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Abstract We investigate novel exact solutions to an Einstein–
Maxwell theory non-minimally coupled to a self-interacting
dilaton-like scalar. Extending the results of Herrera-Aguilar
et al. (Phys. Rev. D 103(12):124025, 2021. arXiv:2012.13412
[hep-th]; arXiv:2110.04445 [hep-th]), we report three fami-
lies of exact configurations over a non-relativistic Schrödinger
background with both, arbitrary dynamical critical exponent
z and hyperscaling violating parameter θ in any dimension
d. Concretely, we provide field configurations with hyper-
scaling violation which are locally Schrödinger spaces. Our
solutions correspond to three kinds: a zero-temperature back-
ground, a naked singularity and, more interestingly, a fam-
ily of black holes. To the latter, we construct the corre-
sponding Carter–Penrose diagram with a view to understand
their causal structure given the non-standard background. We
show that a non-trivial hyperscaling violation parameter θ

is necessary in order to support a real non-constant dila-
ton field in the configuration. We explore how the relation
between the hyperscaling violation parameter and the criti-
cal dynamical exponent determine, in combination with the
spacetime dimension, the kinematic aspects of the fields. A
further refinement on the physically sensible configurations
is obtained from the study of the null energy conditions. We
provide a thorough study of the thermodynamics including
the quasi-local computation of charges and the verification
of the first law. We explore the effects in the thermodynam-
ics from varying the rich parameter space, paying special
attention in comparing the qualitative behavior of the ther-
modynamics of the scalar-free solutions and the ones with a
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nontrivial dilaton. Lastly, it is found that if the reality condi-
tion is loosen up on the scalar, the configuration is prone to
acquiring a scalar charge.

1 Introduction

Despite the lack of a fundamental derivation, gauge/gravity
correspondence, in its many different versions, has become
a thought-provoking central facet in the study of theoreti-
cal high energy physics. In fact, it has recently manifested
itself as a bridge to understand experimental systems from an
unsuspecting mathematical construction. The core concept
behind the prescription is the matching of the isometries of
a gravity theory to that of the symmetry group of a confor-
mal field theory (CFT) defined in its boundary. Soon after the
appearance of the first Anti-de Sitter (AdS) holographic mod-
els, a potential limitation was adverted due to the intrinsic rel-
ativistic nature of gravity: a vast sector of strongly coupled
systems which happen to exhibit non-relativistic symmetry
groups escaped the holographic landscape.

In the early works [3], various models of these kind were
pointed out, with a particular interest in the case of a mass-
less point particle over different backgrounds and potentials.
In the given examples, the classical (kinematic) symme-
tries contained the Galilean as well as the conformal group.
After a canonical transformation, these were shown to arise
at the quantum level as the symmetries of the governing
Schrödinger equation. Soon after, this curious result moti-
vated the challenge of constructing a geometry that explic-
itly realizes the Schrödinger group as its isometry group
and accordingly dubbed the Schrödinger spacetime [4–6].
It turns out that the resulting metric encodes a conformal
relation with the AdS spacetime, hence the non-relativistic
CFT (NRCFT) models presented a sense of duality much
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akin to the AdS/CFT correspondence. Yet, the idea was
to be developed and it was still lacking a concrete grav-
ity/NRCFT example. Remarkably, Dirac fermions propagat-
ing in a Schrödinger spacetime in correspondence with a
vacuum configuration of NRCFT were considered in [7].
The scheme was better shaped in the seminal works [8–
13], where a finite temperature version of the asymptoti-
cally Schrödinger space with fixed critical exponent z was
introduced. Moving away from extremality allowed to estab-
lish a dictionary with low viscosity non-relativistic fluids –
effectively described by a system of strongly-coupled cold
fermionic atoms. Of course, research in this direction has
further proliferated, take for instance the following recent
studies: in [14,15], the authors consider the dynamics of
Fermi particles under unitarity. A direct computation of the
boundary correlators shows that these systems also realize the
Schrödinger group. More geometrical aspects of the gravity
side were developed in [16,17]. A wide introduction to the
main developments can be found in [18].

Going into the matter, the Schrödinger metric defined on
a D = d + 3 dimensional manifold can be written in light
cone-like coordinates as

ds2
Sch = −b2r2zdu2 + 2r2dudv + dr2

r2 + r2d �x2
d , (1)

where u, v ∈ (−∞,∞), u is actually a null coordinate,
r ∈ [0,∞) has a special interpretation which plays the role of
an energy (holographic) dimension, and the xi ∈ (−∞,∞)

cover a flat spatial slicing. The parameter b2 ∈ R is intro-
duced by convenience to keep track of limits of interest.
Closely related to the Lifshitz spacetime,1 Schrödinger can
incorporate a critical dynamical exponent z manifesting itself
in accordance to the non-relativistic anisotropic scaling of
space and time. In practice, this means that (1) is invariant
under the transformation generated by a dilation operator

D : u → λzu, v → λ2−zv, r → λ−1r, xi → λxi .
(2)

In addition, as we anticipated, the Killing vectors of (1)
embody an algebra closely related to the kinematic symme-
try group of the Schrödinger equation over a flat space. The
isometries’ generators correspond to the momentum opera-
tors Pi , the spatial rotations Li j , Galilean boostsGi , the usual
time translation H and similarly the conserved mass number
N

Pi : xi �→ x
′i = xi + ai ,

1 Lifshitz geometry [19–22] is the other pillar of non-relativistic holog-
raphy. It has also an anisotropic scaling between space and time
characterized by a critical exponent z. The main difference with the
Schrödinger case is that, the Lifshitz group is disconnected from the
AdS group except from the trivial isotropic case.

Li j : xi �→ x
′i = Li

j x
j ,

Gi : xi �→ x
′i = xi − ẋ i u,

H : u �→ u′ = u + au,

N : v �→ v′ = v + av, (3)

where the dot notation represents total derivatives with
respect to the affine parameter – which can generically be
chosen as the u coordinate. The explicit form of the alge-
bra of these generators can be found for instance in [4–6].
An inspection of it reveals that z = 2, the pure Schrödinger
algebra, incorporates a new generator related to the special
conformal group.

Beyond the already rich playground provided by Schrödinger
spaces, it is possible to broaden the scope of dual models from
the NRCFT side at the cost of adding a new independent
parameter. In this work, we will consider a base geometry
conformally related to (1). It is such that an additional con-
stant is incorporated and denominated the hyperscaling vio-
lation exponent. That name comes from a direct connection
to the comportment of the thermodynamics of the boundary
field theory. Hyperscaling, similar to Lifshitz scaling, refers
to a measure of the dimensions carried by some quantities like
the specific heat or the magnetization around a critical tem-
perature. These are well established relations between the
critical exponent and the spacetime dimension. Deviations
from such relations are known as hypercaling violation, see
[23] for a reference.

Altogether, non-relativistic spacetimes with a hyperscal-
ing violation exponent θ have been considered in the context
of zero-temperature [24] and, more concretely, in the con-
struction of black hole and string configurations [25–29].
In that regard, the general aspects of holography involving
a hyperscaling violation exponent have been examined. A
noteworthy result, for instance, is the repercussion of the
exponent θ in the presence of novel phases that violate usual
entanglement entropy laws [26]. More recently, estimations
of the transport coefficients have been carried out for holo-
graphic fluid models dual to black branes with a hyperscaling
violation factor [30]. In these examples, it is notorious that
most of the attention is devoted to Lifshitz symmetry, hence
we take this window of opportunity to delve into the explo-
ration of similar physics taking place over a Schrödinger
spacetime.

Several black hole configurations with Schrödinger asymp-
totics have been reported in the literature. Some of them were
derived within string and M-theory through the Melviniza-
tion method. Different black hole seed solutions with a fixed
critical exponent and dimension have been treated; the case of
z = 1, 2 and d = 2 is detailed in [8,10,12]. For z = 1, 2 and
d = 2 it was done in [13] with the aid of the Brown–York pro-
cedure. Other asymptotically Schrödinger black holes were
obtained through the discrete light cone quantization of field
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theories, where it also happens that the starting configura-
tion has a fixed dynamical exponent z = 2, 4 and dimen-
sion d = 2 [9]. The blackfold approach was also imple-
mented to obtain asymptotically Schrödinger black strings
and membranes, again with fixed critical exponent z = 1, 2
and dimension due to the string and M-theory frameworks in
which they are embedded [31].

On the other hand, Lifshitz black hole spacetimes with
arbitrary dynamical exponent, hyperscaling violation param-
eter and dimension have been studied for instance in [26–29],
where some physical restrictions for these parameters were
found. Parallel, an asymptotically Schrödinger black hole
solution with arbitrary hyperscaling violation parameter and
dimension was obtained from an AdS (z = 1) seed con-
figuration in [32], where the corresponding thermodynamic
properties were studied.

On that account, in order to fill the gap existing in the
parameter space of so-far known solutions, here we present
the first locally Schrödinger black hole which incorporates
arbitrary critical exponent, hyperscaling violation parameter
and dimension. We would like to emphasize that our field
configuration contrasts with previously reported black hole
solutions that attain the Schrödinger symmetry just asymp-
totically. The price to pay for all these appealing features con-
sists in digressing from the string theory framework and to
appeal to an ad hoc model. As we shall see, these Schrödinger
black holes require modifications to general relativity in order
to be supported. Far from being a disadvantage, these mod-
ifications can be exploited for the sake of a new viable phe-
nomenology. Motivation for our work in this sense can be
found in [29]. There, a concrete example of a family of hyper-
scaling violating Lifshitz black holes is built under a frame-
work similar to ours: an extended Einstein–Maxwell-dilaton
theory.

