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Abstract We examine electron-transport coefficients in
magnetized hot and dense electron-ion plasma relevant in
binary neutron star merger simulation. We calculate elec-
trical and thermal conductivities in low density, high tem-
perature, highly magnetized plasma of binary neutron star
mergers where quantum oscillatory behavior of electrons
emerge. For pronounced thermodynamic effects, we con-
sider zeroth Landau level population of electrons for the cal-
culation of conductivity. We solve Boltzmann equation in
presence of magnetic field to obtain the dissipative compo-
nents of electrical and thermal conductivities. The dissipative
coefficients are formulated considering frequency dependent
dynamical screening in the quantized electron-ion scattering
rate. Numerical estimations show that the effect of dynam-
ical screening of photon propagator on electrical and ther-
mal conductivities is pronounced. We observe that dynamical
screening reduces the maxima of both the electrical and ther-
mal conductivities by factors of thirty one and twenty respec-
tively leading to a reduction in the corresponding time scales
of these coefficients. The common scaling factor between
electrical and thermal conductivity is also observed to follow
cubic relationship with temperature violating Wiedemann–
Franz law.

1 Introduction

Binary neutron star mergers and collider experiments are the
sources of most extreme states of matter in the universe with
densities several times nuclear saturation density and tem-
peratures upto hundreds of MeV [1]. The recent detection of
gravitational wave signal GW170817 originating from binary
neutron star (BNS) merger by the LIGO and Virgo detectors

a e-mail: sreemoyee.sarkar@nmims.edu (corresponding author)
b e-mail: souvik.adhya@ifj.edu.pl

have opened up a new era in multi-messenger astronomy [2–
4]. Additionally, short gamma-ray bursts (SGRBs) were also
detected by the Fermi satellite GRB170817A indicating the
presence of huge magnetic field in the merging event [5–7].
These mergers are unique astrophysical objects of significant
sources of gravitational radiation, electromagnetic as well as
neutrino emission [8]. They offer a novel avenue to study
highly non-linear gravitational effects blended with complex
micro-physical processes; serving as Einstein’s richest natu-
ral laboratory [9].

In the event post merging, a remnant neutron star is cre-
ated and if the remnant possess a mass beyond Tolman–
Oppenheimer–Volkoff (TOV) limiting mass, the merged
object survives for 10–100 ms and collapses thereafter. The
description of neutron star mergers requires the knowledge
of General Relativistic Magneto Hydro-dynamics (GRMHD)
[10–18]. Most of these general-relativistic simulations acc-
ount for ideal Magneto Hydro-dynamics (MHD) limit. In a
recent work Ref. [19], the authors have pointed out that Hall
effect plays an important role in magnetic field decay of the
merged object, hence, the Hall effect needs to be incorpo-
rated in the ideal MHD merger simulation. In this Ref. [19]
the authors have considered the electrical conductivity (σ ) of
warm neutron star crust in the non-quantizing scenario cal-
culated in Ref. [20]. Apart from these studies, in Ref. [21]
authors have analysed the relevance of thermal conductivity
(κ), viscous coefficients in BNS mergers in the non-magnetic
scenario. In view of these recent studies [19–21], we analyse
the importance of dissipative mechanism in the merger sim-
ulation by evaluating quantized electrical and thermal con-
ductivity coefficients with magnetically modified many-body
effects in the present paper. We calculate quantized dissipa-
tive coefficients with frequency dependent screening in both
hot and dense plasma relevant in binary neutron star merger.
The results can be implemented in analysing the magne-
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tothermal evolution [22] of the merged compact object as
well.

We consider fully ionized plasma of electrons and ions.
Heat and charge in this medium are transported by electrons.
The dominant electron transport mechanism is scattering on
ions in the liquid phase. In presence of extreme magnetic
field (B) (B∼ 1016 G) and density (ρ) (ρ ∼ 1012 g cm−3),
the classical description of electrons breaks down. Therefore,
one should incorporate Landau quantization of energy levels
in the formalism. This quantization occurs for a particular set
of temperature, density and magnetic field in case of neutron
star. Thus, the inclusion of Landau quantization eventually
modifies the non-magnetic electrical conductivity to great
extent [23–26]. In the present paper, we focus mainly on the
strongly quantizing case, since in this domain, the transport
coefficients receive major modification due to the magnetic
field.

The calculation of electrical and thermal conductivities
by solving Boltzmannn equation in ultra-compressed plasma
have been studied by several authors over the last few decades
[27–30], see for a review [31]. This requires the information
of scattering rate of plasma constituents. The calculations
of scattering rates considering screened Coulomb potential
have already been observed in different Refs. [23–26,32].
In all these calculations it has been assumed that ions are
static scatterers. This formulation can not be easily trans-
ported to the relativistic domain where dynamical effects
are important for reliable description of transport coeffi-
cients. Medium modified Hard-Thermal-Loop (HTL) propa-
gators for hot and Hard-Dense-Loop (HDL) for dense plasma
include dynamical effects of relativistic medium through fre-
quency dependent screening [33–38]. While Debye screen-
ing in plasma is related to the static/longitudinal photon
exchange, the exchange of magnetic/ transverse photons con-
tribute to dynamical frequency dependent screening of the
plasma particles.
It is observed in different studies [36,37,39–43] that for
ultra-degenerate case, both in Quantum Chromodynamics
(QCD) and Quantum Electrodynamics (QED) plasmas, the
transverse interactions not only become important but they
dominate over their longitudinal interaction. In a recent cal-
culation [20], the authors have included many-body effects
through the HTL modified propagator in the calculation of
non-quantized electrical conductivity in magnetized, warm
neutron star crust. Motivated by all these calculations of
dynamical screening in different coefficients, we include
HDL modified photon propagator in quantized σ and κ in the
context of BNS merger in the present paper. We incorporate
plasma screening through magnetic Debye mass. The cur-
rent calculation is important in two ways. First, in this paper
we consider the quantized transport coefficients in estimating
dissipation coefficients in BNS merger. Second, this formula-
tion includes Landau damping in quantized electron-ion col-

