z
(r2−2mr+a2)F

, 0, 0, 2mar√
Z (r2−2mr+a2)F

]
, (9)

where uaua = −1, F = r2 + a2χ2 and Z = (
r2 + a2

)2 −
a2

(
r2 − 2mr + a2

) (
1 − χ2

)
, according to the definitions in

[20] (where we have taken the charge quantity to be zero). We
apply the 1+3 formalism to the Kerr metric and find the fol-
lowing quantities for the Killing frame and the ZAMO frame
which have been confirmed by the mathematical software
Maple and GRTensorIII [21].

The set of the Kerr 1+3 geometric variables is given by
{Θ, ωab, ωa, σab, u̇a, Eab, Hab}, and they have the fol-
lowing values given in Table 1

where

B = −r2 + a2χ2, C = r2 − 2mr + a2χ2,

G = r2 − 2mr + a2, J = χ2 − 1, K = 3a2χ2 − r2,

M = a2χ2 − 3r2, N = a2χ2 − 3a2 + 4mr − 2r2,

P = 2a2χ2 − 3a2 − r2 + 2mr,

Q = a4χ2 − r2a2χ2 − a2r2 − 3r4,

S = a6χ2 + 2a4χ2r2 − 4ma2χ2r3 + a2χ2r4 − a4r2

+4ma2r3 − 2a2r4 − r6,

T = 2r4 − a4
(
χ2 − 3

)
+ a2r

(
−r

(
χ2 − 5

)
+ 2mJ

)
,

U = r4 − 2a2r
(

2m − 2r + (r − 2m) χ2
)

+a4
(

3 − 2χ2
)

,

V = −2r4 + a2r
(

2m − 5r + (r − 2m) χ2
)
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Table 1 The 1+3 Kerr quantities in the Killing frame and the ZAMO frame

Killing frame ZAMO frame

Θ 0 0

ωab

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0
maJB√

C 3F

0 0 0
2marχG√

C 3F

0 −maJB√
C 3F

−2marχG√
C 3F

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

0

ωa
[

0, −2marχG

CF 2 ,
maJB

CF 2 , 0

]
0

σab 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
2m2a2rJQ√

F 3GZ 3
− 
J

√
G√

F 3Z 3
0

2m2a2rJQ√
F 3GZ 3

0 0 − maJQ√
F 3GZ

− 
J
√
G√

F 3Z 3
0 0

2ma3rχJ
√
G√

F 3Z

0 − maJQ√
F 3GZ

2ma3rχJ
√
G√

F 3Z
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u̇a
[

0, −mBG

CF 2 , −2ma2rχJ

CF 2 , 0

] [
0, − mS

ZF 2 , −2mra2χ
(
r2 + a2

)
J

ZF 2 , 0

]

Eab

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 −mrK N

CF 2G

3ma2χM

CF 2 0

0
3ma2χM

CF 2 −mrK P

CF 2J
0

0 0 0
mrGK J

CF 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4a2r3m3K J

Z F 4 0 0 − 2am2r2K J

F 4

0 mrK T
Z G F 2

3ma2χQ

ZF 2 0

0
3ma2χQ

ZF 2

mrK U

JZF 2 0

−2am2r2K J

F 4 0 0
mrK JZ

F 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hab

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 −maχMN

CF 2G
−3marK

CF 2 0

0 −3marK

CF 2 −maχMP

CF 2J
0

0 0 0
maχGMJ

CF 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4m3a3r2χJM

F 4Z
0 0 −2ra2m2χJM

F 4

0 −maχMV

GZF 2 −3marW

ZF 2 0

0 −3marW

ZF 2

maχMU

JZF 2 0

−2ra2m2χJM

F 4 0 0
maχJMZ

F 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+a4
(
χ2 − 3

)
,

W = 3a4χ2 + 3a2χ2r2 − a2r2 − r4, 
 = 4m2a4r2χ.

(10)

A 1+3 decomposition on the Kerr spacetime was partially
investigated in [20]. We highlight that the quantities of accel-
eration (u̇a) and vorticity (ωab) are consistent with the find-
ings of Frolov and Novikov [20]. Now we present the full set
of 1+3 Kerr equations, generated by the above tabled quan-
tities, named according to [32]. These equations as well as
the relevant identities in Appendix A have been checked in
Maple. The 1+3 equations below appear in a similar form to
[32] except that the Kerr features come into effect. For exam-
ple, the expansion scalar Θ is zero in both frames and will not
appear in the resulting 1+3 equations. In the Killing frame the

shear component is zero and in the ZAMO frame the vorticity
components are zero so they will be absent accordingly.

The equation is written first for the Killing frame and
thereafter for the ZAMO frame. The first set of equations
is derived from the Ricci identities for ua given by

2∇[a∇b]uc = Rab
c
du

d , (11)

where Rab
c
d is the Riemann curvature tensor and its 1+3

splitting is given in Eq. (A.1). Then using (5) and (A.1) and
separating out the orthogonally projected part into trace, sym-
metric trace-free and skew symmetric parts, and the parallel
part, three propagation equations and three constraint equa-
tions are obtained as seen in [32]. They are given in the fol-
lowing two subsections.
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4.1 Propagation equations I

The Raychaudhuri equation [33] describes gravitational
attraction and is a fundamental result to singularity theorems
and finding exact solutions to general relativity. It provides
an evolution equation for the expansion scalar.

Raychaudhuri equation:

Killing frame: Dau̇
a = −u̇a u̇

a − 2ωaω
a, (12)

ZAMO frame: Dau̇
a = −u̇a u̇

a + σabσ
ab. (13)

Vorticity propagation equation:

Killing frame: ω̇<a> − 1

2
εabcDbu̇c = 0, (14)

ZAMO frame:
1

2
εabcDbu̇c = 0, (15)

where angle brackets denote orthogonal projections of
covariant time derivatives along ua as well as represent the
projected, symmetric and trace-free part of tensors hence-
forth as follows

Z<a> = hba Zb, Z<ab> =
(
hc(ah

d
b) − 1

3
habh

cd
)
Zcd .