Organization of the manuscript. Section 2 briefly reviews
some basic aspects of the geometric realization of Schrödinger
spacetimes with the presence of a hyperscaling violat-
ing exponent. Section 3 presents the generalized Einstein–
Maxwell-dilaton theory as the setup supporting novel hyper-
scaling violating Schrödinger backgrounds, while Sect. 4 is
devoted to obtaining a black hole solution and its scalar
free limit within this framework. Moreover, the null energy
conditions (NEC) are provided to narrow down the physi-
cally meaningful parameter space. In Sect. 5 the correspond-
ing Carter–Penrose diagram is constructed to envision the
global structure of this black hole configuration. In Sect. 6
a consistent thermodynamic analysis of our black hole is
performed as well as the corresponding computation of the
conserved charges. Section 7 confronts our hairy black hole
with the scalar free solution to show that they exhibit rather
different thermodynamic properties. Finally, some conclud-
ing remarks are given in Sect. 8.

2 Basics on hyperscaling violating Schrödinger
spacetimes

Cast in the present coordinate system, Schrödinger metric
(1) appears to be singular at the origin of the bulk coordi-
nate. However the divergence at r = 0 is avoidable through
a suitable diffeomorphism. As a first illustration, we com-
pute a few relevant curvature invariants R = −D(D − 1),
RμνRμν = D(D − 1)2 and RαβμνRαβμν = 2D(D − 1)

which are constant and depend only on the dimension and
not on the dynamical exponent. Actually, one can show that
there is a coordinate system in which the line element is reg-
ular everywhere [33–35], and thus a geodesically complete
space.

Another interesting property of the background (1) is that
it can be written as Kerr–Schild transformation of AdS, as
firstly studied in [16,36]. Consequently, many characteristics
are conferred to the geometry, among them one with great
repercussion is that the Schrödinger spacetime can be under-
stood as belonging to the class of exact gravitational waves
over AdS. Hence, it can be shown that a general metric func-
tion replacing the coefficient of du2 should obey a Siklos
wave equation [16,36].2 In this sense, the constant b2 takes
the role of a trivial profile that controls the AdS limit for
b = 0.

Condensed matter and other non-relativistic systems
generically tend to introduce pertinent parameters when a
more realistic physical description is needed. From the grav-
itational dual side, it is then useful to generalize as much
as possible the AdS background to have enough freedom to
match the NRQFT models. As an illustration, in condensed
matter systems, a quantum critical point can be character-
ized by different types of critical exponents and satisfy dif-
ferent relationships between them. One of those interplay
between parameters are the so-called hyperscaling relation-
shipswhich have the particularity of relating the scale dimen-
sions involved in a phase transition to the spatial dimensions
of the background [37]. In the last years there has been a
great interest in studying non-relativistic systems extend-
ing this type of property. For example, [38] stages a holo-
graphic realization of a non-relativistic model with an explicit
hyperscaling violating symmetry together with an arbitrary
dynamical exponent. The focus of the study was the entan-
glement entropy from Schrödinger-type backgrounds. The
gravity side of hyperscaling violating Schrödinger systems
can be modelled through a family of metrics conformally
related to (1)

2 The Siklos operator generalizes the wave equation of flat spacetime
to an AdS background. Thus, the wave profiles of the so-called AdS-
waves are a generalization of the harmonic profiles associated to pp-
wave spacetimes.
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ds2 = r−2θ

[
−b2r2zdu2 + 2r2dudv + dr2

r2 + r2d �x2
d

]
,

(4)

where θ is the hyperscaling violation exponent.3 Precisely,
the hyperscaling violating factor brakes the scaling symmetry
under (2), such that, under the same transformation the line
element gets an overall coefficient

ds2 → λ2θds2.

A striking consequence due to the inclusion of the hyper-
scaling violating factor concerns the starting discussion of
this section about the global structure of the spacetime. Actu-
ally, for arbitrary values of the hyperscaling violation expo-
nent, the singularity at r = 0 turns out to be unavoidable. A
detailed study about it can be found in [34,35], but we put
forward some basic results that will be handy in subsequent
sections. A good starting point is to write down the curvature
invariants

R = (D − 1)(θ − 1) [2 − (θ − 1)(D − 2)] r2θ ,

RμνR
μν = (D − 1)(θ − 1)2κ1 r

4θ ,

RαβμνR
αβμν = (θ − 1)2κ2 r

4θ , (5)

with the constants κi depending only on θ and D with no
information of the critical exponent z and are given by

κ1 = (D − 1) + [θ(D − 2) − (D − 1)]2 ,

κ2 = (D − 3)3(θ − 1)2 + 2 [3 + θ(θ − 2)]

+ (D − 3) [7 + 5θ(θ − 2)] − 2(D − 3)2(θ − 1)2.

We note how the curvatures are either divergent or degen-
erate at r = 0 or r = ∞ depending on the sign of θ . An
infinity inside the curvature invariants reveals with no doubt
the presence of a singularity in the broader sense of geodesic
incompleteness. Of course, the case preserving the hyper-
scaling (θ = 0) recovers our previous discussion where the
singularity is just apparent.

Another important observation with respect to the invari-
ants (5) is that all of them vanish for the admissible and non-
trivial value θ = 1. One might be tempted to conclude that
such value removes the singularity but this idea is mislead-
ing. There is a family of geometries denominated vanishing
scalar invariant spacetimes, see [39] for a reference. Such
metrics have the peculiarity of having zero curvature invari-
ants at all orders despite not being maximally symmetric
spaces and hence having a possible intricate global structure.
Interestingly, this property for the (hyperscaling violating)

3 Which reduces to pure Schrödinger when θ = 0, and to AdS when
{θ = 0, b = 0}.

Schrödinger space is an aftermath of the wave-like nature of
its construction [16].

In order to finish this argumentation, we show a simple
calculation that better captures the effect of the hyperscaling
violation in the global properties of (4). Through a compact-
ification of the spacetime similar to that of AdS or Lifshitz
spacetimes [40,41], it is possible to identify the light ray
kinematics and portray the existence of a singularity. The
procedure to construct a Carter–Penrose diagram Fig. 1 is
rather straightforward. It comprises three steps: an identifi-
cation of a tortoise coordinate, a rotation to a null plane, and
a compactification via the arctan function. For simplicity we
rotate back from the null coordinates obtaining the diffeo-
morphism

(−∞ < u < ∞, 0 ≤ r < ∞) �→
(−π/2 < T < π/2, 0 < R < π/2).

After the described coordinate transformations, the line
element becomes

ds2 = − b2 (zb sin T cos R)2(θ−z)/z

(
cos2 T + cos2 R − 1

)2(θ+z)/z

(
dT 2 − dR2

)
.

(6)

The numerator in the above expression is not problematic
while the coordinates are straitened to reach the degenerate
point and, other than that, there is no singular point. In the
denominator, we see that unless θ and z are fine-tuned to
satisfy z + θ = 0, there is a region where it vanishes making
the singularity evident. It is clear from the Penrose diagram
Fig. 1 how the geodesic can reach this singular region as men-
tioned in [39]. The approach here described will be the basis
to examine the global properties of the black hole solutions
that posses a rich structure.

3 Generalized Einstein–Maxwell-dilaton gravity

Low energy limits of string theories provide natural modi-
fications of general relativity which, after exhaustive study,
have become modified gravity candidates offering rich phe-
nomenology. For instance, the axion-dilaton model which
accounts for two scalar bosons serves as a strong dark matter
candidate [42]. We can introduce closely related theories by
deforming the original structure coming from string fields.
Hereafter, we will consider a generalization of the dilaton
coupling to a vector field. The latter can have, in principle,
a gauge breaking mass term. All in all, we consider a non-
minimally coupled scalar-vector gravitational theory defined
over a D = d + 3 manifold and encoded in the action
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Fig. 1 Carter–Penrose diagram of a generic hyperscaling violating
Schrödinger spacetime with θ > 0 and z > 1. The lilac and blue
lines are the constant u and r null geodesics respectively represented in
the compactified space. The dotted red line corresponds to the spatial
infinity r = ∞ and the dashed yellow line belongs to the unavoidable
singularity at r = 0 which maps to a null surface in this representation

S = 1

16πG

∫
dDx

√−g

[
R − 1

2
∂μφ∂μφ − V (φ)

− 1

4
χ(φ)F2 − 1

2
m2A2

]
, (7)

where the fields have being rescaled to absorb the gravita-
tional units, and where φ is a real scalar field self-interacting
under the potential V (φ). There is also a vector field with
field strength given by Fμν = ∂μAν − ∂ν Aμ and having, in
principle, a generic mass term. TheU (1) Maxwell invariance
is recovered form2 = 0. In addition, the function χ(φ) stands
for a coupling between the scalar and the vector, depending

only on φ. The dynamics of this framework is dictated by the
following field equations

Eμν := Rμν − 1

2
Rgμν − Tμν = 0, (8a)

�φ − 1

4
∂φχF2 − ∂φV = 0, (8b)

∇μ

[
χFμν

]
− m2Aν = 0, (8c)

where the energy–momentum tensor from the matter contri-
butions has the form

Tμν = 1

2
∂μφ∂νφ − 1

4
gμν(∇φ)2 − 1

2
gμνV

+ 1

2
χ

[
FαμF

α
ν − 1

4
F2gμν

]

+ 1

2
m2AαAβ

(
δα
μδβ

ν − 1

2
gαβgμν

)
. (9)

For ulterior thermodynamical applications, we target the
construction of static solutions. It suffices then to take the fol-
lowing Schrödinger type ansatz with a single metric function
f (r) and with hyperscaling violating parameter

ds2 = r−2θ

[
− b2r2z f du2 + dr2

r2 f
+ r2
(

2dudv + d �x2
)]

.