lision integral in both hot and dense relativistic, magnetized
plasma. Here, we perform the calculations of σ and κ in an
extreme scenario of temperature ∼ 12 MeV, density ∼ 1012

g cm−3 and magnetic field B ∼ 1016 G. Finally, with the
strongly quantized σ and κ , we estimate the relevant dissipa-
tive time scales and compare it with the survival time period
of the post-merger object. Validity of Wiedemann–Franz law
has also been discussed.

The paper is organised as follows. In Sect. 2, we derive the
longitudinal electrical and thermal conductivities in a dynam-
ically screened QED plasma. Next, in Sect. 3 we present
the constraints on temperature, magnetic field and density
of hot and dense plasma to become relativistic and strongly
quantized in the BNS merger scenario. We present numeri-
cal variations for σ and κ with temperature, magnetic field
and density for the dense, relativistic plasma along with esti-
mation of corresponding dissipative time scales in Sect. 3.
Finally, we summarize and discuss the impact of dynamical
screening on both the coefficients and decay time scales in
Sect. 4. Throughout the manuscript we will use following
notation for four vectors p = (εp, pz, �p⊥) and k = (εk, �k).1

2 Electrical conduction from transport theory

In the current paper, we consider fully ionized plasma of
two components: electrons (e) and positive ions of charge
Ze (Z atomic number of the nucleus). In compact objects,
the huge magnetic field quantizes the motion of electrons in
the QED plasma. In this section we derive the coefficients for
electrical conduction, electrical conductivity and coefficients
for thermal conduction, thermal conductivity, in magnetized
electron-ion plasma from transport theory. In presence of
magnetic field both the coefficients are anisotropic and the
conductivity tensor is given below,

σ/κ =
(σ⊥/κ⊥ −σH/κH 0

σH/κH σ⊥/κ⊥ 0
0 0 σ‖/κ‖

)
. (1)

In the above matrix equation, σ‖/κ‖ and σ⊥/κ⊥ are the
parallel and perpendicular components of σ and κ respec-
tively in presence of external magnetic field along z direc-
tion. σH /κH , are the Hall components of the conductivities.
In the current paper we present the calculation of quantized
σ‖/κ‖ in electron ion plasma. For the rest of the paper, we
re-define σ‖, κ‖ as σ and κ respectively.

The σ is related to the electric current density ( j) and
satisfies the constitutive relation j = σ E where E is the
electric field. For thermal conductivity Q = −κ∇T , where,
Q is the amount of charge transported through the plasma
under the temperature gradient ∇T . j and Q are related to

1 We have used c = kB = � = 1.

123



Eur. Phys. J. C (2023) 83 :313 Page 3 of 14 313

displacement of the electronic distributions from their equi-
librium configuration due to the presence of electric field and
temperature gradient in the plasma respectively and can be
calculated from kinetic theory,

j = 2e
∫

d3 p

(2π)3 vpΦ (2)

Q = 2
∫

d3 p

(2π)3 (εp − μ)vpΦ. (3)

In the above equation e is the charge of an electron, vp is the
velocity of the electrons, εp is the energy of electrons, μ is the
chemical potential of electrons. Φ is the off-equilibrium dis-
tribution function which arises due to the presence of electro-
magnetic field in plasma. Φ is obtained by solving Boltzmann
equation in presence of magnetic field. In presence of per-
turbation along z direction, the distribution function ( fn,pz ,s)
evolves according to the magnetically modified Boltzmann
equation as given below [24],

∂ fn,pz ,s

∂t
+ vz

∂ fn,pz ,s

∂z
− eE

∂ fn,pz ,s

∂pz
= C[ fn,pz ,s]. (4)

In the above equation, fn,pz ,s describes the population of
electrons defined by the quantum state n, s, pz , n is the num-
ber of the Landau level, s is the spin and pz is the z component
of electron’s momentum. vz is the z component of the veloc-
ity of the particle. The third term in the LHS of Eq. (4) arises
from the Lorentz force term �F = e( �E + �vp × �B). In absence
of external magnetic field, the Lorentz force term vanishes.

The RHS of Eq. (4) contains the information of scattering
rate of electrons with the ions present in the medium,

C[ fn,pz ,s] = ∂ fn,pz ,s

∂t

∣∣∣∣
coll

=
∑
f

I f i
(
fn,pz ,s→n′,p′

z ,s
′
)
, (5)

where, sum is over final state quantum numbers n′, p′
z, s

′.
I f i is the electron-ion scattering rate from initial state (i)
to the final state ( f ) in presence of B. fn,pz ,s is the initial
state distribution function and fn′,p′

z ,s
′ is the scattered state

distribution function. The distribution function of electrons
has two parts in presence of electromagnetic field,

fn,pz ,s = f0(εp) + Φn,pz ,s, (6)

where, f0(εp) is the equilibrium Fermi-distribution functions
and Φn,pz ,s is the perturbation due to the electromagnetic
field.

