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Abstract In this work, we will analyze the complexity fac-
tor, proposed by L. Herrera, of spherically symmetric static
distribution through the gravitational decoupling method.
Specifically, we will consider both spatial and temporal
deformations of the metric function, and we will impose
conditions over the complexity factor to close the system
of equations. In particular, we found that the regularity at the
center of both the seed and final solutions led to important
restrictions on the deformation of the spatial metric compo-
nents. These are particularly restrictive for the MGD method.
In this case, we show that if the seed solution is regular at
r = 0, the final solution with invariant complexity factor
will be singular at this point unless f = 0. We also show
that solutions with the same temporal components will, in
general, lead to the same solutions with vanishing complex-
ity factor in the MGD approach. Finally, we will construct
realistic models using different seed solutions such as Tol-
man IV and FS (Finch–Skeas).

1 Introduction

Currently, one of the open problems of science is the rigor-
ous definition of complexity for a system. One of the open
problems in science at the moment is how exactly to define
complexity for a system. Over the years, many definitions
of complexity have appeared, however, to date there is not a
consensus on how to measure the degree of complexity of a
system [1–12]. Now, most of the definitions that have been
proposed assume that complexity is intrinsically related to
the concepts of entropy and information. Usually, at least in
physics, the definition of complexity begins by identifying
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the simplest system that could be analyzed, that is, one with
vanishing complexity. Two straightforward examples are the
isolated ideal gas (high entropy and information content) and
the perfect crystal (low entropy and information content).
These two examples suggest that the concept of complexity
should include other factors than entropy and information.
An example was proposed in [7], where the authors intro-
duced the concept of “disequilibrium”, which is a quantity
that measures the distance from the equiprobable distribu-
tion of the accessible states of the system. Thus, complexity
can be defined as the product of the concepts of information
and disequilibrium. In this way, it is ensured that both sys-
tems, the perfect and the isolated ideal gas, have vanishing
complexity.

In General Relativity, there have been many attempts
to define a complexity factor of a self-gravitating system
(including the one mentioned before). However, it has not
been entirely satisfactory. Indeed, following the idea of “dis-
equilibrium” and information, in [9,13–18] it has been pro-
posed a definition of complexity that is completely deter-
mined by the energy density of the fluid distribution. This
idea rests on the fact that the energy density is related to
the probability of finding some particles in a given loca-
tion inside the fluid distribution. However, this definition
ignores other physical factors, such as the pressures of the
fluid, that play a key role in the internal structure of self-
gravitating systems. In recent years, L. Herrera proposed a
new definition of complexity for spherically symmetric static
fluid distribution that considers the pressure’s contribution
to the energy–momentum tensor [19] (see also [20–23] for
more recent developments). Specifically, the complexity fac-
tor proposed is completely determined by the gradient of the
energy density and the anisotropic function of the distribu-
tion. The local anisotropy in the pressures is an expected fea-
ture in self-gravitating objects. Indeed, there is a wide range
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of physical phenomena that are expected in compact objects,
that can lead to deviations from isotropy. Some examples are
exhaustively discussed in [24] and include exotic phase tran-
sitions that may occur in high-density systems, anisotropic
velocity distributions in low density systems, and the high
viscosity produced by neutrino trapping when the central
density is around 1011−1012 g/cm3. Other possible sources
for the local anisotropy in pressure are the intense magnetic
fields observed in neutron stars and white dwarfs. In fact, it
is known that a magnetic field acting on a Fermi gas pro-
duces pressure anisotropy [25–28]. Moreover, the superpo-
sition of two isotropic fluids can be essentially described as
an anisotropic fluid [29,30]. Also, it has been recently shown
that, under the conditions expected in stellar evolution, any
system will tend to develop pressure anisotropy, even if it
was initially assumed to be isotropic in pressure [31].

This definition of complexity is, by construction, intrin-
sically related to the internal structure of the system and is
constructed by assuming the homogeneous, perfect fluid dis-
tribution is one of the simplest systems that could be stud-
ied. This is, it has vanishing complexity. Now, an interesting
feature of this definition is that the vanishing complexity
condition does not determine a unique solution to Einstein’s
equations but an equivalence class of solutions. Thus, it is
interesting to compare the properties of different solutions
of Einstein’s equations that satisfy the vanishing complexity
condition.

Now, a very useful and powerful procedure to search for
solutions to Einstein’s equations is the known gravitational
decoupling method [32]. This was originally introduced in
the context of Randall–Sundrum Brane World [33–41] and
later on used in the General Relativity framework where
the gravitational decoupling was proved. Specifically, this
method allows to study, in a very simple and systematic way,
a self gravitating system whose Einstein–Hilbert action is
given by

S =
∫ [

R

2k2 + L
] √−gd4x + α(correction), (1)

which leads to an energy–momentum tensor of the form

Tμν = T 0
μν + αθμν. (2)

The source, θμν, can be interpreted and the coupling with
other fluid distributions [42–48], the coupling with other
fields [49] or as contributions coming from theories beyond
GR [50–54].

Originally, the method only considered spatial metric
deformations in spherically symmetric systems. It was called
minimal geometric deformation (MGD). It generalization
also considers deformation of the temporal component
together with the spatial component of the metric, and it was
named extended geometric deformation (EGD) [55]. More-
over, it was already formulated for axially symmetric matter

distributions in [56]. (for more applications of the gravita-
tional decoupling method, see [57–95]). In [96], we proposed
a new interpretation of EGD where the temporal and radial
deformations are not simultaneous but consecutive. It leads
to a set of solutions contained in EGD by solving simpler
systems of equations. This method was named 2-step GD.