(10)

Thus, the ansatz (10) is asymptotically Schrödinger as long
as f (r) → 1 near the boundary r → ∞ when θ = 0.
Furthermore, the dilaton and vector potential are set to inherit
the isometries of the background,

φ = φ(r), A = Aμ(r)dxμ. (11)

Notice that the most general ansatz for A should include a dv

and dxi components when the gauge symmetry is explicitly
broken (m �= 0). Actually, as we explore next, the presence
of the vector (Proca) mass influences the components of the
vector ansatz.

3.1 Restoring the U (1) gauge

Before jumping in to the treatment of the complete system of
equations of motion (8), an observation regarding the Proca
mass term, and its connection to the form of the vector poten-
tial is in order. The off-diagonal components of Einstein
equations (8a) deliver information about the first derivatives
of the components of the Maxwell field. The nonzero com-
ponents show up as

Eu
v = (A′

v

)2 + (mAv)
2

f χr2(θ+1)
= 0, (12a)
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Eu
i = A′

u A
′
i + m2Au Ai

f χr2(θ+1)
= 0, (12b)

Ev
i = A′

vA
′
i + m2AvAi

f χr2(θ+1)
= 0, (12c)

where the latin indices run over the d transverse directions
xi and the prime notation denotes derivatives with respect to
r hereafter. One could in principle workout the system with
full generality, however we will take advantage of an obvious
simplifying assumption. Turning off the mass in (12) leads
to an unique consistent and nontrivial choice

m2 = 0 ⇒ A′
i = A′

v
!= 0, (13)

and with the Au component free. Due to the static symmetry,
the Ar component appears only algebraically in the Proca
equation (8c) and is forced to zero.

In short, the gauge invariant version of (7) has a purely
electrical vector ansatz as the most general in accordance
with the isometry group

A = A(r)du. (14)

Of course, the previous observation is twofold. One can read
condition (13) the other way around: turning off the trans-
verse components, the Proca mass is strictly set to zero as
a consequence of a purely electrical ansatz. With this result
in hand, a quick inspection of the Maxwell equations reveals
that it can be readily integrated once in terms of the arbitrary
metric and coupling function

A′(r) = q√
f χr (D−3)(1−θ)+θ+1

. (15)

Here q is an arbitrary integration constant that is associated
with the total electromagnetic U (1) charge.

3.2 Zero-temperature configuration: bare hyperscaling
violating Schr̈odinger background

From now on, we take into consideration the result of the
previous section. The vector field will play solely the role of
a Maxwell potential with strictly zero mass. In due course, a
relevant and functionally independent set of field equations
reads

Ev
u = 0

= r2 f ′′ − [θ(D − 2) − 5(z − 1) − D)
]
r f ′

+ 1

2

r2 f ′2

f
− 2(z − 1)

[
θ(D − 2) − 2z − D + 3

]
f

− q2r2[(D−3)(θ−1)−z]

b2 f χ
, (16a)

Er
r − Eu

u = 0 = (φ′)2 − (D − 2)(θ − 1)

r2

[
r f ′

f
+ 2θ

]
, (16b)

Er
r + Eu

u = 0 = V − (D − 2)(θ − 1)

2
r2θ
{
r f ′

− 2 [θ(D − 2) − D + 5)] f
}
. (16c)

It can be indeed verified that, due to the conservation of the
energy-momentum tensor (9), the scalar Klein–Gordon equa-
tion provides no new information, it is functionally dependent
on the above system.

It is relevant to observe that we have an under-determined
non-linear system (16), with the freedom to fix one of the
unknowns conveniently to our task of finding exact solutions.
The most evident choice is to study the case with no black-
ening function f (r) = 1, i.e, a zero temperature solution.
In this situation, we can explore the sole effect of the hyper-
scale violation enforced on the Schrödinger space. For such
a choice, the system is consistent and yields the following
results: a logarithmic dilaton profile

φ(r) = √2θ(θ − 1)(D − 2) ln(r) + φ0, (17)

which is subject to a Liouville self-interaction potential of
exponential kind, similar to the ones studied in [43]

V (φ) = V0e
λ0(φ−φ0), (18)

and is coupled with the Maxwell field through a dilatonic
coupling

χ(φ) = χ0e
λ1(φ−φ0). (19)

In these expressions we have introduced constants given in
terms of the metric parameters and the electric charge

V0 = − [θ(D − 2) − (D − 1)] (D − 2)(θ − 1), (20a)

χ0 = q2

2(z − 1) [D − 3 + 2z − θ(D − 2)] b2 , (20b)

λ0 =
√

2θ

(D − 2)(θ − 1)
, λ1 = 2[(D − 3)(θ − 1) − z]√

2θ(D − 2)(θ − 1)
.

(20c)

We have all the information necessary to fully integrate the
Maxwell equation (15) under the condition f = 1. Con-
cretely,

A(r) = 2b2(z − 1)

q
r [D−3+2z−θ(D−2)] + A0, (21)

with A0 an integration constant which can be turned off with-
out loss of generality. Due to the lack of a horizon as adver-
tised in Sect. 2, this configurations presents a trivial thermo-
dynamics. The temperature is constantly vanishing as well
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Table 1 We show the special values and regions in the parameter space
where the field equations display a different branch of solution

Condition Dilaton (φ) Coupling (χ) Potential (V )

θ = 0 Const 0 Const< 0

θ = 1 Const 0 0

θ = D−1
D−2 Log Const ∼ (z − 1) 0

θ = D+2z−3
D−2 Log Arbitrary Const ∼ (z − 1)

θ = D+z−3
D−2 Log Const Exp

Abbreviation are as follows: log = logarithmic, const = constant, exp
= exponential

as the entropy. However, we can still infer some noteworthy
effects due to dynamics scaling and hyperscaling violation
exponents. First, notice the bare Schrödinger limit θ → 0.
The most obvious aftermath is that the dilaton field is set to be
constant and therefore trivial. Acting carefully the limit, one
also has that the self-interaction potential becomes an effec-
tive cosmological constant and the non-minimal coupling
vanishes together with the charge as a consistency condition.
We spot the value θ = 1 as another singular point. Evalu-
ated there, the scalar also trivializes. Anyhow, in that case
both, the potential and the dilatonic coupling are also ren-
dered zero. There are other regions in the θ − z plane where
the fields and the free functions change their properties. We
summarize the different results Table 1.

Notice that in the last θ − z relation of Table 1, there is
no need for an explicit interaction between the scalar and
vector sectors. The non-minimal function becomes just a
normalization of the vector field and thus, the scalar field,
minimally coupled to Einstein–Maxwell suffices to support
the Schrödinger spacetime with that particular hyperscaling
violating factor.

4 Exact static black hole solution

Configurations with horizon are the central object of study
of this work. Unlike the solution already presented, a black
hole will be prone to a well-defined thermodynamics and
thus posing results towards the Schrödinger/NRQFT corre-
spondence. This fact was already addressed in [8,10], where
the search for asymptotically Schrödinger black holes was
initiated. As pointed out before, diverse examples of hot
Schrödinger spacetimes have been found – even analytically
as intended in this section. Closely related to our results, we
call the reader’s attention to [12,32,44].

In this section we take advantage again of the freedom
in the equations of motion. With this aim, the best strategy
is to take advantage of the non-minimal coupling function.
We will investigate two feasible instances in which the non-
linear equation (16a) becomes solvable for f . A first solution,

a family of hyperscaling violating black holes is found by
means of the following fixing of the coupling

χ(φ) = 2(q/b)2r2[(D−3)(θ−1)−z]

(
r f ′)2 − 4(z − 1)[θ(D − 2) − D − 2z + 3] f 2

.

(22)

The other notorious choice, elaborated in Appendix C, leads
to a less physically relevant naked singularity.

Plugging the form of the coupling function (22) into (16b)
linearizes the differential equation bringing it to a second-
order Euler equation

r2 f ′′ −
[
θ(D − 2) − 5(z − 1) − D

]
r f ′ = 0. (23)

The most general solution can be readily tackled, which, after
a proper fixing of the integration constants is

f (r) = 1 −
(
rh
r

)β

, (24)

where we have introduced

β := 2θ − D(θ − 1) + 5z − 6 > 0, (25)

as a strictly positive constant in order to ensure the desired
asymptotic Schrödinger geometry. For the same reason, one
of the integration constants was rigidly chosen as 1. The
remaining constant was pinpointed as the position of the
event horizon r = rh . The solution (24) has all free parame-
ters characterizing the dual non-relativistic theory. Namely, it
has information of the unfixed critical dynamical exponent z,
the hyperscaling violating exponent θ and an arbitrary num-
ber of dimensions D − 1 over the boundary. This property
contrasts with previous solutions so far reported in the liter-
ature. Take for instance the black holes manufactured from
string theory compactifications [8,11,12].