We now proceed to calculate the collision integral con-
sidering strongly quantizing magnetic field. To calculate the
interaction rate, we consider an electron with momentum
p = (εp, pz, �p⊥) and mass m exchanges a virtual pho-
ton of momentum q = (q0, �q) with an in-medium ion of
momentum k = (εk, �k) and mass M . The electron emerges
with momentum p′ = (εp′ , p′

z,
�p′⊥) and ion with momen-

tum k′ = (εk′, �k′) (Fig. 1). In order to obtain finite collision

Fig. 1 Feynman diagram describing the electron-ion scattering ampli-
tude in a static medium (left panel). Feynman diagram contributing to
the electron-ion scattering amplitude via exchange of resummed HDL
photon propagator (right panel)

integral, we use the HDL re-summed photon propagator with
transverse and longitudinal components.

We start by re-visiting the expression of interaction
rate/collision integral rate (I f i ) without electromagnetic
modification [24],

I f i = 1

2εp

∫
d3 p′

(2π)32εp′

∫
d3k

(2π)32εk

∫
d3k′

(2π)32εk′

×[ f0(εp)g0(εk)
(

1 − f0(ε
′
p)

)

− f0(ε
′
p)g0(ε

′
k)

(
1 − f0(εp)

)]
× (2π)4 δ

(
εp + εk − εp′ − εk′

)
×δ3

(
�p + �k − �p′ − �k′

)
|M f i |2 (7)

where, M f i is the electron-ion scattering matrix. M f i can
be written as [20],

M f i = −ΔL J0 J
′
0 + ΔT J t J ′

t = −ML + MT , (8)

where,

Jμ = −e∗ū(p′)γ μu(p),

J ′μ = Ze∗vμ
k = Ze∗(1, �k/M), (9)

are the components of currents. e� = √
4πe, vk is the velocity

of ion with momentum k. The ΔT and ΔL are transverse and
longitudinal HDL effective photon propagators respectively.
The form of the electronic spinors (u(p), u(p′)) are given in
the Appendix. A.

To proceed further, here, we describe the screening mech-
anism of electron-ion plasma. In earlier calculations [27–
30], the authors have implemented longitudinal component
of photon propagator to screen the Coulomb potential,

D�q = 1

�q2 + m2
D

. (10)

In the above equation m2
D = e2dne/dμ, where, ne is the

number density of electrons. Following linear response the-
ory, there exists additional weak dynamical screening, related
to the energy transfer to the constituents of plasma known as
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Landau damping. This arises because of non-zero frequency
of the plasma. We implement the effects of non-zero fre-
quency in both the electric and magnetic components of the
photon propagator computed within the HDL formalism,

Δμν(q) = Pμν(q)ΔL + Qμν(q)ΔT , (11)

where, Pμν and Qμν are the transverse and longitudinal pro-
jectors, respectively,

Pi j (q) = −δi j + qiq j

q2 , (12)

Q00(q) = − q2

|�q|2 = 1 − q2
0

|�q|2 = 1 − y2, (13)

and the effective longitudinal (ΔL ) and transverse (ΔT ) prop-
agators are given by the following expressions,

ΔL = 1

q2 − ΠL
,

ΔT = 1

q2 − ΠT
. (14)

In the above equations ΠT and ΠL are the transverse and
longitudinal HDL photon self-energies and are given by,

ΠT (q) = 3m2
D

[
y2

2
+ y(1−y2)

2
ln

(
y+1

y−1

)]
,

ΠL(q) = 3m2
D

[
1 − y2 − y(1 − y2)

2
ln

(
y+1

y−1

)]
. (15)

In presence of strong magnetic field, electron density
present in the plasma changes, leading to a modification in
the screening. At low temperature and strong magnetic field,
the presence of sharp Fermi surface modifies the nature of
screening. In the relativistic domainm � μ, the Debye mass
is given by [44],

m2
D =

( e

π

)2
(
eB

2

)
. (16)

One obtains Eq. (16) using m2
D = e2dne/dμ, where, ne

in the relativistic domain (m � μ) is given by eBμ/2π2. In
the screening mass, we have ignored the finite temperature
correction. This assumption is valid as we consider only the
degenerate domain (T < μ) of the plasma. In addition, the
conductivities are weakly dependent on the screening mass
as discussed in [24]. Hence, inclusion of finite temperature
Debye mass would mark negligible correction in the final
results of the conductivities.