In this work, we will analyze the complexity factor of dif-
ferent solutions to Einstein’s equations using the extended
version of the gravitational decoupling method. This is the
gravitational decoupling considering both temporal and spa-
tial metric deformations (see [60] for the analysis using MGD
and [97–102] for more recent developments). Specifically,
we will search and compare solutions to Einstein’s equations
that satisfy the vanishing complexity condition (or the ones
that have the same complexity factor as the seed solution)
using the EGD method. We will properly discuss details that
have not been mentioned before in previous and even recent
works.

This paper is organized as follows: In Sect. 2, we review
Einstein’s field equations for a spherically symmetric anisotropic
fluid distribution and its complexity factor. In Sect. 3, we
summarize the extended geometric deformation. In Sect. 4,
we discuss some models with a vanishing complexity fac-
tor that can be obtained by means of extended geometric
deformation. In Sect. 5, we analyze some particular mod-
els using different seed solutions, such as Tolman IV and
Finch–Skeas. In Sect. 6, we show possible generalizations to
our models and the relation with the algorithm presented in
[104]. Finally, in Sect. 7, we discuss all the results.

2 Basic equations

2.1 The Einstein equations

Let us consider a static, spherically symmetric distribu-
tion of an anisotropic fluid bounded by a surface, �. In
Schwarzschild-like coordinates, the metric is given by

ds2 = eνdt2 − 1

μ̃
dr2 − r2(dθ2 + sin2 dφ2), (3)

where ν and λ are functions of r and must satisfy the Einstein
equations

Rμν − 1

2
Rgμν = k2Tμν, (4)

where Rμν, R, Tμν are the Ricci tensor, the curvature scalar,
and the energy–momentum tensor, respectively. For the met-
ric (3) the Einstein equations lead to the following system:

k2T 0
0 = 1

r2 − μ̃

r2 − μ̃′

r
, (5)

k2T 1
1 = 1

r2 − μ̃

(
1

r2 + ν′

r

)
, (6)
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k2T 2
2 = − μ̃

4

(
2ν′′ + ν′2 + 2

ν′

r

)
− μ̃′

4

(
ν′ + 2

r

)
(7)

where primes denote derivatives with respect to r.
From the conservation law

∇μT
μν = 0, (8)

it is possible to obtain the equilibrium equation for anisotropic
matter,

− (T 1
1 )′ + ν′

2
(T 0

0 − T 1
1 ) − 2

r
� = 0, (9)

where � = T 1
1 − T 2

2 .

Outside the fluid distribution, we shall assume that the
space-time is given by the Schwarzschild exterior solution,
namely

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2

−r2(dθ2 + sin2 dφ2). (10)

Therefore, the continuity of the first and second fundamental
forms across the boundary surface r� = constant implies
that,

eν� = 1 − 2M

r�
, (11)

μ� = 1 − 2M

r�
, (12)

Pr� = 0, (13)

where the subscript � indicates that the quantity is evaluated
at the boundary surface �. Notice, from the field equations,
that an equivalent form of the matching conditions can be
written as

eν� = 1 − 2M

r�
, (14)

μ� = 1 − 2M

r�
, (15)

ν′
� = 2M

r�(r� − 2M)
. (16)

2.2 Complexity factor

For a spherically symmetric static fluid distribution, the com-
plexity of the system is completely determined by the abso-
lute value of the scalar function YT F given by

YT F = −8π� − 4π

r3

∫ r

0
r̃3(T 0

0 )′dr̃ . (17)

From this expression, it is clear that the complexity of the sys-
tem is entirely characterized in terms of the energy density
gradient and the anisotropic function. Thus, one of the sim-
plest distributions is the homogeneous isotropic fluid, since
each term is identically zero. However, this is not the only

case with zero complexity. There is also the case in which
the anisotropic function is

� = − 1

2r3

∫ r

0
r̃3(T 0

0 )′dr̃ = r

2k2

(
μ̃ − 1

r2

)′

= 1

k2

(
3m

r3 − k2

2
T 0

0

)
, (18)

where

m = k2

2

∫ r

0
T 0

0 r̄
2dr̄ . (19)

Now, it can be shown [19] that the complexity factor is
directly related to the Tolman mass

mT = k2

2

∫ r

0
r̄2e(ν+λ)/2(T 0

0 − T 1
1 − 2T 2

2 )dr̄ , (20)

which, in terms of YT F , can be written as

mT = (mT )�

(
r

r�

)3

+ r3
∫ r�

r

e(ν+λ)/2

r̃
YT Fdr̃ . (21)

The first term in this equation is the Tolman mass of an homo-
geneous and isotropic fluid sphere of radius r�. Therefore,
the second term can be interpreted as the deviation of the Tol-
man mass from the homogeneous and isotropic fluid when
the anisotropy function and the energy density gradient differ
from zero. However, as we mentioned before, the homoge-
neous and isotropic fluid is not the only case that leads to a
vanishing complexity factor.

3 Gravitational decoupling

In this section, we shall summarize the gravitational decou-
pling method presented in [55]. The starting point of this
method is to assume that the energy–momentum tensor can
be written as

Tμν = T 0
μν + α θμν, (22)

where α is a coupling constant. In this work we will
assume that T 0

μν is the matter-energy content associated to
an anisotropic fluid, this is

T 0
μν = (ρ + P⊥)uμuν − P⊥gμν + (Pr − P⊥)sμsν, (23)

where

uμ = (e−ν/2, 0, 0, 0), (24)

is the four velocity of the fluid and sμ is defined as

sμ = (0, μ̃, 0, 0), (25)

such that sμuμ = 0, sμsμ = −1.