Shear propagation equation:
Killing frame:

D<au̇b> = −u̇<au̇b> + ω<aωb> + Eab, (16)

ZAMO frame:

σ̇ <ab> − D<au̇b> = u̇<au̇b> − σ<a
cσ

b>c − Eab. (17)

4.2 Constraint equations I

Shear divergence equation:

Killing frame: 0 = εabc [Dbωc + 2u̇bωc] , (18)

ZAMO frame: 0 = Dbσ
ab. (19)

Vorticity divergence equation:

Killing frame: 0 = Daω
a − u̇aω

a . (20)

The vorticity divergence equation is zero in the ZAMO frame.
Magnetic constraint equation:

Killing frame: 0 = Hab + 2u̇<aωb> + D<aωb>, (21)

ZAMO frame: 0 = Hab − εcd<aDcσ
b>

d . (22)

The next set of equations is derived from the Bianchi iden-
tities given by

∇[a Rbc]de = 0. (23)

Using the 1+3 splitting of the Riemann curvature tensor
(A.1), the once-contracted Bianchi identities give two further
propagation equations and two further constraint equations.
As seen in [32], these equations are similar to Maxwell’s

field equations in an expanding universe. They are given in
the following two subsections.

4.3 Propagation equations II

These equations describe gravitational radiation.
Ė-equation:
Killing frame:

Ė<ab> − εcd<aDcH
b>

d = εcd<a
[
2u̇cH

b>
d + ωcE

b>
d

]
,

(24)

ZAMO frame:

Ė<ab> − εcd<aDcH
b>

d = 3σ<a
cE

b>c + εcd<au̇cH
b>

d .

(25)

Ḣ -equation:
Killing frame:

Ḣ<ab> + εcd<aDcE
b>

d

= −εcd<a
[
2u̇cE

b>
d − ωcH

b>
d

]
, (26)

ZAMO frame:

Ḣ<ab> + εcd<aDcE
b>

d

= 3σ<a
cH

b>c − 2εcd<au̇cE
b>

d . (27)

4.4 Constraint equations II

The divergence (denoted by ‘div’) of the electric Weyl tensor
and also the magnetic Weyl tensor is given below.

(div E)-equation:

Killing frame: 0 = (C4)
a = DbE

ab − 3ωbH
ab, (28)

ZAMO frame: 0 = (C4)
a = DbE

ab − εabcσbd Hc
d . (29)

(div H )-equation:

Killing frame: 0 = (C5)
a = DbH

ab + 3ωbE
ab, (30)

ZAMO frame: 0 = (C5)
a = DbH

ab + εabcσbd Ec
d . (31)

5 1+1+2 formalism

In the 1+1+2 formalism, the 3-spaceV is now further split by
introducing the unit vector ea orthogonal to ua (eaea = 1,

uaea = 0). The 1+1+2 covariantly decomposed spacetime
is given by

gab = −uaub + eaeb + Nab, (32)

where Nab (eaNab = 0 = uaNab, Na
a = 2) projects vec-

tors orthogonal to ua and ea onto 2-spaces called ‘sheets.’
The further splitting is shown in Fig. 2.
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Fig. 2 Diagram illustrating the 1+1+2 formalism. The 3D hypersur-
face is split further according to the spacelike vector ea resulting in a
2D sheet

We introduce two new derivatives for any tensor Ψa...b
c...d :

Ψ̂a...b
c...d ≡ e f D f Ψa...b

c...d , (33)

δ f Ψa...b
c...d ≡ N f

j Na
l ...Nb

gNh
c...Ni

d D jΨl...g
h...i , (34)

defined by the congruence ea . The hat-derivative (33) is the
spatial derivative along the ea vector field in the surfaces
orthogonal to ua and the delta-derivative (34) is the projected
spatial derivative onto the 2-sheet, with projection on every
free index.

Taking ea to be arbitrary, the 1+3 kinematical quantities
and Weyl electromagnetic variables are split irreducibly as

u̇a = A ea + A a, (35)

ωa = Ωea + Ωa, (36)

σab = Σ

(
eaeb − 1

2
Nab

)
+ 2Σ(aeb) + Σab, (37)

Eab = E

(
eaeb − 1

2
Nab

)
+ 2E(aeb) + Eab, (38)

Hab = H

(
eaeb − 1

2
Nab

)
+ 2H(aeb) + Hab, (39)

respectively, using (B.1) and (B.2).

The covariant derivative of ea is given by

Daeb = eaab + 1

2
φNab + ξεab + ζab, (40)

where traveling along ea , aa is the sheet acceleration, φ is the
sheet expansion, ξ is the vorticity of ea (the twisting of the
sheet) and ζab is the shear of ea (the distortion of the sheet).
The 1+1+2 split of the full covariant derivatives of ua and ea

are as follows

∇aub = −ua (A eb + Ab) + eaeb

(
1

3
Θ + Σ

)

+ea
(
Σb + εbcΩ

c) + (
Σa − εacΩ

c) eb
+Nab

(
1

3
Θ − 1

2
Σ

)
+ Ωεab + Σab, (41)

∇aeb = −A uaub − uaαb +
(

1

3
Θ + Σ

)
eaub + ζab,

+ (
Σa − εacΩ

c) ub + eaab + 1

2
φNab + ξεab,

(42)

where Aa ≡ u̇ā, αa ≡ ėā and εab is the natural 2-volume
element carried by the sheet. The bar on indices denotes pro-
jections on the sheet (see (B.1)). The scalars {A ,Ω,Σ,E ,

H , φ, ξ} and vectors {Aa,Ωa,Σa, aa,Ea,Ha,Σab, ζab,

Eab,Hab} are the geometric variables that govern the 1+1+2
formalism. The geometric quantities are defined relative to
the timelike and spacelike congruences and consequently we
can show how the spacetime evolves and behaves in terms
of those quantities. The concept of the 1+1+2 splitting was
introduced by [34,35] and further expanded upon in [5,36].
A more detailed review of the formalism can be found in
Clarkson [22].

6 The 1+1+2 Kerr quantities and equations

The 1+1+2 quantities are defined relative to ua and ea and
hence the quantities of ua for the Killing frame (8) and the
ZAMO frame (9) still apply. Coincidentally the quantity for
ea , the preferred spatial direction, is the same for both frames
and is given by

ea =
[
0,

√
r2−2mr+a2

r2+a2χ2 , 0, 0
]

where eaea = 1. (43)

We took the radial direction as the preferred spatial direction
because far away from the rotating black hole, it coincides
exactly with the radial direction of the Schwarzschild model
which is the preferred spatial direction.