In order to proceed further, we compute the phase space
factor in the collision integral given in Eq. (7). We do not
consider the change of momentum of ions in the phase space
factor. Hence, the linearized phase space factor can be written
as,

[
fn,pz ,sgk(1 − fn′,p′

z ,s
′) − fn′,p′

z ,s
′gk′(1 − fn,pz ,s)

]

� gk
(
fn,pz ,s − fn′,p′

z ,s
′
)

. (17)

The final expression for the collision integral thus becomes
(the details of the derivation are given in Appendix A),

I f i = ni
2

∑
n′,p′

z ,s
′

∫
du

(
Φn,pz ,s − Φn′,p′

z ,s
′
)

×
[

1

3(u + ζ
3 )(u + ζ )

− v2
k

6u(u + ζ
3 )

]
F , (18)

ni is the number density of ions and u, ζ and F are given in
the Appendix A. In order to find the transport coefficients,
it is useful to define a dimensionless scattering rate a and a
dimensionless perturbation to the distribution function (Ψ )
defined as,

I f i
nivzσ0

= a,

eE

σ0ni

∂ f0
∂εp

Ψ = Φ, (19)

where, σ0 = π Z2e4/ω2
B and ωB = eB/m. The elec-

tric charge e is related to the fine structure constant by
α = e2/(4π) = 1/137. Using the above two equations, we
obtain the dimensionless form of the linearized Boltzmann
equation as given below [45],
∑
n′ s′γ

a(ns → n′s′)
(
Ψn′s′ − γΨns

) = 1. (20)

γ = ± denotes the scattering channel for forward (+) and
backward reactions (−). In the current paper, we present the
results for the strongly quantizing scenario (i.e. zeroth Lan-
dau level) which provides the maximum effect with finite
magnetic field in contrast to the non-magnetic scenario. For
zeroth Landau level, n = n′ = 0, spin degeneracy is absent
and backward scattering (γ = −1) is the only allowed chan-
nel for scattering. Hence, after solving the dimensionless
Boltzmann equation the off equilibrium distribution function
is obtained as,

Ψ = E2 − 1

2Q2
, (21)

where, E = εp/m, Ψ ≡ Ψ0,−1 and

Q2 =
∫ ∞

0
e−u

×
⎡
⎣ 2

3
(
u + ζ

3

)
(u + ζ )

− v2
k

6u
(
u + ζ

3

)
⎤
⎦ du.

(22)

We obtain the expressions for σ and κ with only zeroth Lan-
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dau level population by inserting the value of Φ in the equa-
tions below,

j = emωB

4π2

∫ ∞

m
Φdεp,

Q = mωB

4π2

∫ ∞

m
(εp − μ)Φdεp. (23)

We then insert j and q in the constitutive relations j = σ E
and Q = −κ∇T to obtain both σ and κ . The final form of
electrical conductivity is given below,

σ = δ0

θ

∫ ∞

1
Ψ f0(1 − f0)dE, (24)

here, δ0 is a constant and is given by δ0 = m4b2/8π3Z2e2ni ,
θ = T/m and b = B/Bc, Bc is the critical field given by
4.413 × 1013 G. f0(1 − f0)/T ≡ −∂ f0/∂εp.

The thermal conductivity coefficient can be obtained by
integrating following expression,

κ = π2T

3e2

[
δ0

θ

∫ ∞

1

(εp − μ)

T 2

2

Ψ f0(1 − f0)dE

− δ0

T θ

∫ ∞
1 (εp − μ)Ψ f0(1 − f0)dE∫ ∞

1 Ψ f0(1 − f0)dE

]
. (25)

From the above two equations it is evident that at low tem-
perature satisfying (εp − μ) ∼ T , ∂ f0/∂εp = δ(εp − μ).
After integration thus σ becomes temperature independent
and κ varies linearly with temperature T . Hence, κ/σ varies
linearly with temperature till (εp − μ) ∼ T is satisfied.
This linear relationship of σ/κ with temperature is known
as Wiedemann–Franz law.

In the next section, we study the variation of σ and κ

with different parameters and the effects of the frequency
dependent screening derived in the current section.

3 Results

In this section we describe the behaviour of σ and κ with
density, temperature, magnetic field in the hot and dense QED
plasma. First we present the physical conditions of the plasma
for the calculation of the transport coefficients.

3.1 Physical conditions

Physical properties of the BNS merger, which forms an unsta-
ble configuration are different from isolated neutron stars.
We consider simplest possible constituents of post-merger
object of electron-ion plasma with fully ionized ions and free
mobile electrons in the low density (up to 1012g cm−3), high
magnetic field (up to 1017G) and high temperature (T ∼ 15
MeV) regime of BNS merger. Electron density ne is related
to ion density ni via ne = Zni . We consider the magnetic

field present along the z direction. Scattering of electrons
with ions only contribute in electrical conductivity. In the
absence of magnetic field the electron density can be written
as,

ne = 2

(2π)3

∫ ∞

0
f0

(
εp

)
d3 p, (26)

where, f0(εp) = 1/(exp(
εp−μ

T ) + 1), T is the temperature.
In absence of magnetic field energy of the electrons are given

by εp =
√
p2
f + m2, where, p f is the Fermi momentum.

The magnetically modified electronic energy states are
obtained as solutions of Dirac equations in presence of finite
magnetic field [46,47]. The positive energy states are denoted
by quantum numbers ε, pz, n, s. pz is the electron momen-
tum along the field which we consider along z direction,
s = ±1 is the helicity, and n = 0, 1, 2 enumerates the Lan-
dau levels. For non-zero B, μ ≡ μ(B) = (2π2ne)/mωB .
The energy of the relativistic electrons in presence of mag-

netic field is εp =
√
p2
z + m2 + 2nωBm.