The next step is to assume that the contribution of θμν to
the complete system is encoded in the deformations h and f
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of the temporal and radial metric components, respectively

ν = ξ + α h, (26)

μ̃ = μ + α f. (27)

In this case, it is easy to check that, using (22), (26) and
(27), Einstein’s equations (5)–(7) splits in two systems. The
first one coincides with Einstein’s equation system for an
anisotropic fluid

8π(T 0)0
0 = 1

r2 − μ

r2 − μ′

r
, (28)

8π(T 0)1
1 = 1

r2 − μ

(
1

r2 + ξ ′

r

)
, (29)

8π(T 0)2
2 = −μ

4

(
2ξ ′′ + ξ ′2 + 2ξ ′

r

)
− μ′

4

(
ξ ′ + 2

r

)
,

(30)

with the corresponding conservation equation

− [(T 0)1
1]′ +

ν′

2
[(T 0)0

0 − (T 0)1
1] − 2

r
�0 = 0, (31)

which is the TOV equation for an anisotropic fluid with �0 =
(T 0)1

1 − (T 0)2
2.

The second system of equations reads

8π θ 0
0 = − f

r2 − f ′

r
, (32)

8π θ 1
1 + Z1 = − f

(
1

r2 + ν̃′

r

)
, (33)

8π θ 2
2 + Z2 = − f

4

(
2̃ν′′ + ν̃′2 + 2

ν̃′

r

)
− f ′

4

(
ν̃′ + 2

r

)
,

(34)

with

Z1 = μh′

r
, (35)

4Z2 = μ

(
2h′′ + αh′2 + 2h′

r
+ 2ξ ′h′

)
+ μ′h′. (36)

In order to find a solution of Einstein’s equations for an
energy–momentum tensor of the form (22), we have to solve
the systems (28)–(30) and (32)–(34). Now, if we assume that
the set {T 0

μν, μ, ξ} is a known solution of Einstein’s equa-
tions, then it is only necessary to solve the second system.
Now, in both cases, there are more unknown functions than
equations, so additional information is required in order to
solve the system.

Now, it is important to mention that the sources T (PF)
μν

and θμν can be decoupled only if there exists an interchange
of energy between them. This can be easily seen from the
conservation equations

∇μ(T PF )μν = −h′

2
(Pr + ρ)δ1

ν , (37)

and

∇μθμ
ν = h′

2
(Pr + ρ)δ1

ν , (38)

where the divergence in these expressions is calculated with
the metric related to (26) and (27).

At this point, it is clear that EGD is a powerful tool for
studying more complicated solutions to Einstein’s field equa-
tions than the ones obtained with the MGD method. Never-
theless, finding solutions to Eqs. (32)–(34) could be very
complicated depending on the system under study.

Finally, it is easy to show that, under the gravitational
decoupling method, the complexity factor associated with
the energy–momentum tensor Tμν = T 0

μν + αθμν can be
written as

YT F = Y 0
T F + αY θ

T F , (39)

where Y 0
T F is the complexity factor of the seed solution and

Y θ
T F = −8π(θ1

1 − θ2
2 ) − 4π

r3

∫ r

0
r̃3(θ0

0 )′dr̃ , (40)

is the complexity factor of the source θμν.

4 Models with vanishing complexity factor

From Eqs. (39)–(40), it is clear that the gravitational decou-
pling method allows to find solutions to Einstein’s equations
with different complexity factors by imposing conditions
over Y θ

T F . This is why we can rewrite (40) as

f ′ + f

(
ν′ + 2ν′′

ν′ − 2

r

)
= − 4

ν′ (Y
θ
T F + Z2 − Z1). (41)

Thus, given h and Y θ
T F , in such a way that it leads to the

desired final complexity factor, we can find f. In particular,
the cases Y θ

T F = 0 and Y θ
T F = −Y 0

T F/α correspond to final
solutions with an invariant and a vanishing complexity factor,
respectively. Now, we can explore two different cases.

4.1 First case

In this case, we shall assume that h satisfy the following
constraint

Z2 − Z1 = 0. (42)

Therefore, h must be a solution of the following differential
equation

h′′ + h′
(

ξ ′ + μ′

2μ
− 1

r

)
+ (h′)2 α

2
= 0, (43)

that is

h = 2

α
ln

(
E

∫
re−ξ

√
μ

dr + 1

)
+ D, (44)
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with D and E constant. Notice that, without losing generality,
we can set D = 0.

From (41) it can be seen that the differential equation for
f is

f ′ + f

(
ν′ + 2ν′′

ν′ − 2

r

)
= − 4

ν′ (Y
θ
T F ), (45)

which has the same mathematical expression obtained with
the MGD method but interchanging ξ with ν = ξ + αh.

Thus, the solution for f is given by

f = 4r2 e−ν

(ν′)2

(
−

∫
ν′eνY θ

T F

r2 dr + C

)
, (46)

where C is a constant.

Invariant complexity factor: Notice that, for the case
Y θ
T F = 0, we get

f = 4r2 e
−νC

(ν′)2 . (47)

Consequently, the regularity at the center of the distribution
implies that

μ̃(0) = 1, ν′(0) = μ̃′(0) = 0, (48)

therefore

f (0) = 4eν(0)C

(ν′′(0))2 , (49)

and

1 = μ(0) + 4eν(0)αC

(ν′′(0))2 . (50)

Thus, if the original solution satisfies μ(0) = 1, we get C =
0. This is, the only possibility: a temporal metric deformation
of the metric given by (44). Moreover, since f = 0 and from
(42) it follows that the final solution will keep the same local
anisotropic function than the seed solution, this is, � = �0.