We now apply the 1+1+2 formalism to the Kerr metric.
The set of 1+1+2 Kerr geometric variables is given by

{A ,Ω,Σ,E ,H , φ, ξ,Aa,Ωa,Σa, αa, aa,Ea,Ha,

Σab, ζab,Eab,Hab} , (44)
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Table 2 The 1+1+2 Kerr quantities in the killing frame and the ZAMO frame

Killing frame ZAMO frame

Θ 0 0

Ω
−2marχ

√
G

C
√
F 3

0

Ωa

[
0, 0,

−maB

CF
, 0

]
0

Σ 0 0

Σa 0
[

2rm2a2QJ√
Z 3F 2

, 0, 0, −amQJ√
ZF 2

]

Σab 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 − 
J
√
G√

Z 3F 3
0

0 0 0 0

− 
J
√
G√

Z 3F 3
0 0

2mra3χJ
√
G√

ZF 3

0 0
2mra3χJ

√
G√

ZF 3
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

A
−mB

√
G

C
√
F 3

− mY

Z
√
GF 3

Aa

[
0, 0,

2mra2χ

CF
, 0

] [
0, 0,

2mra2χ
(
r2 + a2

)
ZF

, 0

]

E
−mrK N

CF 3

mrK T

F 3Z

Ea

[
0, 0,

3ma2χM
√
G

C
√
F 5

, 0

] [
0, 0,

3ma2χQ
√
G√

F 3Z
, 0

]

Eab

⎡
⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0

0 0 −3

2
ma2rK
C F 2 0

0 0 0
3

2
ma2rG J 2K

C 2F 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

6a4r3m3J 2GK

F 4Z 2 0 0
−3a3r2m2J 2GK

F 4Z
0 0 0 0

0 0
−3mra2GK

2F 2Z
0

−3a3r2m2J 2GK

F 4Z
0 0

3mra2GJ 2K

2F 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

H
−maχMN

CF 3

maχK V

F 3Z

Ha

[
0, 0, −3marK

√
G

C
√
F 5

, 0

] [
0, 0, −3mar

√
GW√

F 5Z
, 0

]

Hab

⎡
⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0

0 0 −3

2
ma3χM
G F 2 0

0 0 0
3

2
ma3χG J 2M

C 2F 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

6m3a5r2χJ 2GM

F 4Z 2 0 0 −MJ 2GM

F 4Z
0 0 0 0

0 0
−3ma3χMG

2F 2Z
0

−MJ 2MG

F 4Z
0 0

3ma3χJ 2GM

2F 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

aa

[
0, 0,

−a2χ

F
, 0

] [
0, 0,

−a2χ

F
, 0

]

φ − K

C
√
F 3G

−
(
ma2χ2 − ra2χ2 − ma2 − ra2 − 2r3

) √
G√

FZ

ξ 0 0

ζab

⎡
⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0

0 0 −1

2
a2(m−r)

√
F

C
√
G

0

0 0 0
1

2
a2(m−r)J 2

√
F G

C 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2m2a4r2J 2
√
GJ√

F 5Z 2
0 0

mra3J 2
√
GJ√

F 5Z
0 0 0 0

0 0 − a2
√
GJ

2Z
√
F

0

mra3J 2
√
GJ√

F 5Z
0 0 −a2J 2

√
GJ

2
√
F 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

αa

[
0, 0, 0,

maBJ
√
G√

C 3F

] [
−2rm2a2JQ√

Z 3F 2
, 0, 0,

maJQ√
ZF 2

]

123



321 Page 8 of 15 Eur. Phys. J. C (2023) 83 :321

and they have the following values given in Table 2.
where

Y = a6χ2 + 2a4χ2r2 − 4mr3a2χ2 + a2χ2r4 − a4r2

+4ma2r3 − 2a2r4 − r6,

J = r2 (3m + r) + a2χ2 (r − m) ,

K = −2r3 (r − 2m)2 − a4χ2 (r + m) + a4χ4 (m − r)

−a2r2
(
r − 3m + χ2 (3r − 5m)

)
,

M = 3rm2a4χ. (45)

All the identities that are listed in Appendix B corresponding
to the variables have been confirmed in Maple. The full set of
the 1+1+2 Kerr equations for the above covariant variables
are obtained by applying the 1+1+2 decomposition procedure
to the 1+3 equations, and also by covariantly splitting the
Ricci identities for ea as follows

Rabc ≡ 2∇[a∇b]ec − Rabcde
d = 0. (46)

Splitting (46) using ua and ea the evolution (along ua) and
propagation (along ea) equations below are obtained. We
present the full set of the 1+1+2 Kerr equations according
to Clarkson [22]. The equation is written first for the Killing
frame and thereafter for the ZAMO frame. We note that we
corrected some of the equations in [22] and these equations
are denoted by the diamond symbol �. A comparison between
Clarkson’s result and the corrected result for the particular
frames can be found in Appendix C. We emphasise that the
linear perturbation results in [5,22] still hold as the identified
errors are higher order terms.

6.1 Evolution equations

The evolution equations for φ, ξ and ζab are obtained from
the projection of ua Rabc as follows:

uaNbcRabc:

�Killing frame: φ̇ = δaα
a + αa

(
A a − aa

)
−εabΩ

b (
aa − A a) , (47)

�ZAMO frame: φ̇ = δaα
a + αa

(
A a − aa

)
+Σa

(
aa − A a) − ζ abΣab. (48)

uaεbc Rabc:

Killing frame: ξ̇ = 0 = 2

(
A − 1

2
φ

)
Ω

+ (
aa + A a) [

Ωa + εabα
b
]

+ εabδ
aαb + H , (49)

�ZAMO frame: ξ̇ = 0 = εab
(
aa + A a) [

αb + Σb
]

+εabδ
aαb + εcaζb

cΣab + H . (50)

ucRc{ab}:

Killing frame: ζ̇{ab} = Ωεc{aζb}c + δ{aαb} + A{aαb}

−a{aαb} + A{aεb}dΩd + a{aεb}dΩd − εc{aHb}c, (51)

ZAMO frame: ζ̇{ab} =
(
A − 1

2
φ

)
Σab − ζc{aΣb}c

+δ{aαb} + A{aαb} − a{aαb} − A{aΣb}
−a{aΣb} − εc{aHb}c. (52)

Not all information needed to determine the complete
set of 1+1+2 equations is contained in Rabc. Hence the
1+1+2 decomposition of the standard 1+3 equations is used to
obtain the remaining evolution equations given below. When
the 1+3 equations are decomposed, separate equations are
obtained for the scalars, 2-vectors and 2-tensors therefore
the number of 1+1+2 equations increases.