We move on to determining the scalar field compatible
with this geometry. With f given as in (24), the dilaton can
be explicitly integrated from (16b). The outcome for the dila-
ton’s profile is

φ(ρ) = 2
√

(θ − 1)(D − 2)

β

⎡
⎣√

αarcsinh

(√
α

β

(
1 − ρβ

))

−√
2θarctanh

⎛
⎝
√

2θ(1 − ρβ)

2θ − αρβ

⎞
⎠
⎤
⎦+ φ0, (26)

where we have introduced the short-hard notation

ρ = rh
r

, α = 2θ − β, (27)
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Table 2 Different regions of
spacetime, determined by a
range on r , where the scalar
field is real and thus physically
sensible depending on relations
between the (θ, z, D)

parameters

θ range z range Spacetime region

1 ≤ θ < D + 5z − 6 z < 6
5 r > rh

1 ≤ θ < D+5z−6
D free r > rh

θ = D+5z−6
D < 0 z > 6

5 r > rh

θ = D+5z−6
D < 0 6−D

5 < z < 6
5 r < rh

D+5z−6
D < θ < D+5z−6

D−2 free r < rh

0 < θ < 1 z > 6−D
5 0 < r <

( 2θ
α

)− 1
β rh

and φ0 is an arbitrary integration constant that later takes an
interesting character in the thermodynamics. Our result (26)
turns out quite rich with different aspects to be discussed. For
instance, we start by noting that φ has a finite and real value
on the horizon r = rh (ρ = 1), independently of the values of
the hyperscaling violation and critical exponent. At spatial
infinity, which is to say, at the boundary of the spacetime
r → ∞ (ρ → 0), the dilaton has two possible behaviors.
For an arbitrary θ , the arctanh contribution is problematic,
since it is divergent when the argument goes to 1. A more
detailed inspection reveals that the scalar field can actually
acquire real values in less obvious regions of the parameter
space θ −z. Depending on what region along the holographic
coordinate the scalar is measured, its dynamics is well posed
for different combinations of the critical and hyperscaling
violation exponents. The identification of such disconnected
regions – in the parameter space – is tricky and we summarize
it in Table 2 supplemented with further discussion below.

In principle, we consider the dynamics of the scalar field
taking effect in the spacetime sector where the blacken-
ing factor (24) preserves the metric signature (10). In that
sense, our solution describes only the exterior of the black
hole, before crossing the event horizon. Notwithstanding, the
profile function exhibits some allowed parameter ranges in
which it is also real in the interior of the horizon. Given that
it is a scalar function, the restrictions where r < rh in Table
2 should be invariant and also admissible given that proper
geometry is also constructed. As a supplementary tool for
visualizing the regions of validity provided in Table 2 we
devised the density plots in Figs. 2 and 3, displaying the
numeric value of the dilaton’s profile as a function of the
2-dimensional parameter spacer (θ, z). This in order to get a
better idea on how the hyperscaling violation and the dynam-
ical scaling parameter collude in disconnected zones to gen-
erate a real scalar.

The whole gravitational configuration is not yet complete.
The following is to determine its self-interaction potential as
well as the the non-minimal coupling function. By inserting
(24) into (22) the coupling function is implicitly determined,
which for our solution takes the following form

Fig. 2 A density plot of the numerical values of the scalar field’s profile
in the outside of the horizon (for an exemplifying fixed r > rh) is
displayed. The completely black patches depict regions in the parameter
space where the field takes complex or unbounded (divergent) values.
We show the D = 4, 6 cases from left to right for illustration

Fig. 3 A density plot of the numerical values of the scalar field’s pro-
file in the inside of the horizon (for an exemplifying fixed r < rh) is
displayed. The completely black patches depict regions in the parameter
space where the field takes complex or unbounded (divergent) values.
We show the D = 4, 6 cases from left to right for illustration

χ(ρ) = 2(q/b)2(rh/ρ)2[(D−3)(θ−1)−z]

δ1
(
1 − 2ρβ

)+ δ2ρ2β
, (28)

where we have defined

δ1 = 4(z − 1)
[
2(z + θ) − D(θ − 1) − 3

]
, (29a)

δ2 = δ1 + [6 − 5z + θ(D − 2) − D]2 . (29b)
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In a similar fashion, evaluating (24) in (16c) grants the
explicit form of the self-interaction potential

V (ρ) = 1

2
(D − 2)(θ − 1)

(
rh
ρ

)2θ (
δ3 + δ4ρ

β
)
, (30)

with the following constants definition

δ3 = − 2 [θ(D − 2) − D + 1] ,

δ4 = 5z + θ(D − 2) − D − 4.

One must observe that both the self-interaction potential and
the non-minimal coupling function are reduced to a finite
constant when evaluated at the event horizon. Finally, to
determine the vector potential, we insert the metric function
(24) and the coupling function (28) into the Maxwell’s first
integral (15) and fully integrate the vector field with respect
to r , obtaining the following solution

A(ρ) = b2

q

(
rh
ρ

)2z−θ(D−2)+D−3√
1 − ρβ

[
2(z − 1)

− [θ(D − 2) − 3z − D + 4)] ρβ
]
. (31)

Therefore, the complete solution is given by the gravitational
field (10) with a blackening factor (24). A real scalar field
(26) with a self-interaction potential (30) and non-minimal
coupling (28) with an electromagnetic field generated by the
vector potential (31). The novel configuration here derived
is indeed a black hole spacetime. We demonstrate this claim
by exploring the global properties of the metric in Sect. 5.

4.1 NEC and physical bounds on the parameter space

A characteristic of our system is the richness in its parame-
ters. Not only the dimension but the critical and hyperscal-
ing exponents are free up to minor restrictions. Holographic
applications take advantage of this feature as it has been
explored in a variety of works [7,14,15,26]. Anyway, the
non-relativistic aspect of the gravitational background con-
sidered, suggests a verification of essential physical proper-
ties [45–47]. In this section we address the energy conditions.
As implied elsewhere in the literature [26,32,38,48], in our
case it suffices to verify the null energy condition (NEC).

On-shell, the NEC can be equivalently cast as an inequality
on the energy-momentum tensor or the Ricci curvature

TμνN
μN ν ≥ 0 ⇐⇒ RμνN

μN ν ≥ 0, (32)

with gμνNμN ν = 0. In our setup, it is more enlightening to
read off the NEC from the second condition in (32). The first
ingredient, the null vector N can be chosen as belonging to
the family

N = a1∂u + a2∂v + a3∂r +
D∑
i=4

ai∂i , (33)

where a1, a2, ai are arbitrary functions of the holographic
coordinate and

a3 = a1br
z+1 f

√√√√1 − 2a1a2 +∑D
i=4 a

2
i

a2
1b

2r2(z−1) f
. (34)

If we were to evaluate the NEC with the most general vector
from this class, we would find them sensible to the compo-
nents aμ. Nonetheless, we can provide bounds independent
of the election of the vector without loss of generality. It
suffices to explore independent subfamilies characterized by

2a1a2 +
D∑
i=4

a2
i = 0, (35a)

2a1a2 +
D∑
i=4

a2
i − a2

1b
2r2(z−1) f = 0. (35b)

Both branches span all linearly independent null vectors and a
set of NEC must be worked out for each choice. The resulting
conditions can be obtained from the compact expression

RμνN
μN ν ∝ ωX

1

(
ρβ − ωX

2

ωX
1

)2

+ 4ωX
1 ωX

3 − ωX
2

2

ωX
1

, (36)

where the constants ωX
1,2,3 = ωX

1,2,3(z, θ; D) depend on
the dynamical and hyperscaling violating exponent, and are
parametrized by the dimension. The superscript X = a, b
stands for the subclass of vectors used to compute the NEC
according to (35a) or (35b), respectively. These three quan-
tities are explicitly worked out to be

ωa
1

3
= θ(D − 2)

[
θ

3D − 2

3
− 2

(
4z + 3D − 14

3

)]

+ 11z2 + 4z

(
2D − 25

3

)
+ D

(
D − 32

3

)
+ 24,

(37)

ωa
2 = θ(D − 2) [(θ − 2)(D + 2) − 9z + 12] + 8z2

+ 3z(3D − 10) + D(D − 12) + 24, (38)

ωa
3 = θ(D − 2) (θ − z) + 2z2 + (D − 5)z − D + 3, (39)

and

8ωb
1 = [(D − 2)θ − 11z − D + 12]

× [(D − 2)θ − 3z − D + 4] , (40)
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Fig. 4 The colored regions depicts the sectors of the parameter space
where the NEC are satisfied. This includes its solid curved boundaries.
We show three cases: D = 4 (blue), D = 5 (light purple), D = 5 (light
green), where the allowed region of the lower dimensions includes that
of the higher dimensions. While the area reduces with a greater D, there
is always a region of validity. Other (z, θ) combinations inside the blank
area will lead to violation of the energy conditions

ωb
2 = − (z − 1)

2
[(D − 2)θ − 2z − D + 3] , (41)

ωb
3 = ωb

2

4
. (42)

In order to ensure the NEC throughout all the exterior of
the black hole, it is sufficient to demand

ωX
1 ≥ 0, 4ωX

1 ωX
3 − ωX

2
2 ≥ 0, (43)

for X = a, b. We exemplify in Fig. 4 how the four NEC (43)
define a viable region on the (z, θ)-plane.