Vanishing complexity factor: On the other hand, we have
that Y θ

T F = −Y 0
T F/α, and we can use (43) to find

(
μ(ν′)2eν

4r2 + K

)′
= −ν′eνY 0

T F

r2 , (51)

with K a constant that will depend on the seed solution.
Therefore

f = −μ

α
+ 4r2e−ν

(ν′)2

(
C − K

α

)
. (52)

Thus, regularity at the origin of the distribution implies that

αC = (ν′′(0))2eν(0)

4
+ K . (53)

Then we can write

α f = −μ + r2eν(0)−ν(ν′′(0))2

(ν′)2 . (54)

Now, to end with the first case, the following comments
are in order:

– The only case in which the spatial metric deformation
could play a role in getting a model with invariant com-
plexity would be when the seed solution is singular at
r = 0.

– It is clear that if the seed solution is regular at r = 0,

the condition Y θ
T F = 0 implies f = 0. Thus, there will

be only a temporal metric deformation. This is a quite
strong condition because it implies that the MGD method
(h = 0) does not lead to a new solution in this case.

– In the case whereY θ
T F = 0, the final solution will have the

same anisotropic function as the seed solution. Thus, if
the seed solution is isotropic in pressure, the final solution
will satisfy this condition too.

– It is important to notice that, when h = 0, (54) represents
the general form of a solution with vanishing complex-
ity obtained through the minimal geometric deformation
method from a given seed solution.

4.2 Second case

In this case, we shall impose the following constraint

0 = Z2 − Z1 + α f ′ h′

4
− α f

(
h′

2r
− h′′

2

− 2ξ ′h′ + αh′2

4

)
. (55)

Thus, it can be seen that it has the same form as (43) but
interchanging μ with μ + α f. Therefore, the solution for h
is given by

h = 2

α
ln

(
E

∫
re−ξ

√
μ + α f

dr + 1

)
+ D, (56)

where we can fix without losing generality D = 0.

On the other hand, from (41) we have that the differential
equation for f is given by

f ′ + f

(
ξ ′ + 2ξ ′′

ξ ′ − 2

r

)
= − 4

ξ ′ (Y
θ
T F ), (57)

whose solution is

f = 4r2 e−ξ

(ξ ′)2

(
−

∫
ξ ′eξ (Y θ

T F )

r2 dr + C

)
, (58)

which coincides with the deformation function f obtained
with the MGD approach [97].

Invariant complexity factor:Notice that if the seed solution
is finite at the center of the distribution

μ = 1, ξ ′ = μ′ = 0, (59)
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then the last term in (58), for r = 0, can be written as

4eξ(0)C

(ξ ′′(0))2 . (60)

Thus, for the case Y θ
T F = 0, the condition μ̃ = 1 implies

C = 0. This is, the only possibility for this case: a temporal
metric deformation given by

h = 2

α
ln

(
E

∫
re−ξ

√
μ

dr + 1

)
, (61)

which is consistent with the previous case.
Consequently, both cases lead to the same set of solutions

with an invariant complexity factor.

Vanishing complexity factor: Now, if Y θ
T F = −Y 0

T F/α, we
can use the definition of Y 0

T F to write
(

μ(ξ ′)2eξ

4r2 + K

)′
= −ξ ′eξY 0

T F

r2 , (62)

with K a constant that depends on the seed solution. There-
fore

f = −μ

α
+ 4r2e−ξ

(ξ ′)2

(
C − K

α

)
. (63)

Thus, as before, regularity at the origin leads to

αC = (ξ ′′(0))2eξ(0)

4
+ K , (64)

which implies

α f = −μ + r2eξ(0)−ξ (ξ ′′(0))2

(ξ ′)2 . (65)

In this case, the following comments are in order:

– As in the previous case, it is clear that if the seed solution
is regular at r = 0, the conditionY θ

T F = 0 implies f = 0.

Thus, solutions with an invariant complexity factor will
only be obtained by temporal metric deformation.

– Notice that, as is expected, the solutions with a vanishing
complexity factor obtained by the first and second cases
coincide when h = 0.

– As it is clear from the Einstein field equations for
{μ̃, ν, T̃μν}, the final solution only depends on the tempo-
ral metric component of the seed solution. It is indepen-
dent of μ. Thus, solutions with the same temporal metric
component (as those obtained by the MGD method) will
lead to the same result.

5 Solutions

In order to give an example, we will choose some seed solu-
tions and obtain the corresponding solutions with a vanishing
complexity factor.

5.1 Tolman IV

If we consider Tolman IV as a seed solution, we have that

eξ = B2
(

1 + r2

A2

)
, (66)

μ =
(

1 − r2

C ′2
) (

1 + r2

A2

)
(

1 + 2r2

A2

) , (67)

ρ = 3A4 + A2(3C ′2 + 7r2) + 2r2(c′2 + 3r3)

8πC ′2(A2 + 2r2)2 , (68)

Pr = C ′2 − A2 − 3r2

8πC ′2(A2 + 2r2)
, (69)

Pt = Pr . (70)

The deformation functions in the first case are given in terms
of elliptic integrals of the first kind, and therefore we could
not find any analytical solution for the first case. As discussed
in the previous section, there is no difference between the
first and second cases for the invariant complexity factor if
the original solution is regular at r = 0. We shall only focus
on the second case with vanishing complexity.