Vorticity evolution equation (from (14), (15)):

Killing frame: Ω̇ = 1

2
εabδ

aA b + Ωaα
a, (53)

ZAMO frame: 0 = 1

2
εabδ

aA b. (54)

Shear evolution equation (from (16), (17)):

Killing frame: Σ̇{ab} = 0 = δ{aAb} + A{aAb}
−Ω{aΩb} + A ζab − Eab, (55)

ZAMO frame: Σ̇{ab} = δ{aAb} + A{aAb}
−Σ{aΣb} − 2Σ{aαb} + A ζab − Σc{aΣb}c − Eab. (56)

6.2 Mixture of propagation and evolution equations

A mixture of propagation and evolution equations is obtained
by either projecting Rabc as indicated or by a further decom-
position of the 1+3 equations.

uaebRabc̄ = eaubRabc̄:

Killing frame: α̂ā − ȧā = −
(

1

2
φ + A

)
αa + εabΩ

b

×
(

1

2
φ − A

)
+ ζab

(
εbcΩc − αb

)
− εabH

b, (57)

ZAMO frame: α̂ā − ȧā = −
(

1

2
φ + A

)
αa + Σa

(
1

2
φ − A

)

+ζab

(
Σb − αb

)
− εabH

b. (58)

�For the sake of completeness we mention that the identity
uaebucRabc = −eaubucRabc, as seen in Clarkson [22], is
identically satisfied. However, the resulting equation 54 in
Clarkson [22] does not appear correctly; we believe there is
an error in the calculation.

Raychaudhuri equation (from (12), (13)):

Killing frame: ˆA = −δaA
a − A (A + φ) + A a (aa − Aa)

−2Ω2 − 2ΩaΩ
a, (59)

ZAMO frame: ˆA = −δaA
a − A (A + φ) + A a (aa − Aa)

+3

2
Σ2 + 2ΣaΣ

a + ΣabΣ
ab. (60)
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Vorticity evolution equation (from (14), (15)):

Killing frame: Ω̇ā + 1

2
εab ˆA b = −Ωαa + 1

2
εab

×
(

−A ab + δbA − 1

2
φA b

)
− 1

2
εabζ

bcAc, (61)

ZAMO frame:
1

2
εab ˆA b = 1

2
εab

(
− A ab + δbA

−1

2
φA b

)
− 1

2
εabζ

bcAc. (62)

Shear evolution equations (from (16), (17)):

� Killing frame: − 2

3
ˆA = 2

3
A 2 − 1

3
φA − 2

3
Ω2

− 1

3
δaA

a − 2

3
Aaa

a − 1

3
AaA

a

+ 1

3
ΩaΩ

a − E , (63)

�ZAMO frame: − 2

3
ˆA = 2

3
A 2 − 1

3
φA − 1

3
δaA

a

+Σa

(
2αa − 1

3
Σa

)
− 2

3
Aaa

a

− 1

3
AaA

a + 1

3
ΣabΣ

ab − E . (64)

Killing frame: − 1

2
ˆAā = 1

2
δaA + Aa

(
A − 1

4
φ

)
+ 1

2
A aa

−ΩΩa − 1

2
ζabA

b − Ea, (65)

ZAMO frame: Σ̇ā − 1

2
ˆAā = 1

2
δaA + Aa

(
A − 1

4
φ

)

+ 1

2
A aa − 1

2
ζabA

b

+Σab

(
αb − Σb

)
− Ea . (66)

Additionally the magnetic and electric Weyl evolution
equations are listed below.

Electric Weyl evolution equations (from (24), (25)):

Killing frame: Ė = εabδ
aH b + E a

(
2αa − εabΩ

b
)

+2εabA
aH b + εabH

bcζ ac, (67)
ZAMO frame: Ė = εabδ

aH b + E a (2αa + Σa)

+2εabA
aH b − ΣabE

ab + εabH
bcζ ac.

(68)

�Killing frame: Ėā + 1

2
εabĤ

b = 3

4
εabδ

bH + 1

2
εbcδ

bH c
a

+3

4
E εabΩ

b + 3

2
H εabA

b − 3

2
E αa

−3

4
H εaba

b − 1

2
ΩεabE

b − 1

4
φεabH

b

−A εabH
b + Eabα

b − 1

2
Eabε

bcΩc

+3

2
ζabε

bcHc − Habε
bcAc + 1

2
εaba

cH b
c + εabecδ

bH c,

(69)

�ZAMO frame: Ėā + 1

2
εabĤ

b = 3

4
εabδ

bH + 1

2
εbcδ

bH c
a

+3

4
EΣa + 3

2
H εabA

b − 3

2
E αa − 3

4
H εaba

b

−1

4
φεabH

b − A εabH
b + 3

2
ΣabE

b + 3

2
EabΣ

b + Eabα
b

+3

2
ζabε

bcHc − Habε
bcAc + 1

2
εaba

cH b
c + εabecδ

bH c.