Apart from the NEC, we have collected more informa-
tion about the viable regions of the parameter space. Three
conditions should be considered in order to have physically
sensible configurations: the energy condition, the scalar field
reality and the restriction β > 0 that guarantees a good
Schrödinger asymptotic. These requirements are compatible
and, for a fixed dimension, they define the acceptable region
in the (z, θ )-plane where the whole configuration is physi-
cally meaningful. In Fig. 5 we show the coexistence region
where these requirements are simultaneously met, i.e., we
further refine the plots Fig. 4 with the missing bounds.

Plenty scenarios comparable to ours are present in the lit-
erature. For spacetimes with anisotropy, hyperscaling viola-
tion or both, the NEC have been computed. The motivation is
stronger as compared to relativistic field theories; violation
of the NEC is related to violation of causality in this con-
text [45]. A most remarkable point of comparison is provided
in [32,38]. The authors have carefully scrutinized the NEC
for a zero-temperature Schrödinger with arbitrary dynamical
exponent and hyperscaling violating exponents. That sce-

Fig. 5 The colored regions depict the physically admissible regions on
the parameter space, this includes its solid boundaries. We exemplify
with the D = 4, 5, 6 cases (blue, light purple, light green respectively).
Other dimensions feature a similar behaviour except that the allowed
area decreases for a greater D. Other (z, θ) combinations inside the
blank area will lead to a complex scalar, violation of the energy condition
or both

Fig. 6 The NEC evaluated asymptotically as ρ → 0. The colored
regions are the allowed parameter combinations exemplified for D =
4, 5, 6 (blue, light purple, light green respectively). Other dimensions
feature a similar behaviour except that the allowed area decreases for a
greater D. Distinct (z, θ) combinations inside the blank area will lead
to violation of the energy condition. The asymptotic NEC coincide with
the bare hyperscaling violating Schrödinger spacetime derived in [38]

nario can be recovered asymptotically from our solution. A
quick inspection of expression reveals that such a case trans-
lates to ω

(a,b)
3 ≥ 0. Indeed, in Fig. 6 we display the asymp-

totic NEC which happens to be more lax than the ones in
Fig. 4 in the presence of the black hole, and exactly coincide
with those of [38].
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4.2 The scalar free solution θ = 1

Recall the original system of field equations (16) for the given
ansatz. Paying special attention to equations (16c) and (16b),
it is patent that θ = 1 is a singular value requiring separate
treatment. The most noticeable consequence of such value is
that the dynamics of the scalar sector trivializes, this is: the
dilaton has a constant as a solution, the self-interaction poten-
tial strictly vanishes – not even with a cosmological constant
term – and, consequently, the non-minimal coupling function
becomes a constant too. The last statement is transcendental
according to Eq. (16a) and the strategy described above to get
rid of the non-linear part and facilitate its integration. More
explicitly, with χ = const it is not possible to pick it in a way
that, together with the accompanying coefficients, cancels the
non-linearity (and possibly the zeroth order term).4 Hence,
the differential equation governing the blackening function
in this particular case is

0 = r2 f ′′ + (5z − 3
)
r f ′ + 1

2

r2 f ′2

f

+ 2(z − 1)
(
2z − 1

)
f − q2r−2z

b2 f
, (44)

setting χ = 1 without loss of generality. It is important
to remark that naively taking the limit θ = 1 in the fields
of the black hole configuration, shows the first two points
here advertised: the vanishing of the scalar and the potential.
However, the metric function f has no apparent alteration
beyond restricting the power of r to β = 5z − 4. The result,
a bit lengthy to be worth writing down, is not zero and thus
f = 1−(rh/r)β is not a solution of (44). The actual solution
for f has a much more involved behaviour than (24) and it
is worth exploring separately. The only possible reconciling
way out is to turn off the constants b = 0 and q = 0, which
results in a huge trivialization of the configuration. Actu-
ally, by doing so, the Maxwell field vanishes and the metric
becomes diffeomorphic to AdS.

There is no general strategy known to the authors to tackle
the solution of (44). One could try to numerically integrate
with the appropriate boundary conditions or find a near-
horizon solution. Anyhow, for our purposes it is enough to
make clear that there exist a different branch of solutions, say
f̂ (r; θ = 1) that has the characteristic

f̂ (r) �= lim
θ→1

f (r), (45)

understanding f as in the black hole solution with scalar field.
What this says is that there is no smooth limit in the parameter

4 There is an unique special case in which the nonlinear term can be
removed with χ = const for f ∼ r−z and a particular dynamical
exponent z = 0, 1 but it is of no interest for black hole configurations.

space that leads our hairy solution to another scalar-free black
hole of the theory, in contrast to the asymptotically Lifshitz
case in [1]. Therefore, it is not possible to study (spontaneous)
scalarization within the present solution.

5 Global structure of the black hole

Despite the geometric resemblance in different aspects with
AdS spacetime, both Schrödinger and Lifshitz have unique
features at a global level as succinctly elaborated in [16,34–
36,40]. In addition, the presence of the hyperscaling violating
parameter appends complexity so as to predict a global nature
based only on a simple inspection of the metric and curvature
tensors. For instance, we argued in Sect. 2 how for generic
values of the exponents, there is an unavoidable singularity
even for zero temperature configurations. Along this lines,
we consider it pertinent to probe the global character of our a
priori dubbed black hole solution. A resorted tool to envision
the global properties of the configuration is to construct the
Carter–Penrose diagram. While there is no framework that
grants the diagram the character of a formal or exhaustive
characterization method, at the very least, the existence of
a divided causal structure is revealed [49,50]. We begin by
rewriting the line element of the solution (24) through the
introduction of a tortoise coordinate

r∗ =
∫

dr

br z+1 f (r)
= − 1

zbr z
2F1

(
1,

z

β
; 1 + z

β
,
(rh
r

)β)
,

(46)

where 2F1 is the hypergeometric function and in terms of
which, the metric reduces to

ds2 = r−2θ
[
b2r2z f

(
−du2 + dr∗2

)
+ r2
(

2dudv + d �x2
)]

,

(47)

where it must be understood r = r(r∗) and f = f (r∗). The
first thing to be noticed is that, after diffeomorphism (46), the
resulting line element (47) is no longer singular at the horizon
f = 0. Taking advantage of this fact, we can focus on 2-
dimensional slices of constant v and �x , where the analogue to
Schwarzschild’s radial geodesics live. In order to keep track
of the different coordinate domains and perform a proper
analysis of the relevant regions, we need more information
than the general integral provided by (46). We opt for two
strategies to proceed from this point on.

5.1 Near-horizon approach to the Carter–Penrose diagram

In this Subsection, we consider the standard gimmick of
inferring causal properties from a near-horizon approxima-
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Table 3 Kruskal coordinates representation of the relevant regions of
the spacetime

Region r -coord r∗-coord Kruskal coord

Boundary r → ∞ r∗ = 0 UV = 1

Horizon r = rh r∗ → −∞ UV = 0

Singularity r = 0 r∗ → ∞ UV = ∞

tion of the metric function

br z+1 f = 2κ (r − rh) + . . . ,

⇒ r∗ ≈ ln (|r − rh |)
2κ

where κ := 1

2

(
br z+1 f

)′∣∣∣∣
r=rh

.

(48)

Notice that the last line defines two different regions depend-
ing on the value of r in comparison to the horizon location

r∗ ≈
{

ln (r − rh) /2κ, if r > rh
ln (rh − r) /2κ, if r < rh

(49)

It is important to keep in mind that, with the previous result,
the blackening function takes the form

|br z+1 f | ≈ 2κe2κr∗
. (50)

Following the standard approach, we move to null coordi-
nates (x+ = u+ r∗, x− = u− r∗) where the 2-dimensional
metric reads

ds2
2D ≈ −2κbr−2θ+z−1

(
±eκ(x+−x−)

)
dx+dx−. (51)

The sign inside the parenthesis is determined if we are
measuring outside (+) or inside (−) the event horizon. We
keep this convention hereupon. The next step is to define
two new Kruskal-like coordinates (U = ±exp(κx+), V =
exp(−κx−)) which lead to

ds2
2D ≈ ±2b

κ
r−2θ+z−1dUdV . (52)

The last coordinates cause f not to appear explicitly anymore
in the metric of the slices. Together with the form (50) of f ,
yield a convenient representation of the division in the causal
structure of the space. The relevant regions are captured in
Table 3.

Lastly, in this generic description, one can represent the
entire spacetime in a finite region through the coordinate
compactification (Ũ = arctan(U ), Ṽ = arctan(V )). The
resulting picture Fig. 7 makes manifest the presence of an
event horizon that covers the singularity and isolates it from
the rest of the universe.