The ground Landau level is non-degenerate with respect
to spin while the higher levels are doubly degenerate. The
number density of electrons in presence of magnetic field is
written as,

ne = mωB

(2π)2

∫ ∞

−∞
dpz

∑
n,s

f (εp), (27)

where, the sums are over n, s. The magnetic field strongly
quantizes the motion of electrons and different transport coef-
ficients receive significant contribution when the electrons
are confined to the zeroth Landau level. We do not consider
the situation when ions receive quantum modifications due to
the magnetic field. Parameters which determine zeroth level
population are as follows [48],

Tce ≈ 1.343 × 108 B12 K,

ρB = 7.045 × 103 A

Z
(B12)

3/2 g cm−3. (28)

In the above equation, B12 = B/1012, ωce is the cyclotron
frequency for electrons. B is strongly quantizing if ρ < ρB

and T � Tce.
It is convenient to introduce the relativistic parameters

xr = pF/m ∼ 1.008(
ρ6Z
A )1/3 (where ρ6 = ρ/106), Tr ∼

5.930 × 109 K. The electron-ion plasma is relativistic for
xr � 1 and T � Tr . Thus the electrons become relativistic
when T > 5 × 109 K and density ρ ∼ 106 g cm−3.

The momentum of an electron is related to the energy

via the relation pnz/m =
√

(εp/m)2 − 2bn − 1. From this
expression one can obtain the maximum Landau level that
the electrons can populate and is given by the integer part of
ν = (E2 − 1)/2b. The energy of the electrons is constrained
by the relation (E2 − 2b) < 1 to meet the condition of
lowest Landau level. This is an important condition for the
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Fig. 2 The comparison of σ (upper plots) and κ (lower plots) with ρ

for Fe (solid lines) and Mo (dotted lines). The left panel plots are for
magnetic field 1017 G and the right ones are for B = 7.5 × 1016 G. In

each plot we have three curves for each element corresponding to three
different temperatures 1.4 × 1011 K, 2 × 1011 K, 5 × 1011 K

plots of σ and κ as we describe later in this section. The
parameters for density, temperature and magnetic field are
appropriately chosen for relativistic quantized electrons to
simultaneously meet the physical conditions applicable for
the merging scenario also. We consider Fe and Mo for the
numerical analysis of both the coefficients. The reason behind
choosing these elements is given in the Appendix B.

3.2 Variation with density

Figure 2 shows the variation of σ and κ given in Eqs. (24) and
(25) with ρ for different temperatures and different magnetic
fields for different elements Fe and Mo. In order to consider
electrons to be relativistic, the density and temperatures are
chosen as ρ � 106 g cm−3 and T � 5×109 K respectively.
For fixed B, μ increases with ρ and electrons start to popu-

late higher Landau levels. Since, we are interested in popula-
tion of the zeroth Landau level, the density and temperature
should also satisfy ρ < ρB and T � Tce as given in Eq.
(28). With these two conditions, both the coefficients have
been obtained by numerically integrating the expressions in
Eqs. (24) and (25). In Fig. 2, the upper and lower panel plots
are for the variation of σ and κ with ρ respectively. The left
panel plots have been drawn considering magnetic field B =
1017 G and 7.5 × 1016 G in the right panel. Each plot has
three curves corresponding to three different temperatures
1.4 × 1011 K, 2 × 1011 K and 5 × 1011 K for each element.
This is observed from the figure that at temperatures 5×1010

K and 2 × 1010 K, prominent humps are present in both the
coefficients. The origin of the hump is due to the fulfillment
of the weak degeneracy condition (|εp − μ| ∼ T ) of elec-
tron distribution function. The nature of the curve resembles
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Fig. 3 The comparison of σ (upper panel plots) and κ (lower panel
plots) with T for Fe (solid lines) and Mo (dotted lines). The left
panel plots are for magnetic field 1017 G and the right ones are for

B = 7.5 × 1016 G. In each plot we have three curves of each element
corresponding to three different densities 3 × 1011 g cm−3, 3.5 × 1011

g cm−3, 4 × 1011 g cm−3

differentiated Fermi function at T � μ. As the tempera-
ture increases, the hump gets flattened since electrons start
becoming non-degenerate. In each plot of the figure curves
are drawn for two different materials Fe (solid lines) and Mo
(dotted lines).

3.3 Variation with temperature and magnetic field

Figure 3 shows variation of σ and κ with T for different
densities. The σ in Fig. 3a can be fitted as σ = (a+b×T c)−1,
with a = 1.45 × 10−25, b = 1.05 × 10−46 and c = 1.919.
At low temperature the effect of T c is very small, hence, σ is
constant. On the other hand at high temperature σ ∝ T−c and
decreases with temperature. Thus, at higher temperatures, the

electrons become classical obeying the inverse dependence
of temperature.

The temperature dependence of κ can be attributed to low
temperature behaviour of Fermi function whose derivative
shows a hump when |εp − μ| ∼ T . In each plot of Fig. 3,
we have three curves of each Fe (solid lines) and Mo (dotted
lines) for three different densities 3×1011 g cm−3, 3.5×1011

g cm−3 and 4 × 1011 g cm−3.
Figure 4 shows the variation of σ and κ with B for different

densities. The fitting parameters for the σ with B is given by,
σ = 5.15×1027−2.71×1011B+5.30×10−6B2. Increasing
the magnetic field, σ increase with B and saturates. Variation
of κ with B is given by the polynomial equation κ = 2.43 ×
1023 − 81.2 × 105B + 8.85 × 10−11B2 − 3.13 × 10−28B3.
κ shows similar trend like σ with B (Fig. 6).
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Fig. 4 The comparison of σ (upper panel) and κ (lower panel) with B for different densities. The temperatures chosen are 2 × 1010 K (left panel)
and 5 × 1010K (right panel). The choice of elements are Fe (solid lines) and Mo (dotted lines)