(70)
Killing frame: Ė{ab} − εc{aĤb}c = −εc{aδcHb}

−3

2
H εc{aζb}c + Ωεc{aEb}c + εc{aHb}c

(
1

2
φ + 2A

)

−2α{aEb} − εc{aEb}Ωc + 2εc{aHb}
(
ac − A c)

+εc{aHb}dζ cd , (71)

ZAMO frame: Ė{ab} − εc{aĤb}c = −εc{aδcHb} − 3

2
EΣab

−3

2
H εc{aζb}c + εc{aHb}c

(
1

2
φ + 2A

)
− 2α{aEb}

+3Σ{aEb} + 2εc{aHb}
(
ac − A c) + 3Σc{aEb}c

+εc{aHb}dζ cd . (72)

Magnetic Weyl evolution equations (from (26), (27)):

Killing frame: Ḣ = −εabδ
aE b − 2εabA

aE b + H a

×
(

2αa − εabΩ
b
)

− 1

2
εabE

bcζ ac, (73)

ZAMO frame: Ḣ = −εabδ
aE b − 2εabA

aE b + H a

× (2αa + Σa) − ΣabH
ab − 1

2
εabE

bcζ ac. (74)

�Killing frame: Ḣā − 1

2
εabÊ

b = −3

4
εabδ

bE

−1

2
εbcδ

bE c
a + 3

4
H εabΩ

b − 3

2
E εabA

b − 1

2
ΩεabH

b

−3

2
H αa + 3

4
E εaba

b + 1

4
φεabE

b + A εabE
b

+3

2
εabζ

bcEc + Eabε
bcAc + Habα

b

−1

2
Habε

bcΩc − 1

2
εaba

cE b
c − εabecδ

bE c, (75)

�ZAMO frame: Ḣā − 1

2
εabÊ

b = −3

4
εabδ

bE

−1

2
εbcδ

bE c
a + 3

4
H Σa − 3

2
E εabA

b − 3

2
H αa

+3

4
E εaba

b + 1

4
φεabE

b + A εabE
b + 3

2
ΣabH

b

+3

2
εabζ

bcEc + Eabε
bcAc + Hab

(
αb + 3

2
Σb

)

−1

2
εaba

cE b
c − εabecδ

bE c. (76)

�Killing frame: Ḣ{ab} + εc{a Êb}c = εc{aδcEb}

+3

2
E εc{aζb}c − 1

2
φεc{aEb}c

−2A εc{aEb}c + Ωεc{aHb}c

−εc{aHb}Ωc + 2E{aεb}cac − 2E{aεb}cA c

−2α{aHb} − εc{aEb}dζ cd , (77)

�ZAMO frame: Ḣ{ab} + εc{a Êb}c = εc{aδcEb} − 3

2
H Σab
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+3

2
E εc{aζb}c − 1

2
φεc{aEb}c − 2A εc{aEb}c

+3Σ{aHb} + 2E{aεb}cac − 2E{aεb}cA c + 3Σc{aHb}c

−2α{aHb} − εc{aEb}dζ cd . (78)

6.3 Propagation equations

Following a similar procedure, the propagation and con-
straint equations are obtained by either projecting Rabc as
indicated, by contracting with ea or by projections involving
Nab of the 1+3 constraint equations:

eaNbcRabc:

Killing frame: φ̂ = −1

2
φ2 + δaa

a − aaa
a − ζabζ

ab

+2εabα
aΩb + ΩaΩ

a − E , (79)

ZAMO frame: φ̂ = −1

2
φ2 + δaa

a − aaa
a

−ζabζ
ab − ΣaΣ

a − E . (80)

eaεbc Rabc:

�Killing frame: ξ̂ = 0 = εabδ
aab + 2αaΩ

a, (81)

�ZAMO frame: ξ̂ = 0 = εabδ
aab. (82)

ea Ra{bc}:

Killing frame: ζ̂{ab} = −φζab − ζ c{aζb}c + δ{aab} − a{aab}
+2α{aεb}cΩc − Ω{aΩb} − Eab, (83)

ZAMO frame: ζ̂{ab} = −φζab − ζ c{aζb}c+δ{aab}−a{aab}
−Σ{aΣb} − Eab. (84)

Additionally, the divergence equations for the shear, vor-
ticity and the electric and magnetic Weyl parts are written
below.

Shear divergence equations (from (18), (19)):

Killing frame: 0 = −εabδ
aΩb − 2εabA

aΩb, (85)

ZAMO frame: 0 = −δaΣ
a + 2Σaa

a + Σabζ
ab. (86)

Killing frame: − εabΩ̂
b = −εabδ

bΩ

+εabΩ
b
(

1

2
φ + 2A

)
+ Ωεab

(
ab − 2A b

)
+ εabζ

bcΩc,

(87)

ZAMO frame: Σ̂ā = −3

2
φΣa − δbΣab − ζabΣ

b

+Σaba
b. (88)

Vorticity divergence equations (from (20)):

Killing frame: Ω̂ = −δaΩ
a + Ω (A − φ)

+Ωa (aa + Aa) , (89)

ZAMO frame: 0 = 0. (90)

The projected, symmetric and trace-free part of (21) and (22)
according to (B.3):

Killing frame: 0 = −εc{aδcΩb}−Ωεc{aζb}c−2εc{aΩb}A c

−εc{aHb}c, (91)

ZAMO frame: Σ̂{ab} = δ{aΣb} − 1

2
φΣab − 2Σ{aab}

−Σc{aζb}c − εc{aHb}c. (92)

Electrical Weyl divergence equations (from (28), (29)):

Killing frame: Ê = −δaE
a − 3

2
φE + 3ΩH + 2Eaa

a

+3ΩaH
a + Eabζ

ab, (93)

�ZAMO frame: Ê = −δaE
a − 3

2
φE + 2Eaa

a

+εabΣ
acHc

b + Eabζ
ab + εabΣ

aH b.

(94)

Killing frame: Êā = 1

2
δaE − δbEab − 3

2
H Ωa − 3

2
E aa

−3

2
φEa + 3ΩHa − ζabE

b + Eaba
b + 3HabΩ

b, (95)

�ZAMO frame: Êā = 1

2
δaE − δbEab + 3

2
H εabΣ

b

−3

2
E aa − 3

2
φEa − ζabE

b + Eaba
b − εabΣ

cH b
c

+εabΣ
bcHc. (96)

Magnetic Weyl divergence equations (from (30), (31)):

Killing frame: Ĥ = −δaH
a − 3

2
φH − 3ΩE + 2Haa

a

−3ΩaE
a + ζabH

ab, (97)

�ZAMO frame: Ĥ = −δaH
a − 3

2
φH + 2Haa

a

+ζabH
ab − εabΣ

a
cE

bc

−εabΣ
aE b. (98)

Killing frame: Ĥā = 1

2
δaH −δbHab+ 3

2
EΩa− 3

2
H aa

−3ΩEa − 3

2
φHa + Haba

b − ζabH
b − 3EabΩ

b, (99)

�ZAMO frame: Ĥā = 1

2
δaH − δbHab − 3

2
E εabΣ

b

−3

2
H aa − 3

2
φHa + Haba

b − ζabH
b + εabΣ

cE b
c

−εabΣ
bcEc. (100)

6.4 Constraint equations

The following constraint equations are obtained by perform-
ing contractions on Rabc involving εab, ua, ea and Nab.