Fig. 7 Qualitative Carter–Penrose diagram of the geometry Eqs. (10,
24). The main regions along the holographic coordinate (boundary,
horizon and singularity) are understood from Table 3. It is important
to observe from the given characterization that, in general, we have a
divided causal structure compatible with the black hole interpretation
of the solution

5.2 Exact diagram for a special case: β = z

Our second approach to the global characterization, is based
on a fully analytically tractable case that depends on a particu-
lar parameter combination. Though we have already obtained
qualitative information despite not having an explicit inte-
gral of the coordinate redefinition, this approach is useful to
provide a particular example compatible with the parameter
bounds obtained so far. By setting β = z (or equivalently,
θ = (D−6+4z)/(D−2)), the hypergeometric function dic-
tating the tortoise coordinate reduces to a simple logarithm

r∗ = 1

zbrhz
ln
∣∣∣1 −
(rh
r

)z∣∣∣ . (53)
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Equipped with it, we follow the same algorithm from the
last section. The difference is that we will be able to provide
the exact ranges of definition of the subsequent coordinates,
even in regions away from the horizon. Having said this, we
transform the 2-space into a manifestly lightcone form

ds2
2D = −b2r2(z−θ) f dx+dx− with r = r

(
x+, x−) . (54)

The null coordinates take on the domain of u, which means
that −∞ < x± < ∞. The blackening function becomes
f = exp

[
zbr zh(x

+ − x−)/2
]
, and therefore the location of

the horizon turns out to be x+ = ∞ and x− = −∞, just as
in the Schwarzschild black hole. The f term in front of (54)
can be reabsorbed with the introduction of the Kruskal-like
coordinates, leading to a new form of the line element

ds2
2D = − 4

z2r2z
h

r2(z−θ)dUdV with r = r (U, V ) . (55)

The metric function takes again a particularly simple form
f = ±UV , such that the horizon regions of relevance are
again given as in Table 3. The compactification can be carried

out in the same manner as (U, V ) �→
(
Ũ = arctan (U ) , Ṽ

= arctan (V )
)

such that the domain is given by −π/2 ≤
U ≤ π/2 and −π/2 ≤ V ≤ π/2. Notice that while the
horizon remains at Ũ = 0 or Ṽ = 0, the metric is regular
elsewhere except for the region r(U, V ) = 0 if z − θ < 0.
The global structure of the spacetime is more easily described
and understood based on the Carter–Penrose diagram Fig. 8.
Observe that the deformed light cones correspond to null
geodesics of the (u, r)-plane brought to the compact (Ũ , Ṽ )

representation. From it, we can learn that light rays com-
ing from asymptotic infinity that cross the horizon have the
singularity as the infinite future destination. Conversely, all
geodesics in the interior region which are in causal contact
with the singularity can not reach the exterior universe. Alto-
gether, Fig. 8 depicts the structure of a black hole spacetime
with a proper horizon that ensures a cosmic censorship.

6 Thermodynamics

We devote the rest of this manuscript to capitalize on the
physical significance of our solutions. As we have antici-
pated, the niche where we find a direct implication – besides
as an alternative gravity model – is in the context of the holo-
graphic correspondence. In that regard, the systems at finite
temperature are in the spotlight since they have a prolific ther-
modynamics with appealing counterpart at the boundary. In
the given lightcone-like coordinate, the u can be interpreted
as the time at the boundary [8]. However, we will prefer to
switch to Schwarzschild-like coordinates

Fig. 8 Carter–Penrose diagram of the black hole spacetime con-
structed in Sect. 4. The central green cross represents the location of
the event horizon dividing the exterior universe (left and right triangles)
and the interior black hole (upper and lower diamonds). The boundary
of the spacetime is located at the dashed yellow lines while the singu-
larity is depicted by the dotted red lines. The special case β = z allows
us to analytically scrutinize the deformed light cone structure around
the black hole. The lilac and blue lines are the constant u and r null
geodesics respectively represented in the compactified space

u = b (t + y) , v = 1

2b
(y − t) , (56)

where the metric acquires the structure

ds2 = r−2θ
[
−
(
b4r2z f + r2

)
dt2 − 2b4r2z f dtdy

+
(
r2 − b4r2z f

)
dy2 + dr2

r2 f
+ r2d �x2

]
, (57)
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and the t-coordinate has a definite timelike norm outside the
event horizon

k = ∂t �⇒ k2 = −r−2θ
(
b4r2z f + r2

)
, (58)

and thus a unique interpretation of time.
We start by working out the derivation of the total mass

by means of the quasi-local formalism introduced in [51].
In this method, the conserved charge associated to a Killing
vector field ξ is obtained through the integral

Q(ξ) =
∫

dD−2xμν

(
�Kμν(ξ) − 2ξ [μ

∫ 1

0
ds�ν](ξ |s)

)
,

(59)

where the antisymmetrized hypersurface integration element
dD−2xμν is defined through the Hodge dual (�) of the (D−2)-
volume form

dD−2xμν = 1

2
�
(
dxμ1 ∧ . . . ∧ dxμD−2

)
μν

.

Moreover, s stands for a parameter allowing to interpolate the
black hole configuration between the solution of interest (s =
1) and the asymptotic one (s = 0). Furthermore, �Kμν(ξ) =
Kμν
s=1(ξ) − Kμν

s=0(ξ) stands for the total difference of the
Noether potentials between the two end points of the path,
s = 1 and s = 0. Finally, �ν is the surface term obtained
after the variation of the corresponding action. The Noether
potential and the surface terms associated to our case are
respectively given by

Kμν(ξ) = 2
√−g

[∇[μξν]

2κ
− 1

2

∂L
∂(∂μAν)

ξσ Aσ

]
,

(60)

�μ(δg, δφ, δA) = 2
√−g

(
gα[μ∇β]δgαβ

2κ
+ 1

2

∂L
∂(∂μAν)

δAν

+1

2

∂L
∂(∂μφ)

δφ

)
. (61)

The mass, as expected, is the conserved quantity consequence
of the time translation along ξ = −∂t . For our results, the
last expressions reduce to

Kμν = −2(θ − 1)r D−1−θ(D−2)

√
f̃ δ

[μ
t δν]

r , (62)

�μ

r D−1−θ(D−2)
=
⎧⎨
⎩

(θ − 1)

β

⎡
⎣β − (β + 2(D − 2)θ) f̃

s
√

f̃

⎤
⎦

−√(θ − 1)(D − 2)

√
β + α f̃ φ0

⎫⎬
⎭ δμ

r ,

(63)

with the help of newly introduced f̃ (r; s) := 1 − sM/rβ ,
which is a deformation of the blackening function induced by
the interpolation parameter s. Notice that we have redefined
the arbitrary constant rβ

h = M for further convenience in the
present computation and that the interpolation was performed
over all the independent integration constants M , φ0 and q.
It is opportune to keep track of each contribution to the mass
term, thus we allow to display the explicit integral version of
the surface term,

∫
�μds

= r D−1−θ(D−2)

⎧⎪⎨
⎪⎩

(θ − 1)

β

⎡
⎣−2(D − 2)θ ln

⎛
⎝1 −

√
f̃

1 +
√

f̃

⎞
⎠

−2(β + 2(D − 2)θ)

√
f̃

⎤
⎦

+2
√

(θ − 1)(D − 2)

3α

(
β + α f̃

)3/2

1− f
φ0

⎫⎪⎬
⎪⎭ δμ

r , (64)

bearing in mind that this is the expression that has to be eval-
uated between the interval of interpolation. Equipped with
all the ingredients, we may proceed with the evaluation of
the conserved charge (59) yielding the mass

M = lim
r→∞

⎡
⎢⎣r D−1−θ(D−2)

⎧⎪⎨
⎪⎩

4(θ − 1)

β

⎡
⎢⎣(D − 2)θ ln

×
⎛
⎝1 −

√
f̃

1 +
√

f̃

⎞
⎠+ 2(D − 2)θ

√
f̃

⎤
⎥⎦

−4
√

(θ − 1)(D − 2)

3α

(
β + α f̃

)3/2

1 − f
φ0

⎫⎪⎬
⎪⎭ VD−2

⎤
⎥⎦
s=1

s=0

,

(65)

where VD−2 represents the Euclidean volume of the orthog-
onal sector to t and r . According to the prescription, since we
do not have a quasilocal result, the right hand side needs to be
evaluated at spatial infinity following the notion of a global
charge. However, it is important to remark that (65) reveals
a limitation in the method: the only consistent way to get a
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non-zero but finite contribution is by fixing the hyperscaling
violating parameter as

θ = D − 1

D − 2
.

All in all we get the total spacetime mass

M = 2
√

2θ(θ − 1)(D − 2)φ0VD−2. (66)

The other global charge is associated with the electromag-
netic potential. It turns out that our configuration is indeed
electrically charged according to

Qe =
∫

� χ(φ)F = qbVD−2. (67)

Next, we compute the Hawking temperature through the
standard Euclidean method, analogous to the calculation per-
formed for Lifshitz black holes in [29,52]. In short, one works
out the conditions to impose smoothness on the Euclidean
configuration. Our case turns out rather standard, conical
singularities are removed via an identification on the time
variable t = t + β. Its associated period β is thus regarded
as the inverse temperature. Concretely we find

T = b| f ′(rh)|
4π

r z+1
h = bβ

4π
r zh . (68)

It is notorious that the hyperscaling violation parameter does
not enter in the power of rh , however, this result was already
adverted in [53]: a conformal factor should not appear in the
general formula of the first line.

Entropy can be deduced according to Wald’s prescription.
In our case, it can be easily checked that there are no other
contributions than that of the Bekenstein–Hawking area law

S = A
4GD

≡ VD−2

4GD
r−(θ−1)(D−2)
h , (69)

where GD = κ/8π is the D-dimensional gravitational con-
stant.