Second case: vanishing complexity The deformation func-
tion f in this case corresponds with the same deformation
function obtained by MGD. It can be seen from Eqs. (56) and
(65) that

α f = −μ + r2

A2 + 1, (71)

αh = 2ln

⎛
⎝1 − Ẽ√

r2

A2 + 1

⎞
⎠ , (72)

where

Ẽ = E A2

B2 . (73)

From the matching conditions (11)–(13) we obtain

Ẽ = 3

√
1 − 2M

R
, (74)

A2 = −R3

2M
, (75)

B2 = 1/4, (76)

respectively. The resulting solution will have a constant den-
sity given by

ρ̃ = 3M

4πR3 , (77)
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and a vanishing anisotropy function � = P̃t − P̃r = 0 with

P̃r = ρ

(√
1 − 2Mr2

R3 −
√

1 − 2M
R

)
(√

1 − 2Mr2

R3 − 3
√

1 − 2M
R

) ,

= P̃t . (78)

Indeed, this solution corresponds to the internal Schwarzschild
solution, whose temporal and radial components of the met-
ric are given by

eν = 1

4

⎛
⎝3

√
1 − 2M

R
−

√
1 − 2Mr2

R3

⎞
⎠

2

(79)

μ̃ = 1 − 2Mr2

R3 . (80)

It can be verified that, if we consider the MGD instead of
the extended version, the deformation function f is given by
(71) and it leads us to (A)dS as an internal solution with

ρ̃ = −3

8A2π
(81)

and P̃r = P̃t = −ρ̃. Now, as it was proved in the previous
section, since the Tolman IV is regular at r = 0, then any
solution obtained throughout the MGD method (h = 0),

using Tolman IV as seed, will lead to the same result for the
vanishing complexity condition.

5.2 Finch–Skeas (FS) solution

Let us consider the known FS solution of Einstein’s equation
as the seed solution

eξ = D2
1[(1 − lu) cos(u) + (l + u) sin(u)]2), (82)

μ = u−2, (83)

ρ = L

8π

2 + u2

u4 , (84)

P = − L

u28π

(
lu + 1 + (l − u) tan(u)

lu − 1 − (l + u) tan(u)

)
, (85)

where u = √
1 + Lr2 and l, D1, L are constants.

5.2.1 First case

Notice that, in this case, h only depends on the seed solution.
This is, given a seed solution, h has the same form regardless
of the final complexity. Thus, from (82), we have

h = 2

α
ln

(
1 + E(u sin(u) + cos(u))

lD2
1L((lu − 1) cos(u) − (l + u) sin(u))

)
,

(86)

for both the invariant and the vanishing complexity, cases.
Now, for simplicity, we shall rewrite this expression as

h = 2

α
ln

(
1 + (u sin(u) + cos(u))

β((lu − 1) cos(u) − (l + u) sin(u))

)
,

(87)

with

β ≡ D2
1l L

E
. (88)

Invariant complexity factor As we discussed in the pre-
vious section, in the case of an invariant complexity factor,
regularity at the origin implies that only the temporal defor-
mation is plausible and is given by (86).

In this case, it will be useful to define the following con-
stants

L = L̂

r2
�

, y = M

r�
. (89)

Then, the matching conditions lead to

L̂ = 2y

1 − 2y
, (90)

β = cos(u�) − u� sin(u�)

(l − u�) sin(u�) + (1 + lu�) cos(u�)
, (91)

4D2
1l

2 = (1 − 2y)2 (cos(u�) − u� sin(u�))2. (92)

The resulting solution is given by

ρ̃

ρ̃c
= 1

3

(2 + u2)

u4 (93)

P̃t = P̃r = P̃, (94)

P̃

P̃c
= (uu� + 1) sin(u − u�) + (u − u�) cos(u − u�)

u2(uu� − 1) sin(u − u�) + (u + u�) cos(u − u�)

× (u� − 1) sin(1 − u�) + (u� + 1) cos(1 − u�)

(u� + 1) sin(1 − u�) − (u� − 1) cos(1 − u�)
.

(95)

Notice, that we can write

u =
√

2x2y

1 − 2y
+ 1, x = r

r�
. (96)

It can be seen that the physical acceptability conditions from
the appendix are satisfied over a wide range of y values. We
present some examples in Figs. 1 and 2.

Vanishing complexity factor From previous sections, we
know that the temporal deformation function is also given in
this case by (86). However, it may be useful to rewrite it as

h = 2

α
ln

(
1 + (u sin(u) + cos(u))

β((lu − 1) cos(u) − (l + u) sin(u))

)
,

(97)
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Fig. 1 P̃/P̃c vs x for of y = 0.05 solid (blue) curve, y = 0.10 dashed
(red) curve, y = 0.15 dotted (purple) curve, y = 0.20 dot-dashed
(brown) curve, y = 0.25 doubled dot-dashed (magenta) and y = 0.30
long dashed (black) curve in the first case, taking as seed the FS solution,
and with the same original complexity factor

Fig. 2 ρ̃/ρ̃c vs x for of y = 0.05 solid (blue) curve, y = 0.10 dashed
(red) curve, y = 0.15 dotted (purple) curve, y = 0.20 dot-dashed
(brown) curve, y = 0.25 doubled dot-dashed (magenta) and y = 0.30
long dashed (black) curve in the first case, taking as seed the FS solution
and with the same original complexity factor

with

β ≡ D2
1l L

E
. (98)

By introducing (86) into (54) we can now compute the radial
deformation required to get a solution with a vanishing com-
plexity factor. This is

α f = −μ +
(
lβ sin(1) + (β − 1) cos(1)

lβ sin(u) + (β − 1) cos(u)

)2

. (99)

Now, the matching conditions (14)–(16) leads to

1

β
= 1(

u2
�(2y − 1) − y + 1

)
cos(u�) + u� y sin(u�)