εabucRabc:

Killing frame: δaΩ
a = Ω (2A − φ) + H , (101)
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ZAMO frame: εabδ
aΣb = εabζ

acΣb
c + H . (102)

NbcRābc:

Killing frame:
1

2
δaφ − δbζab = −ΩΩa + 2Ωεabα

b − Ea,

(103)

ZAMO frame:
1

2
δaφ − δbζab = −ΣabΣ

b − Ea . (104)

eaucRab̄c:

Killing frame: 2εabδ
bΩ = φεabΩ

b − 4ΩεabA
b

+2εabζ
bcΩc − 2εabH

b, (105)

�ZAMO frame: 2δbΣab = −φΣa + 2ζabΣ
b − 2εabH

b.

(106)

All the above equations have been validated in Maple and
GRTensorIII [21].

7 Comments

In Sect. 4 we applied the 1+3 covariant method to the Kerr
spacetime for a Killing frame and a ZAMO frame. Analyz-
ing the 1+3 quantities, we immediately note that the expan-
sion scalar (Θ) is zero in both frames. This means that all
the timelike observers in the frames we chose are stationary.
It is interesting to note that in the Killing frame, the shear
quantity is zero and the vorticity quantities are nonzero. On
the contrary in the ZAMO frame, the vorticity quantities are
zero by definition and the shear quantity is nonzero. The left
hand side of Eq. (15) is actually the expression for the curl
of acceleration which is equal to zero. This means that the
acceleration can be written as a gradient of a scalar in the
ZAMO frame. In the Killing frame, Eq. (14) relates the curl
of acceleration to the vorticity and in turn Eq. (18) relates the
curl of vorticity to the acceleration. This shows a significant
relationship between the kinematical quantities, acceleration
and vorticity.

In Sect. 6 we decomposed the Kerr spacetime further by
applying the 1+1+2 covariant approach to the Kerr spacetime.
The 1+1+2 formalism is an extension to the 1+3 formalism
and hence the 1+3 result regarding rotation and distortion in
the particular frames still holds. In the Killing frame there is
zero distortion and in the ZAMO frame there is zero rotation.
Further we note that the shear scalar (Σ) and sheet twist (ξ)

quantities are also zero in both frames. The value for the sheet
acceleration (aa) is the same for both frames since it entirely
depends on the definition of ea . The purpose of using the
1+1+2 decomposition method is to gain access to and high-
light the role of scalars. Constraint Eq. (101) for the Killing
frame and (102) for the ZAMO frame are both expressions of
the magnetic Weyl scalarH . However in (101) the magnetic
component of Weyl is entirely generated by the vorticity. In

comparison, in the ZAMO frame (102) it is entirely gener-
ated by the distortion (shear). This is physically significant
because the magnetic part of the Weyl tensor generates grav-
itational waves. We can conclude that in the Killing frame,
the gravitational wave is a direct consequence of vorticity
and in the ZAMO frame, the gravitational wave is a direct
consequence of the distortion of spacetime. These results
demonstrate that the 1+1+2 formalism also has the potential
to excavate new information in spacetimes that aren’t neces-
sarily spherically symmetric and this can involve higher order
terms. The equations presented in this section help build a
framework to study the Kerr spacetime’s electromagnetic and
kinematic properties.

8 Conclusion

In this paper we have given a complete 1+1+2 semi-tetrad
covariant description of the Kerr spacetime outside the hori-
zon. Since there are no matter quantities we explicitly wrote
down all the geometrical quantities and the evolution and
propagation equations they satisfy. During this process we
identified some errors in the equations of the previous 1+1+2
decomposition performed in [5,22] which we corrected in
this paper specifically for the Kerr spacetime. However the
affected terms in those equations were higher order terms.
Hence the linear perturbation results in [5,22] remain unaf-
fected.

As far as we are aware, the 1+1+2 description of the Kerr
geometry presented in this paper is the first comprehensive
treatment. Furthermore this highlights the role of geomet-
rical variables associated with the timelike congruence and
preferred spacelike congruence. That is, when one changes
the observers congruence for example from the Killing frame
to the ZAMO frame, the geometrical variables are affected.
This is reflected in both Tables 1 and 2. This work can be
extended in a number of different ways and we are already
working on a few of these extensions:

1. As a natural generalisation of the linear perturbation of
Schwarzschild geometry, where the Regge–Wheeler ten-
sor was found [5], we can perform a similar but extensive
calculation to find the corresponding Teukolsky tensor for
rotating geometry.

2. Due to our exploration of the ZAMO frame, details of the
geometry of the ergosphere can be investigated.

3. Since our results are valid in the ergosphere, the Penrose
process can be applied whereby energy can be extracted
from the rotating black hole.

4. The results relating to gravitational waves can give rise to
the gravitational wave equation in general.

5. Even though the formalism used in this paper applies to
the exterior including the ergosphere, the equations pre-
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sented in this paper may be a useful guide in finding inte-
rior rotating solutions for an isolated body which is an
unsolved problem in astrophysics.

In the future we can use this detailed geometrical descrip-
tion of the Kerr spacetime to find different physical properties
of the Kerr spacetime that would have been more difficult to
do using the usual coordinate approach or a standard 1+3
decomposition which was also performed in this paper.
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Appendix A: Additional 1+3 definitions

We write down important definitions and identities in the 1+3
formalism. Note that

εabc = √|det g|δ0[aδ1
bδ

2
cδ

3
d]ud ,

εabcε
de f = 3!hd [a h

e
bh

f
c],

εabcε
dec = 2hd [a h

e
b].