3.4 Effect of HDL modified propagator

In the Fig. 5 we explicitly estimate the modification induced
in σ and κ when electron-ion interact through HDL photon
propagator and also compare the case when these plasma con-
stituents interact through static, longitudinal photon propaga-
tor. The upper panel is for variation of σ and the lower panel
is for κ . The left panel considers magnetic field of B = 1017 G
and the right panel B = 5×1016 G. In all the four plots we con-
sider T = 2 × 1010 K. Blue curves represent the coefficients
when the collision integral is screened through static, longi-
tudinal photon propagator relevant in non-relativistic plasma
and black curves when the constituents interact through fre-
quency dependent HDL photon propagator required in the
relativistic plasma. We find that the inclusion of HDL propa-
gator reduces the values of both the coefficients substantially.
For σ the maximum value of the curve decreases by a factor

of 31 in comparison to the case when the collision integral is
Debye screened, whereas, for κ the factor of reduction is 20.

It is known that modifications to different equilibrium
and non-equilibrium properties of plasma due to inclusion
of HDL propagators emerge from frequency dependent pho-
ton propagator. The reduction in both the transport coeffi-
cients shown above arises due to the increase in the collision
integral caused by non-zero frequency in both the longitu-
dinal and transverse components of the photon propagator.
The electromagnetic perturbation to the distribution function
(Ψ ) is inversely proportional to I f i and σ, κ are directly pro-
portional to Ψ . Hence, increment in Ψ decreases both the
coefficients. The increment in I f i with the inclusion of HDL
photon propagator can be seen from Eq. (22). The second
term in Eq. (22) is dependent on vk < 1. vk reduces the
numerator of second term in Eq. (22). In the denominator of
the same equation q2⊥ < 2mωB and m2

D < 2mωB lead to
u < 1, ζ < 1 respectively. Hence, the reduction due to small
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Fig. 5 Plots of σ (upper panel) and κ (lower panel) with ρ comparing
static, Coulomb screening in non-relativistic plasma (blue) and dynam-
ical screening in relativistic plasma (black) at fixed temperature of

2 × 1010 K. The left panel curves are for B= 1017 G and the right
curves are for B= 5 × 1016 G. The choice of elements are Mo (dotted
lines) and Fe (solid lines)

value of vk gets compensated and collision integral increases
due to frequency dependent dynamical screening.

3.5 Estimation of dissipation time scales

In this paper we give quantitative estimations of both
the time scales related to electrical and thermal trans-
port coefficients. The magnetic field decay (or diffusion)
timescale due to Ohmic dissipation is given by the well-
known expression [19,49], τσ = 4πσλ2

B/c2. The time
scale is dependent on the two factors magnetic field scale
height (λB) and σ . For a typical value of λB ∼ 10−4 cm
(λB ≥ λm f p(electron mean free path) ∼ 10−4 cm, λB <

λlim(limiting magnetic field scale height) ∼ 10−3 cm) we
obtain τσ ∼ 15 ms which is well within the range of survival

time period of neutron star merger. Choice ofλB satisfies both
the conditions specified by Ref. [19], λm f p < λB > λlim .
With the same choice of λB , τσ ∼ 600 ms in the non-
relativistic scenario. We emphasize on the reduction of time
scale due to inclusion of dynamical screening in the calcula-
tion in contrast to the scenario when electrons-ions interact
through longitudinal plasmon.

Thermal conduction time scale is defined as τκ =
cvΔz2/6κ , where, cv is the specific heat and Δz is the
region which is hotter than surrounding by a temperature
difference ΔT . The contribution of degenerate relativistic

electrons in specific heat is, cv = 5.4 × 1019
(
ne
n0

)2/3
T9,

n0 is the nuclear saturation density and T9 = T/109. For
ne = 0.57 × 1035 cm−3, temperature T = 2 × 1010 K and
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Fig. 6 The variation of κ/σ with T for different values of densities
3 × 1011 g cm−3, 3.5 × 1011 g cm−3, 4 × 1011 g cm−3. The chosen
magnetic field is 1017 G

Δz ∼ 25 cm, thermal equilibration time scale becomes ∼ 50
ms which is of the order of time scale of the merged object.
For Δz ∼ 1 km, the time scale is much greater than the
survival time period of the merged compact star. However,
the estimation of time scales presented here demands a more
detailed hydrodynamic calculation to assess the inclusion of
dissipation and resistivity in magneto-hydrodynamic simu-
lation of BNS mergers.

3.6 Validity of Wiedemann–Franz law

In a typical degenerate plasma, electrons’ conduction domi-
nates system’s dissipation coefficients through electrical and
thermal coefficients. This suggests linear increment in σ/κ

with T known as Wiedemann–Franz law. From the plot
of σ in Fig. 3, we see that when T < 5 × 1011 K (for
ρ = 4 × 1011gm cm−3) σ is temperature independent. For
T > 5 × 1011 K, σ decreases with temperature. However, κ

increases with temperature and after the mentioned tempera-
ture, it decreases. Hence, κ/σ first increases with temperature
and after 5×1011 K it decreases, violating Wiedemann–Franz
law. From Eqs. (24) and (25) it is evident that if (εp−μ) = T
linear scaling of temperature exists between κ and σ . At tem-
peratures less than T < 5 × 1010 K, (εp − μ) < T , hence,
σ/κ ∝ T 3. In both the temperature domains of T < 5×1010

K and T > 5 × 1010 K, degeneracy condition |εp − μ| � μ

gets satisfied.