× (
sin(u�)

(
lu2

�(2y − 1) − ly + l + u� y
)

− cos(u�)(u�(ly − 2u� y + u�) + y − 1)) , (100)

D2
1l

2 = −
(
u2

�(2y − 1) − y + 1
)

cos(u�) + u� y sin(u�)(
u3

� − v
)√

1 − 2y
(101)

((
u2

�(2y − 1) − y + 1
)

sin(1 − u�) + u� y cos(1 − u�)
)2

u2
� y2

= 1 − 2y. (102)

The last expression can be interpreted as a restriction for
either u�(L) or y. However, it cannot be solved with any
analytical method. We numerically solved it for a wide range
of values, but we could not find any physically acceptable
solution. Specifically, all the solutions present at least one
singularity. This holds true for any solution obtained using
FS as the seed during the MGD method (h = 0).

5.2.2 Second case

We see from (58) that in this case f only depends on the seed
solution. In fact, it corresponds to the deformation function
obtained by the MGD method.

Invariant complexity factor From Sect. 4, we have that if
the seed solution is regular at the center of the distribution,
the only possibility to obtain a regular solution is by a purely
temporal deformation with h given by (86). That is, the sec-
ond case leads us to the same solution with the same invariant
complexity factor obtained in the first case.

Vanishing complexity factor Following Sect. 4, we notice
from (65) that the spatial deformation function is given by

α f = −μ + (l sin(1) + cos(1))2

(l sin(u) + cos(u))2 (103)

while the temporal deformation function, can be written
according to (61) as

h = 2

α
log

(
1 + β̂

ε|l sin(1) + cos(1)|((lu − 1) cos(u) − (l + u) sin(u))

)

(104)

with

β̂ = E

LD2
1

, (105)

ε = l sin(u�) + cos(u�)

|l sin(u�) + cos(u�)| . (106)

From the matching conditions (11)–(13) we have

l = l± = 1

(4y − 2) sin2(u�) + 2 sin2(1)

×((1 − 2y) sin(2u�) ± 2
√

1 − 2y| sin(1 − u�)|
− sin(2)), (107)

D2
1 = y2

(
u2
� − 1

)2
(1 − 2y)(l sin(u�) + cos(u�))2

(108)

123



Eur. Phys. J. C (2023) 83 :260 Page 9 of 15 260

Fig. 3 P̃r/P̃r c (left) and ρ̃/ρ̃c (right) vs x for u� = 1.1, y = 0.38 solid (blue) curve, y = 0.39 dashed (red) curve, y = 0.40 dotted (purple) curve
and y = 0.41 dot-dashed (brown) curve. Second case with vanishing complexity using F-S as seed

Fig. 4 �̃/P̃r c vs x for u� = 1.1, y = 0.38 solid (blue) curve, y =
0.39 dashed (red) curve, y = 0.40 dotted (purple) curve and y =
0.41 dot-dashed (brown) curve. Second case with vanishing complexity
using F-S as seed

β̂ = ε|l sin(1) + cos(1)|
y

([2lu2
� y − lu2

� − ly

+l + u� y] sin(u�) + [2u2
� y − lu� y − y + 1] cos(u�)

−u2
� cos(u�) sin(u�)). (109)

Now, from the two possibilities for l, we could not find a
physically acceptable and free of singularities solution for
l+. Thus, from now on we will consider only the case l = l−.

The physical behaviour of the final solution can be seen
from Figs. 3, 4, 5, 6, 7 and 8.

6 Discussion

In order to give some examples, we choose as seed solu-
tions the Tolman IV and the Finch–Skeas solutions of Ein-
stein’s equations. We introduce these solutions in the results
of Sect. 4 to get other solutions with either a vanishing
(YT F = 0) or invariant complexity factor (Y θ

T F = 0). Using
the first case, we could not find an analytical solution for

Fig. 5 ṽsr (solid) and ṽs⊥ (dashed) vs x for u� = 1.1, y = 0.38 blue
curve, y = 0.39 red curve, y = 0.40 purple curve and y = 0.41 brown
curve. Second case with vanishing complexity using F-S as seed

either the invariant or vanishing complexity condition. On
the other hand, since Tolman IV is regular at the center,
the invariant complexity factor condition leads to the same
result in both cases. Thus, the only option left was the sec-
ond case with the vanishing complexity condition. Here, we
found some interesting results. For Tolman IV we get that the
vanishing complexity condition and (42) lead to the internal
Schwarzschild solution. Moreover, in the MGD approach,
the final solution will correspond to the AdS4 for metric.

In the case of the FS solution, we found two solutions with
good physical properties. For the invariant complexity factor
conditions, we found that the first and second cases lead to the
same final solution. This is an isotropic matter distribution
in which, after the matching with the Schwarzschild exterior
solution, the thermodynamic variables only depend on x and
y given by (96) and (89), respectively. We found a wide range
of y values in which the solution satisfied all the physically
acceptable conditions. Moreover, in Figs. 1 and 2, we found
that both pressure and energy density reach lower values for
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Fig. 6 P̃r/P̃r c (left) and ρ̃/ρ̃c (right) vs x for y = 0.40, u� = 1.10 solid (blue) curve, u� = 1.20 dashed (red) curve, u� = 1.30 dotted (purple)
curve and u� = 1.40 dot-dashed (brown) curve. Second case with vanishing complexity using F-S as seed

Fig. 7 �̃/P̃r c vs x for y = 0.40, u� = 1.10 solid (blue) curve, u� =
1.20 dashed (red) curve, u� = 1.30 dotted (purple) curve and u� =
1.40 dot-dashed (brown) curve. Second case with vanishing complexity
using F-S as seed

larger values of y. This is expected since larger values of y
describe less compact matter distributions.