The 1+3 decomposition of the Riemann curvature tensor
is given in [32] and in the context of Kerr is as follows

Rab
cd = 4u[au[cEb]

d] + 4h[a [cEb]
d] + 2εabeu[cHd]e

+2εcdeu
[aHb]e. (A.1)

Appendix B: Additional 1+1+2 definitions

We write down the definitions of important components in
the 1+1+2 formalism. Any spacetime 3-vector Φa can be
irreducibly split into χ , a scalar component along ea , and a
2-vector χa , which is a sheet component orthogonal to ea ,

as follows

Φa = χea + χa, (B.1)

where χ ≡ Φaea, χa ≡ NabΦb ≡ Φ ā and the bar on a
particular index denotes projection with Nab on that index
such that the vector or tensor lies on the sheet. Similarly we
can split a projected, symmetric, trace-free tensor Φab into
scalar, 2-vector and 2-tensor parts as follows

Φab = Φ<ab> = χ

(
eaeb − 1

2
Nab

)
+ 2χ(aeb) + χab,

(B.2)

where the components

χ ≡ eaebΦab = −NabΦab,

χa ≡ Na
becΦbc,

χab ≡ χ{ab} =
(
N(a

cNb)
d − 1

2
NabN

cd
)

Φcd , (B.3)

are defined. The curly brackets denote the part of the tensor
that is projected, symmetric and trace-free, with respect to
ea .

We mention that in general the dot, hat and delta deriva-
tives do not commute. The commutation relations for any
scalar κ are

ˆ̇κ − ˙̂κ = −A κ̇ +
(

1

3
Θ + Σ

)
κ̂

+
(
Σa + εabΩ

b − αa

)
δaκ, (B.4)

δa κ̇ − (δaκ)·⊥ = −Aa κ̇ +
(
αa + Σa − εabΩ

b
)

κ̂

+
(

1

3
Θ − 1

2
Σ

)
δaκ

+ (Σab + Ωεab) δbκ, (B.5)

δa κ̂ − (
δ̂aκ

)
⊥ = −2εabΩ

bκ̇ + aa κ̂ + 1

2
φδaκ

+ (ζab + ξεab) δbκ, (B.6)

δ[aδb]κ = εab
(
Ωκ̇ − ακ̂

)
, (B.7)

where ⊥ denotes projection onto the sheet.

Appendix C: Corrections to Clarkson equations

This appendix contains the equations of Clarkson [22] that
contained errors and their subsequent corrections in the Kerr
formalism. We note once again that the errors were detected
in higher order terms hence the results presented in [5,22]
remained unaffected. These equations have been checked
using the mathematical software Maple and GRTensorIII
[21]. The corrected terms have been enclosed in boxes below.
We have taken Θ = Σ = ξ = 0 which occurs in both frames.
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1. Evolution equations (47 and 48)
uaNbcRabc:
Clarkson:

φ̇ = δaα
a + A a (αa − aa) + (

aa − A a) (
Σa − εabΩ

b
)

−ζ abΣab. (C.1)

Correction:

Killing frame: φ̇ = δaα
a + αa

(
A a − aa

)
−εabΩ

b (
aa − A a) , (C.2)

ZAMO frame: φ̇ = δaα
a + αa

(
A a − aa

)
+Σa

(
aa − A a) − ζ abΣab. (C.3)

2. Evolution equation (50)
uaεbc Rabc:
Clarkson:

ξ̇ = 0 = 2Ω (A − φ) + (
aa + A a)

×
[
Ωa + εab

(
αb + Σb

)]

+εabδ
aαb − εcaζb

cΣab + H . (C.4)

Correction:

ZAMO frame: ξ̇ = 0 = εab
(
aa + A a) [

αb + Σb
]

+εabδ
aαb +εcaζb

cΣab + H . (C.5)

3. Mixed equations (63 and 64)
Shear evolution equation:
Clarkson:

− 2

3
ˆA = 2

3
A 2 − 1

3
φA − 2

3
Ω2 − 1

3
δaA

a + Σa

×
(

2αa − 1

3
Σa

)
− 2

3
Aaa

a + 1

3
AaA

a

+1

3
ΩaΩ

a + 1

3
ΣabΣ

ab − E . (C.6)

Correction:

Killing frame: − 2

3
ˆA = 2

3
A 2 − 1

3
φA

−2

3
Ω2 − 1

3
δaA

a − 2

3
Aaa

a −1

3
AaA

a

+1

3
ΩaΩ

a − E , (C.7)

ZAMO frame: − 2

3
ˆA = 2

3
A 2 − 1

3
φA − 1

3
δaA

a

+Σa

(
2αa − 1

3
Σa

)
− 2

3
Aaa

a −1

3
AaA

a

+1

3
ΣabΣ

ab − E . (C.8)

4. Mixed equations (69 and 70)
Electric Weyl evolution equation:
Clarkson:

Ėā + 1

2
εabĤ

b = 3

4
εabδ

bH + 1

2
εbcδ

bH c
a + 3

4
EΣa

+3

4
E εabΩ

b + 3

2
H εabA

b − 3

2
E αa − 3

4
H εaba

b

−1

2
ΩεabE

b − 1

4
φεabH

b − A εabH
b + 3

2
ΣabE

b

+3

2
EabΣ

b − Eabα
b − 1

2
Eabε

bcΩc

+1

2
ζabε

bcHc − Habε
bcAc. (C.9)

Correction:

Killing frame: Ėā + 1

2
εabĤ

b = 3

4
εabδ

bH

+1

2
εbcδ

bH c
a + 3

4
E εabΩ

b + 3

2
H εabA

b − 3

2
E αa

−3

4
H εaba

b − 1

2
ΩεabE

b − 1

4
φεabH

b − A εabH
b

+Eabα
b − 1

2
Eabε

bcΩc + 3

2
ζabε

bcHc

−Habε
bcAc +1

2
εaba

cH b
c + εabecδ

bH c , (C.10)

ZAMO frame: Ėā + 1

2
εabĤ

b = 3

4
εabδ

bH

+1

2
εbcδ

bH c
a + 3

4
EΣa + 3

2
H εabA

b − 3

2
E αa

−3

4
H εaba

b − 1

4
φεabH

b − A εabH
b + 3

2
ΣabE

b

+3

2
EabΣ

b +Eabα
b + 3

2
ζabε

bcHc

−Habε
bcAc +1

2
εaba

cH b
c + εabecδ

bH c . (C.11)