With temperature and entropy in line, we proceed to
inspect the physics of the global charges via the first law
of thermodynamics. We note that in our setting there are no
further contributions, i.e., it will not display an electric term –
despite we have a nonzero net charge, its variation is limited
by the gauge freedom in b as we announced before – so

δM = T δS. (70)

In all generality, the right hand side implies a total mass given
by

M = bβ

2κ

(θ − 1)(D − 2)

(θ − 1)(D − 2) − z
r−(θ−1)(D−2)+z
h VD−2. (71)

which is compatible with the quasi-local result (66) up to
revealing a functional relation between the dilaton’s additive
constant and the horizon radius. Namely,

φ0 = bβ

4κ

√
(θ − 1)(D − 2)

2θ

r−(θ−1)(D−2)+z
h

(θ − 1)(D − 2) − z
. (72)

Demanding the above condition leaves a consistent thermo-
dynamics for the pinpointed working case derived from the
quasi-local approach.

7 The effect of the hyperscaling violation and
dynamical exponents on the thermodynamics

In Sect. 4.2 we performed a rigorous analysis of the θ = 1
scenario which happens to be a peculiar point in the param-
eter space with various implications. Most remarkable is the
fact that this choice turns off the scalar field, much alike
as it was found in [1] with the critical dynamical exponent
at z = 1. There, the asymptotically Lifshitz (hairy) black
hole is smoothly connected in that limit with an asymptot-
ically AdS scalar-free black hole. As a consequence, the
emergence of the scalar field when moving from isotropy
z > 1 can be understood as a scalarization-like phenomenon
– given two additional conditions. In this work, we found
that the general scalar-free solution is disconnected from the
θ = 1 limit in our solution, despite appearing admissible in
the integrated configuration. Hence, spontaneous scalariza-
tion or scalarization-like mechanisms cannot be analytically
inspected here.

Nonetheless, we will explore the effect of varying the
effective parameters on the global charges calculated in
Sect. 6. One of the perks of doing so is to infer thermo-
dynamical properties of configurations smoothly connected
to ours. To this aim we compute phase diagrams that show
how state variables behave under different combinations of
z and θ .

To probe the effect of varying θ away from the scalar-
free reference value, we look at the behaviour of the entropy
(69) as function of the temperature (68). Since they both
depend only on the horizon radius, one finds a power law
relation between these quantities. From Fig. 9, we learn that
generically, the configurations with hyperscaling exponents
θ > 1 are entropically prefered.

Next, we explore the case of the mass (71) as given by
the quasi-local formalism. Let us remind that in the tractable
case, we have fixed the hyperscaling violating exponent in
terms of the dimension as θ = (D − 1)/(D − 2). Taking
this into account, the relevant thermodynamical quantities
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Fig. 9 Entropy as function of the temperature for the fixed reference
values D = 5, z = 3, V = 1, κ = 1 and b = 1. We exemplify with
families of curves at different θ > 1 and observe that the entropy for
fixed temperature is always higher than that of the configurations at
θ = 1

acquire the simple structure

S = 2π

κ

VD−2

rh
, T = 5b

4π
(z − 1)r zh,

M = − 5b

2κ
r z−1
h VD−2, (73)

where the dependence on the dimension is also lost and the
only determinative parameter is the critical dynamical expo-
nent. A thought-provoking fact is that under this parame-
ter choice we spot a negative mass congruent with the first
law. Systems with an alike peculiarity have been reported in
[54,55]. It is instructive to re-analyze in Fig. 10 the entropy-
temperature plots under said parameter constraints.

The resulting lines displayed now undergo an exchange
region where the theromodynamical interpretation for dis-
tinct z changes. At low temperatures, configurations with
bigger degree of anisotropy are preferred. After a certain
crossing temperature, the contrary happens. Then, similar to
the previous scenario, the entropy for configurations with
z > 1 is always higher. Anyhow the situation is not so clear
for the mass as depicted in Fig. 11. We provide exemplifying
diagrams for the total energy as a function of the tempera-
ture. Again the relevant parameter is the critical dynamical
exponent and thus we characterize the effect of displacing
from isotropy.

In the mass plot the isotropic case is not at a zero ground
value. In consequence, we see that there is a critical tem-

Fig. 10 Entropy as function of the temperature for the fixed values
D = 5, V = 1, κ = 1 and b = 1. T and S are as in the restricted
parameter case (73). It is displayed how configurations with z > 1
away from isotropic scaling are favorable with higher entropy

Fig. 11 Mass as function of the temperature for the fixed values D = 5,
V = 1, κ = 1 and b = 1. T and M are as in the restricted parameter
case (73). It is displayed how configurations with z > 1 and sufficiently
high temperature are preferred as a lower energy state

perature above which the configurations with z > 1 have
a lower energy state and thus are preferable with respect to
the thermodynamics. Right at the critical temperature, both
configurations with z = 1 and z > 1 would have the same
energy. Finally, colder black holes with z > 1 would have
higher energies than that of the isotropic case. This comport-
ment vastly agrees with the observations from the T –S plots.
As a result, though there is no conclusive argument, we find
that hot enough anisotropic black holes are thermodynami-
cally preferable.
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8 Concluding remarks

We have constructed a novel family of anisotropic locally
Schrödinger black holes with arbitrary hyperscaling-violating
and dynamical exponents within the framework of a general-
ized Einstein–Maxwell-dilaton model. Our starting point is
rather different from the customary approach in the literature.
With an appropriate static ansatz, we directly solve for the
blackening function on the base Schrödinger spacetime. Pre-
vious works depart from an AdS or Lifshitz metric which is
later transformed into an asymptotically Schrödinger space-
time with the help of lightcone coordinate transformations
and dualities [8–13,31,32]. The advantage of our approach
is that we have no a priori restrictions on the hyperscaling-
violating and critical dynamical exponents. We emphasize
that the family of locally Schrödinger black holes here pre-
sented is the first one with both, an arbitrary dynamical expo-
nent z and an arbitrary hyperscaling parameter θ .

As a matter of fact, being so intrinsically different, we
have characterized the main physical and geometrical prop-
erties of the resulting black holes. In the first place, we
have thoroughly studied the validity of the NEC on our field
configuration. We have shown that while these, and other
physical criteria – scalar field reality and a good asymtotic
decay – set bounds on the parameter space, there is always a
valid (z, θ )-region regardless of the dimension. As expected,
the new NEC that apply to our case, asymptotically coin-
cide with those already reported for hyperscaling-violating
Schrödinger spacetimes [32,38]. The black hole nature of our
solution is explored by means of the Carter–Penrose diagram
which reveals the global causal structure of the underlying
Schrödinger geometry. We note that a similar global charac-
terization of Schrödinger solutions have not been done before
to our knowledge.

Notwithstanding, we were able to construct a portion of
the global charge thermodynamics compatible with the first
law. In this regard, we are careful to recognize the limits of
applicability of the quasi-local method [51]. Implemented
on the derived geometries, the finite mass compatible with
the first law is recovered only under two circumstances. The
first, an specific value of the hyperscaling exponent given
in terms of the dimension. The second, more interesting, a
subsequent relation between two a priori independent inte-
gration constants: the additive dilaton’s constant φ0 and the
horizon radius rh .

We report that the particular value θ = 1 regulating
the trivialization of the dilaton field is also manifest in the
behaviour of the energy and the entropy. Namely, it happens
that for an arbitrarily wide region of the T -S and T -M dia-
grams, the configurations with a scalar field distinct from zero
appear thermodynamically preferred. Similar to the scalar-
ization phenomena in the spirit of [1], this suggests that the
scalar field carries tachyonic modes over the hyperscaling-

violating Schrödinger background. Thus, we spot a valuable
followup work to determine the stability of this modes and
compute the corresponding Breitenlohner-Freeman bound.

One interesting feature of the gravitational configurations
here discussed arises from the Schrödinger spacetime (1). A
simple computation shows that its associated Weyl tensor has
a maximally degenerate principal null direction ∂v , suggest-
ing that at least in D = 4 it belongs to the N type according to
Petrov classification [56,57]. This is not surprising according
to the arguments provided in [16,36]. In that sense, the zero
temperature hyperscaling violating Schrödinger space can be
understood as a conformal transformation of an AdS wave.
However, despite our ansatz (10) can locally be also brought
to this form for r > rh , the diffeomorphism will be ill-defined
for r < rh due to the change of sign of the blackening func-
tion. We have shown that there is indeed a causal division of
the global structure. Consequently, the interpretation of the
whole configuration is that of a black hole instead of gravi-
tational radiation as suggested by the special algebraic type.
There are other examples where black hole solutions not nec-
essary fall into a type D or type II classification, particularly
when D > 4. We refer the interested reader to [58,59].