For the vanishing complexity condition, the first case
leads to a local anisotropic solution of Einstein’s equations.
However, this solution presents singularities in the internal
regions, and we could not find any values for the integra-
tion constants that could fix this problem. Thus, this is not a
physically acceptable internal solution. Now, we would like
to mention that, despite this problem, the solution could be
used to describe sections of the internal region of a given mass
distribution or could be interpreted as an external solution of
Einstein’s equations.

In the second case, with the vanishing complexity con-
dition, we found a solution with local anisotropy in pres-
sures. As in the first case, this solution may have singular-
ities in the internal regions of the distributions (for l+), but
we found cases where it is free of this problem (for l−). Inde-
pendently of this, we found that, after the matching with the
Schwarzschild exterior solution, the solution only depends on

Fig. 8 ṽsr (solid) and ṽs⊥ (dashed) vs x for y = 0.40, u� = 1.10 blue
curve, u� = 1.20 red curve, u� = 1.30 purple curve and u� = 1.40
brown curve. Second case with vanishing complexity using F-S as seed

u� and y. Moreover, using l−, we obtained a range of param-
eters in which the solution is well behaved. For example, in
Figs. 3 and 6 we present the radial pressure and energy density
of the distribution, showing that they are finite at the center
and monotonically decreasing. In addition, we checked that
the strong energy conditions were satisfied. From these fig-
ures, it is also clear that u� and y have the same effect on the
thermodynamic variables, i.e., large values of any of them
imply smaller values of radial pressure and energy density.
As in the first case, this is consistent with the interpretation of
these constants. Now, where we found a different pattern is
in Figs. 4 and 7, where we present the local anisotropy of the
system. Here, larger values of y lead to smaller values of �,

while for u� we found the opposite behavior. Now, for both
constants, observe that � is an increasing function until some
value of x in which the function starts to decrease its value.
This implies that the contribution of the local anisotropy to
the local radial force reaches a maximum and then starts to
decline. Therefore, it may be argued that the system is less
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stable near the surface compared to the more internal regions.
In Figs. 5 and 8, we also analyzed the sound velocities and
obtained the same behavior as the � function, i.e., larger
values of y lead to smaller values of the velocities, and the
opposite for u�. Now, as is clear from Fig. 5, large values y
may lead to sound velocities greater than one even when the
other physical conditions are satisfied.

As a last feature, we would like to mention that in our test-
ing, these solutions present a pattern. This is, given a value
for u�, there is an interval for y ∈ [y1, y2] in which the
solution is well behaved. If y < y1 then we get solutions
with negative local anisotropy and, in some cases, negative
tangential pressures. On the other hand, if y > y2 the tan-
gential pressure is not a monotonically decreasing function,
and, in general, the strong energy condition is not satisfied.
Moreover, bigger values of u� tend to have larger values of
y1 and y2. Now, we could not find any value for u� admitting
y < 0.30.

7 Possible generalizations and relation with other
algorithms

In this section, we will briefly discuss a possible generaliza-
tion of the condition used in the previous section to determine
h. In addition, we will also discuss the connection between
the conditions used here and the generating functions of the
algorithm presented in [103].

7.1 Generalization

In order to integrate the systems of equations for f and h
we impose two conditions. The first condition was over the
complexity factor Y θ

T F while the second was an imposition
over the function Z2 − Z1. In particular, we used

Z2 − Z1 = 0, (110)

for the first case and

Z2 − Z1 = −α f ′ h′

4
+ α f

(
h′

2r
− h′′

2
− 2ξ ′h′ + αh′2

4

)

(111)

for the second case. Notice these two conditions can be writ-
ten in a more general way as

Z2 − Z1 = −αF(r)′ h
′

4
+ αF(r)

(
h′

2r
− h′′

2
− 2ξ ′h′ + αh′2

4

)
,

(112)

whose lead us to the following differential equation

(μ + αF)′h′ + (μ + αF)

(
2h′′ + αh′2 − 2

r
h′ + 2h′ξ ′

)
= 0,

(113)

for some function F(r). Thus the solution for h can be written
as

h = 2

α
ln

(
E

∫
re−ξ

√
μ + αF

dr + 1

)
+ D. (114)

Then the two cases discussed in this paper are given by
F(r) = 0 (first case) and F(r) = f (second case). Thus, it
is possible to explore other cases by taking different choices
of F(r).

7.2 Relation with other algorithms

Here we will present the connection between the conditions
(41)–(42) and (41)–(55) that we used throughout this work
and the generating functions, Z(r) and �(r), presented in
[103]. Now, in general, we can write

Z(r) = 1

2

(
ξ ′ + αh′

)
+ 1

r
, (115)

�(r) = −k(�0 + �θ), (116)

where �θ = θ1
1 − θ2

2 . From the definition of the complexity
factor we can write

k�θ = 1

2

f ′

r
− f

r2 − Y θ
T F . (117)

Thus in our case we obtain that the generating functions,
Z(r) and �(r), are given by

Z(r) = 1

2

(
ξ ′ + 2re−ξ E

√
μ + αF

(
1 + E

∫ re−ξ√
μ+αF

dr
)
)

+ 1

r

(118)

and

k�θ = 1

2

f ′

r
− f

r2 − Y θ
T F , (119)

where f is a solution of (41) for a given Y θ
T F . In more detail,

for internal solutions regular at r = 0, we can write:

– First case (F(r) = 0):

Z(r) = 1

2

(
ξ ′ + 2re−ξ E

√
μ

(
1 + E

∫ re−ξ√
μ
dr

)
)