5. Mixed equations (75 and 76)
Magnetic Weyl evolution equation:
Clarkson:

Ḣā − 1

2
εabÊ

b = −3

4
εabδ

bE − 1

2
εbcδ

bE c
a + 3

4
H Σa

+3

4
H εabΩ

b − 3

2
E εabA

b − 3

2
H αa + 3

4
E εaba

b

+1

4
φεabE

b + A εabE
b − 1

2
ΩεabH

b + 3

2
ΣabH

b
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+3

2
εabζ

bcEc + εabAcζ
bc + Habα

b

+3

2
HabΣ

b − 1

2
Habε

bcΩc. (C.12)

Correction:

Killing frame: Ḣā − 1

2
εabÊ

b = −3

4
εabδ

bE

−1

2
εbcδ

bE c
a + 3

4
H εabΩ

b

−3

2
E εabA

b − 3

2
H αa + 3

4
E εaba

b

+1

4
φεabE

b + A εabE
b − 1

2
ΩεabH

b + 3

2
εabζ

bcEc

+ Eabε
bcAc + Habα

b − 1

2
Habε

bcΩc

−1

2
εaba

cE b
c − εabecδ

bE c , (C.13)

ZAMO frame: Ḣā − 1

2
εabÊ

b = −3

4
εabδ

bE

−1

2
εbcδ

bE c
a + 3

4
H Σa − 3

2
E εabA

b

−3

2
H αa + 3

4
E εaba

b

+1

4
φεabE

b + A εabE
b + 3

2
ΣabH

b

+3

2
εabζ

bcEc + Eabε
bcAc

+Hab

(
αb + 3

2
Σb

)

−1

2
εaba

cE b
c − εabecδ

bE c . (C.14)

6. Mixed equations (77 and 78)
Magnetic Weyl evolution equation:
Clarkson:

Ḣ{ab}+εc{a Êb}c=εc{aδcEb}− 3

2
H Σab + 3

2
E εc{aζb}c

−1

2
φεc{aEb}c−2A εc{aEb}c−Ωεc{aHb}c+3Σ{aHb}

−Ω{aεb}cH c − 2α{aHb}+2E{aεb}cac+2E{aεb}cA c

+3Σc{aHb}c−εc{aEb}dζ cd . (C.15)

Correction:

Killing frame: Ḣ{ab} + εc{a Êb}c = εc{aδcEb}

+3

2
E εc{aζb}c − 1

2
φεc{aEb}c − 2A εc{aEb}c

+Ωεc{aHb}c

− εc{aHb}Ωc − 2α{aHb}

+2E{aεb}cac −2E{aεb}cA c − εc{aEb}dζ cd , (C.16)

ZAMO frame: Ḣ{ab} + εc{a Êb}c = εc{aδcEb}

−3

2
H Σab + 3

2
E εc{aζb}c − 1

2
φεc{aEb}c − 2A εc{aEb}c

+3Σ{aHb}
+2E{aεb}cac −2E{aεb}cA c

+3Σc{aHb}c − 2α{aHb} − εc{aEb}dζ cd . (C.17)

7. Propagation equations (81 and 82)
eaεbc Rabc:
Clarkson:

ξ̂ = 0 = 1

2
εabδ

aab + 1

2
εabΣ

aab + αaΩ
a + 1

2
aaΩ

a .

(C.18)

Correction:

Killing frame: ξ̂ = 0 = εabδ
aab + 2αaΩ

a, (C.19)

ZAMO frame: ξ̂ = 0 = εabδ
aab. (C.20)

8. Propagation equation (94)
Electric Weyl divergence equation:
Clarkson:

Ê = −δaE
a − 3

2
φE + 3ΩH + 2Eaa

a + 3ΩaH
a

+εabΣ
acH b

c + Eabζ
ab. (C.21)

Correction:

ZAMO frame: Ê = −δaE
a − 3

2
φE + 2Eaa

a

+εabΣ
acHc

b + Eabζ
ab +εabΣ

aH b . (C.22)

9. Propagation equation (96)
Electric Weyl divergence equation:
Clarkson:

Êā = 1

2
δaE − δbEab + H εabΣ

b − 3

2
H Ωa − 3

2
E aa

−3

2
φEa + 3ΩHa − ζabE

b + Eaba
b + 3HabΩ

b.

(C.23)

Correction:

ZAMO frame: Êā = 1

2
δaE − δbEab +3

2
H εabΣ

b

−3

2
E aa − 3

2
φEa − ζabE

b

+Eaba
b −εabΣ

cH b
c + εabΣ

bcHc . (C.24)
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10. Propagation equation (98)
Magnetic Weyl divergence equation:
Clarkson:

Ĥ = −δaH
a − 3

2
φH − 3EΩ + 2Haa

a − 3ΩaE
a

+ζabH
ab − εabΣ

a
cE

bc. (C.25)

Correction:

ZAMO frame: Ĥ = −δaH
a − 3

2
φH + 2Haa

a

+ζabH
ab

−εabΣ
a
cE

bc −εabΣ
aE b .

(C.26)

11. Propagation equation (100)
Magnetic Weyl divergence equation:
Clarkson:

Ĥā = 1

2
δaH −δbHab− 3

2
E εabΣ

b+ 3

2
EΩa− 3

2
H aa

−3ΩEa− 3

2
φHa+Haba

b−ζabH
b − 3EabΩ

b.

(C.27)

Correction:

ZAMO frame: Ĥā = 1

2
δaH − δbHab − 3

2
E εabΣ

b

−3

2
H aa − 3

2
φHa + Haba

b

−ζabH
b +εabΣ

cE b
c

−εabΣ
bcEc . (C.28)

12. Constraint equation (106)
eaucRab̄c:
Clarkson:

2εabδ
bΩ + 2δbΣab = −φ

(
Σa − εabΩ

b
)

−4ΩεabA
b + 2ζabΣ

b

+2εabζ
bcΩc +Σaba

b

−2εabH
b. (C.29)

Correction:

ZAMO frame: 2δbΣab=−φΣa+2ζabΣ
b−2εabH

b.

(C.30)
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