4 Summary and conclusions

In this work, we have calculated the quantized longitudi-
nal electronic transport coefficients in dynamically screened
hot and dense magnetized QED plasma involved in binary

neutron star merger simulations. The calculation considers
scattering of electrons with ions through screened electro-
magnetic force in electron-ion plasma. We have presented
the plots for the variation of transport coefficients with den-
sity ( ∼ 1012 g cm−3), temperature (∼ 1010 K) and magnetic
field (∼ 1017 G) for two elements Mo and Fe. The scales
for the generation of the plots are chosen so that they obey
the conditions of relativistic electrons at density ρ > 106

g cm−3, temperature T > 5.93 × 109 K and zeroth Lan-
dau level population by obeying

√
E2 − 1/2b � 1. These

two constraints indicate, high magnetic field and low density
regime of BNS mergers as the valid physical domain of our
calculation.

For the calculation of both electrical and thermal conduc-
tivities, we have assumed particles are slightly out of equi-
librium which allows us to solve the Boltzmann equation
numerically. We calculate electron-ion scattering amplitude
with screened electromagnetic interaction of magnetically
modified spinors. The off-equilibrium distribution function
has been obtained by solving the Boltzmann kinetic equation
in relaxation time approximation. However, we have not con-
sidered the finite size of the nuclei and ion structure function
for the calculation of the relaxation rate.

The electromagnetic interaction between electrons and
ions have been incorporated through HDL propagator in
the calculation. The calculation should account for magneti-
cally modified anisotropic photon propagator; however in the
present paper, we have considered only isotropic HDL propa-
gator. For the screening mass zero temperature magnetically
modified Debye mass has been incorporated but in the hot
and dense plasma, inclusion of finite temperature screening
mass would be more relevant.

We have found that the inclusion of the HDL propagator
in the relativistic plasma reduces the values of both σ and κ

in contrast to static screening in the non-relativistic plasma.
The frequency dependent screening in the HDL propagator
enhances the collision integral. The off equilibrium distribu-
tion function is inversely proportional to the collision integral
and the transport coefficients are directly proportional to Φ.
Hence, enhancement in the collision integral decrease both
the transport coefficients at high density in the degenerate
regime. We also observe cubic temperature scaling between
κ and σ violating the Wiedemann–Franz law.

A rough estimation of diffusion and thermal equilibration
time scales from the expressions of quantized σ , κ including
frequency dependent screening have also been attempted.
The obtained Ohmic time scale has found out to be of the
same order as the survival time of the merged compact object
due to reduction in the value of σ (for λB � cm). The ther-
mal equilibration time scale can also be found to match with
the time scale of the merged object when Δz ∼ cm. One can
infer from the analysis that many-body effects play an impor-
tant role in determining the dissipative time scales relevant in
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the neutron star merger in the low density, high temperature
and high magnetic field regime if the length-scales are of the
order mentioned above. This estimation of dissipation time
scales of the transport coefficients requires rigorous hydro-
dynamic formulation for more realistic values of λB and Δz.
The current calculation of σ and κ can be implemented in
modeling the magneto-thermal evolution of the merged com-
pact object as well.

In the current paper, we have considered only longitudinal
component of the transport coefficients (and ignored all the
other tensorial components) in the equation for magnetic-
field evolution in plasma. The realistic estimate of τσ and
τκ can only be obtained if all the components of conductiv-
ity tensor are known in the background of relevant equation
of state for neutron star merger. However, our calculations
presented in this paper provide a significant step towards
conjoining the complex microphysical effects in plasma with
the GRMHD simulations. The present formalism of transport
theory can be extended in relativistic, magnetised QCD mat-
ter with certain modifications like inclusion of QCD coupling
constant, diagrams of strong interaction and proper vertex
corrections.
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Appendix A

In this appendix, we present the important steps for the eval-
uation of electron-ion scattering rate in presence of magnetic

field. An electron of momentum p ≡ (εp, �p) scatters with an
ion of momentum k ≡ (εk, �k) leading to the final momentum
states p′ ≡ (εp′ , �p′) and k′ ≡ (εk′ , �k′). The scattering rate
from initial state to final state in absence of magnetic field is
given by,

I f i = 1

2εp

∫
d3 p′

(2π)32εp′

∫
d3k

(2π)32εk

∫
d3k′

(2π)32εk′

×[ f0(εp)g0(εk)
(

1 − f0(ε
′
p)

)

− f0(ε
′
p)g0(ε

′
k)

(
1 − f0(εp)

)]
× (2π)4 δ

(
εp + εk − εp′ − εk′

)
×δ3

(
�p + �k − �p′ − �k′

)
|M f i |2 (29)

The above equation is modified in presence of magnetic field,

I f i = eB

16(2π)5

∑
n′,p′

z ,s
′

∫
dp′

zdyB

∫
d3kdqy

∫
dΩk

4π

×g f (k)
(
Φn,pz ,s − Φn′,p′

z ,s
′
)

δ(εp + εk − ε′
p − ε′

k)