Finally, is also remarkable that our black hole geometry
supports different scalar field profiles as a consequence of the
manifestly non-linear character of the differential system, a
fact explicitly shown in Appendix A.
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Appendix A: Scalar charge and conjugate potential

Following the concepts introduced by Gibbons et al. [60]
and extended in [61,62], we investigate the possibility of
a scalar charge present in our gravitational configuration.
As it was stressed before, the dilaton field (26) has a non-
divergent piece which, despite not coming from a Gaussian
law, contributes at spatial infinity. For this analysis we restrict
to the strictly asymptotically Schrödinger geometries which
preserve the standard hyperscaling with θ = 0. As a result,
the profile solution simplifies to

φ(ρ) = −
√

4(D − 2)

β
arcsinh

(√
ρβ − 1

)
+ φ0, (A1)

where we used α = −β and β > 0. Outside the horizon
ρ < 1, hence the dilaton takes on complex values which
may suggest a diminished physical interest. However, numer-
ous examples have been identified in previous works where
imaginary hairs display unique attributes worth further inves-
tigation, e.g. the scalar clouds around black holes [63,64].
According to the literature, the scalar charge ω can be read
off as the coefficient for the leading term in a power series as

φ(r)
∣∣∣
r→∞ = φ∞ + ω

rβ
+ O
(
r−2β
)

, (A2)

with φ∞ the zeroth-order constant in the asymptotic expan-
sion. The so called extended Thermodynamics, consider a
new term originated due to an effective scalar charge ω �= 0.
In our setup, the said prescription would yield a supplemen-
tary term to the first law given by a scalar work term

δWscalar :=
(

∂M

∂ω

)
δφ∞, (A3)

where the partial derivative with respect to the scalar charge
acquires a simple form in our case

(
∂M

∂ω

)
= −ω. (A4)

A series expansion on (A1) reveals that the two important
quantities correspond to

φ∞ = −√β(D − 2)π + φ0, ω = √β(D − 2)rβ/2
h .

(A5)

This implies that the first law, written in the energy M
representation, will not exhibit a scalar contribution since
φ∞ �= φ∞(rh). As we have seen in Sect. 6, this can be
enforced by fixing the value of the dilaton at the horizon
φ0 according to specific boundary conditions.

However, in the more general case, the scalar charge and
potential (A5), would actually produce an independent term
in the finite Smarr formula

−ωφ∞ = β(D − 2)π

(
1 − φ0√

β(D − 2)π

)
rβ/2
h . (A6)

Appendix B: Non-unicity of the dilaton field

A characteristic inherited from the form of the Schrödinger
ansatz to the equations determining the blackening function
and the scalar field is that they happen to obey explicitly non-
linear differential equations, unlike other spacetimes where
the non-linearities do not actually appear. As we showed,
these terms can be removed from the f equation by means
of the coupling function. On the other hand, the non-linearity
of the scalar field remains. In consequence, the unicity of the
solutions, and obtaining the most general solution for φ is
not guaranteed. A similar problem was faced in [1,2], where
the ambiguity amounts to a sign change.

Our situation is different, and at least another independent
solution for the dilaton in (16b) can be constructed. Despite it
is not as physically relevant as the one previously presented,
it is worth presenting for completeness and other possible
applications. To clearly see this, let us write explicitly the
dilaton’s equation, preferably in terms of the ρ variable for
simplicity

(ρφ′)2 = − (θ − 1)(D − 2)

ρ2θ−D(θ−1)+5z−6 − 1

{
2θ

− [D(θ − 1) − 5z + 6] ρ2θ−D(θ−1)+5z−6
}
. (B1)

The repeated power of ρ and its factor in the numerator
suggest a simplifying definition of constants. However, one
might be tempted to factor out the 2θ term in the numerator,
in order to have a normalized form of equation. Namely, we
can cast (B1) in two seemingly equivalent forms

(ρφ′)2 = (θ − 1)(D − 2)
(
αρβ − 2θ

)
ρβ − 1

, (B2)

and

(ρφ′)2 =2θ(θ − 1)(D − 2)
(
α̂ρβ − 1

)
ρβ − 1

, (B3)

which differ only in the constants

α = D(θ − 1) − 5z + 6, α̂ = D(θ − 1) − 5z + 6

2θ
,

and the overall factor 2θ . The first option is the path we
followed in Sect. 4 with the already discussed scalar profile.
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The second option, integrates to a different parameter region
and hence constitutes an independent solution, for instance,
it is clear that θ = 0 is a singular point in contrast to (B2).
Below we put forward the configuration resulting from

φ(ρ) =
√

2θ(D − 2)(θ − 1)

5z + D − 6 − θ(D − 2)

[
ln

(
2 − (1 + α̂)ρβ + 2K

ρβ

)

+√
α̂ ln
(

1 + α̂ − 2α̂ρβ − 2
√

α̂K
) ]

, (B4)

where the following function was introduced

K (ρ) =
√(

1 − αρβ
) (

1 − ρβ
)
. (B5)

This field also satisfies all the equations of motion but
describes a functionally independent scalar profile. We stress
that, despite the properties of the inverse hyperbolic func-
tions, (B4) can not be mapped back to (26), they are intrinsi-
cally distinct. One must be careful with the parameter – and
spacetime – regions where the field is real and finite. The
main sensible difference with the alternative solution hap-
pens at the boundary r → ∞ (ρ → 0). In this solution,
there is no parameter choice for which the field is regular. At
the horizon ρ = 1, the profile drops off to zero. Inside the
horizon, the reality will depend on a fine tuning between z
and θ .

Appendix C: A naked singularity

In this appendix we present a geometry closely related to the
black hole of Sect. 4. Based on the same ansatz, this solution
is obtained through a less obvious choice of the non-minimal
coupling function. Before, by setting χ as in (22), the non-
linear equation for the blackening function was reduced to
a simple second order ODE. Here, we pick the coupling in
such a way that the nonlinear term still survives, while only
the zeroth order term is canceled out. Explicitly,

χ(r) = q2r2[(D−3)(θ−1)−z]

2b2(z − 1)[D − 3 + 2z − θ(D − 2)] f 2 , (C1)

brings the f equation to the form

r2 f ′′ + 1

2

r2 f ′2

f
− [θ(D − 2) − 5(z − 1) − D)

]
r f ′ = 0.

(C2)

Despite the non-linearity, it is not hard to show that the above
has an equivalent algebraic equation; condition necessary and
sufficient to determine all the independent solutions for the
metric function. Namely, we find

f 3/2 − c1r
2θ−D(θ−1)+5z−6 + c2 = 0, (C3)

being c1 and c2 arbitrary integration constants. It is possible
to construct up to three independent solutions in the complex
plane. Nonetheless, the only purely real (and simpler) one is
given by

f (r) =
[

1 + ε
(rh
r

)β] 2
3

, (C4)

where ε = ±1 is a free sign choice, and each selection will
determine the nature of the resulting spacetime as we will
detail soon. Notice that the exact same power β pops-up in
this solution too, despite being stemmed from a fundamen-
tally disparate differential equation. With f as in (C4), we
proceed to integrate the scalar field from

(
φρ

)2 = θ(θ − 1)(D − 2)
(
γρβ − 3θ

)
ρ2
(
ρβ − 1

) . (C5)

We have used the variable ρ previously introduced for econ-
omy. The constant γ := 3θ − β is analogous to α defined in
Sect. 4. Again, the result for the dilaton profile is very similar
to that of the black hole

φ(ρ) =
√

8(D − 2)(θ − 1)

3β2

⎡
⎣√

γ arcsinh

⎛
⎝
√

γ (1 − ρβ)

β

⎞
⎠

−√
3θ arctanh

⎛
⎝
√

3θ(1 − ρβ)

3θ − γρβ

⎞
⎠
⎤
⎦ . (C6)

Following the same strategy as before, the self-interaction
potential is obtained through evaluation of (C4) in (16c). It
turns out as

V (ρ) =
(D − 2)(θ − 1)

(
rh
ρ

)2θ

3
(
1 + ερβ

)1/3

(
δ5 + δ6ρ

β
)
, (C7)

with the following constants given by

δ5 = −3 [θ(D − 2) − (D − 1)] ,

δ6 = 5z + 2θ(D − 2) − (2D + 3).

Finally, to determine the vector potential, we insert the met-
ric function (C4) and the coupling function (C1) into the
Maxwell’s first integral (15) and fully integrate the vector
field with respect to r , obtaining the following solution
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A(ρ) = 2b2

q

(
rh
ρ

)D+2−θ(D−2)−3z {
3(z − 1)

−[θ(D − 2) − (2z + D − 3)
]
ρβ

}
. (C8)

The nature of this solution lies in the form of the metric
function f (C4). Notice, that for the choice ε = 1, there
is no real solution such that f (r) = 0. As a consequence,
it is not possible to form an event horizon for there is no
null surface orthogonal to the asymptotically timelike Killing
vector. In the other case, ε = −1, despite being possible to
solve f (r) = 0 in the reals at r = rh , it is easy to show
that there is no signature change in the metric at that point.
Even more deeply, the asymptotically Killing field has also no
signature change in the whole range 0 ≤ r < ∞, implying
that an event horizon is not formed. In both scenarios the
divergent point r = 0 can not be removed as it is shown in
the more general curvature invariants

R = (D − 1)(θ − 1)r2θ
{
r f ′

+ [2 − (θ − 1)(D − 2)] f
}
, (C9)

RμνR
μν = (D − 1)(θ − 1)2r4θ

{
κ1 f

2

+r f ′
[
κ3 f + D

4
r f ′
]}

, (C10)

RαβμνR
αβμν = (θ − 1)2r4θ

{
κ2 f

2

+ (D − 1)r f ′ [4 f + r f ′] }, (C11)

with κ1,2 as in (6) and where a third constant appears

κ3 = D − (D − 2)(θ − 1).

Unlike the black hole configuration, it is not possible to
endow this geometry with a horizon, then the interpretation
is that of a naked singularity.
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