+ 1

r
(120)

– Invariant complexity factor (Y θ
T F = 0):

�(r) = −k�0 (121)

– Vanishing complexity factor

�(r) = reν(0)−ν(ν′′(0))2(ν′2 + 2ν′′)
2(ν′)3 − 1

r2 . (122)
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– Second case F(r) = f :

Z(r) = ξ ′

2

(
1 + 2E |ξ ′|e−(ξ+ξ(0))/2

|ξ ′′(0)|ξ ′ − 2E |ξ ′|e−(ξ+ξ(0))/2

)
+ 1

r
(123)

– Invariant complexity factor (Y θ
T F = 0):

�(r) = −k�0 (124)

– Vanishing complexity factor

�(r) = reξ(0)−ξ (ξ ′′(0))2(ξ ′2 + 2ξ ′′)
2(ξ ′)3 − 1

r2 . (125)

Therefore, the family of solutions with vanishing and invari-
ant complexity factor obtained in this work could be, as it
is expected, described in terms of the generating functions
presented in [103].

8 Conclusions

According to the definition given by [19] the complexity fac-
tor of spherically symmetric self-gravitating objects is com-
pletely determined by the local anisotropy and the energy
density of the distribution. It is important to emphasize that
the anisotropy in this work is defined as (� = −�) and cor-
responds to the first term of expression (17). This is relevant
because if this sign is not properly handled, it will lead to
wrong differential equations when imposing restrictions on
YT F .

In this work, we implemented the extended geometric
deformation method to generate anisotropic solutions of Ein-
stein equations characterized by their complexity factor. This
method considers both the temporal and radial deformations
of the metric components. As discussed in previous works
(see [60,94]), the EGD leads to a complexity factor com-
posed of two terms. These can be seen from (39), where
Y 0
T F corresponds to the complexity factor of the seed solu-

tion and Y θ
T F one can be understood as the complexity factor

gravitational source. We can impose constraints on the com-
plexity factor in order to close the system of equations in the
GD approach. In particular, we were interested in the cases
where the final solution has either the same complexity as
the seed or vanishing complexity. These two scenarios were
obtained by imposing the appropriate condition over Y θ

T F .

Now, since we used the EGD method, a condition over the
complexity factor of θμν is not enough to solve the system
of equations. Thus, to solve this problem, we imposed con-
ditions over the function Z2 − Z1, which is directly related
to the function h. We found two different simple possibil-
ities for Z2 − Z1, (see (42) and (55)) which lead to solu-
tions of Einstein’s equations with good properties. They were

denoted as first and second case, respectively. Now, despite
being different, both cases are connected by an interchange
between ξ and ν. This feature is closely related to the 2-step
GD approach discussed in [96]. In this work, we found the
general form of the functions f and h in terms of the seed
solution such that it leads to solution with invariant or van-
ishing complexity factor. For internal solutions, we showed
how the regularity at the center of the distribution led to sev-
eral constraints on the integration constants. Indeed, in both
cases, we found that for internal solutions, the invariant com-
plexity condition does not admit any spatial deformation of
the metric, i.e., f = 0, if the seed solution is regular at the
center. This does not hold for external seed solutions. Thus,
when we use internal regular solutions as seed solutions to
obtain solutions with invariant complexity factor, the only
possible deformation is for the temporal metric component.
It also implies that, for regular internal seed solutions, the
MGD method with the invariant complexity condition, will
lead to a singular solution, at r = 0, unless f = 0 (θμν = 0).

This differs from the results of other recent works, however,
we found that the difference is due to a minus sign in the
definition of the complexity factor. As we mentioned before,
it can be checked that the signs we are using are consistent
with the original definition of the complexity factor [19]. It
is important to mention that if we do not impose regularity
at r = 0 for the final solution, which could be the case for
an internal solution describing a region that does not include
the center or an external solution, the latter result does not
hold. It would be interesting explore how the analysis devel-
oped in this work could be applied considering as seed exter-
nal solutions of Einstein’s equations. In this case we could
find restrictions for the metric deformations coming for the
behavior at r → ∞.

It can be seen that solutions related by MGD will lead
to the same solutions with vanishing complexity factor. We
found that, for the MGD approach, there is a general expres-
sion for f that depends only on the temporal metric compo-
nent of the seed solution. This holds true for final solutions
with invariant or vanishing complexity factor. Thus, it is the
same for all the solutions of Einstein’s equations with the
same temporal metric component.
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Appendix A: Physical acceptability conditions

In order to ensure that the solutions to Einstein’s equations
describe realistic matter distributions, they should satisfy a
series of physical conditions. These conditions are

– Pr , Pt and ρ are positive and finite inside the distribution.
– dPr

dr , dPt
dr and dρ

dr are monotonically decreasing.

– Dominant energy condition: Pr
ρ

≤ 1, Pt
ρ

≤ 1.

– Causality condition: 0 < dPr
dρ = vsr < 1, 0 < dPt

dρ =
vs⊥ < 1.

– The local anisotropy of the distribution should be zero at
the center and increasing towards the surface.

– Adiabatic index stability criterion:

� >
4

3
+

[
kρPrr

3|P ′
r |

+ 4(Pt − Pr )

3|P ′
r |r

]
max

, (126)

where

� = ρ + Pr
Pr

(
dPr
dρ

)
. (127)

In this condition, the changes in the unstable range for
the adiabatic index due to relativistic correction and
local anisotropy in pressures are taken into account. (see
[104]).

– Harrison–Zeldovich–Novikov stability condition: dM
dρc

≥
0.
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