×
∑
qx ,qz

δk′
x−kx ,qx δk′

z−kz ,qz |M f i |2, (30)

where, yB = px/mωB and Φn,pz ,s has already been defined
in the Introduction. We have inserted

∫
dΩk/4π = 1 in the

above equation. The argument of delta function can be writ-
ten as follows,

δ(εp + εk − εp′ − εk′) = δ(εk − εk′ − p̂.�q) (31)

where, we have used ε|p′| = ε|p−q| = εp − p̂.�q . The angular
integrals of �k can be expressed as,
∫

dΩk

4π
δ( p̂.�q − �vk .�q) = 1

2|�q|∫
dΩk

4π
δ( p̂.�q − �vk .�q)( p̂.k̂ − p̂.q̂q̂.k̂)2

= 1

4|�q|

(
1 − ( p̂.�q)2

�|q|2
)(

v2
k − ( p̂.�q)2

�|q|2
)

. (32)

Equation (30) can further be written as,

I f i = ni
32(2π)2

∑
n′,p′

z ,s
′

∫
dqzdqx

dqy
�|q|

×
[
Φn,pz ,s − Φn′,p′

z ,s
′
]
|M f i |2, (33)

where, we have changed the variable dy′
B = dqx/mωB fol-

lowing momentum conservation p′
x − px = qx . In the above

equation, ni is the number density of ions which can be
expressed in terms of electron number density as ni = ne/Z .
Further, ne can be expressed in terms of the Debye mass as
ne = μm2

D/3e2.
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Next we introduce a dimensionless variable y = qz/|�q|,

I f i = μm2
DeB

3 × 32Ze2(2π)2

∑
n′,p′

z ,s
′

∫
dydqxdqy

×[Φn,pz ,s − Φn′,p′
z ,s

′ ]|M f i |2. (34)

In order to calculate |M|2, we use following electronic spinor
in presence of magnetic field,

Ψ (r) = exp[i(px x + pzz)]√
Lx Lz

⎛
⎜⎜⎝

α̃ ÃHn−1(ξ)

−sα̃β̃ H̃n(ξ)

sβ̃ ÃH̃n−1(ξ)

β̃ B̃ H̃n(ξ)

⎞
⎟⎟⎠ . (35)

Using above spinors and the expression for photon propaga-
tor (Eq. (15)) in Eq. (8) in Sect. 2 one obtains,

∑
spin

|M|2 =
(

4π Ze2
)2

[
2πym2

D(
q2⊥ + ReΠL

)2 + ImΠ2
L

− 2πym2
Dv2

k

2(q2⊥ + ReΠT )2 + ImΠ2
T )

] ∑
n′,p′

z ,s
′

[
ss′α̃2 + β̃2

]

×
[
ss′ Ã Ã′ In′−1 In−1 + Ã Ã′ In′−1 In−1

]2
, (36)

where, s and s′ are ±,

(
α̃

β̃

)
=

⎛
⎝

√
1
2 (1 + m

εp
)√

1
2 (1 − m

εp
)

⎞
⎠ , (37)

(
Ã
B̃

)
=

⎛
⎜⎜⎜⎜⎝

[
1
2

(
1 + spz√

ε2
p−m2

)]1/2

[
1
2

(
1 − −spz√

ε2
p−m2

)]1/2

⎞
⎟⎟⎟⎟⎠ (38)

and

In′,n =
∫ ∞

−∞
exp(iqy y)H̃n′(ξ ′)H̃n(ξ)dy. (39)

Hn(ξ) is the Hermite polynomial,

Hn(ξ) = mωB

π

1
4
(2nn!)−1

2 exp
−ξ2

2 Hn(ξ), (40)

ξ = √
mωB . Inserting In′,n in Eq. (36) and performing

the y integration we obtain,

∑
spin

|M|2 =
(

4π Ze2
)2 [ 2πym2

D

(q2⊥ + ReΠL)2 + ImΠ2
L

− 2πym2
Dv2

k

2(q2⊥ + ReΠT )2 + ImΠ2
T )

] ∑
n′,p′

z ,s
′

[
1 + ss′

+m2

ε2
p

(1 − ss′)
[
1 + ss′ − 1

2

ss′

ε2
p − m2 (η′ pn′ − pz)

2
]

×
[
F2
n′,n(u) + F2

n′−1,n−1(u)]
]

− ss′uωBm

ε2
p − m2

×
[
F2
n′−1,n(u) + F2

n′,n−1(u)
]

− spz + s′η′ p′
n√

ε2
p − m2

[
F2
n′,n(u) − F2

n′−1,n−1(u)
]

(41)

where, η′ = ±, Fn′,n(u) = exp−u/2u
n−n′

2

√
n′!
n! L

n−n′
n′ and

u = 1
2mωB

(q2
x + q2

y ). The functions Ln−n′
n′ (u) are Laguerre

polynomials and Fn′,n(u) are normalized to∫ ∞
0 F2

n′,ndu = 1.
Now, to perform the integration in y in Eq. (34) we use

the following sum rule,

∫ 1

−1

dy

y

1

2π

2 Im ΠL(y)

(q2⊥+Re ΠL(y))2 + (Im ΠL(y))2

− 2v2
k Im ΠT (y)

(q2⊥+Re ΠT (y))2 + (Im ΠT (y))2

=
(

1

q2⊥ + Re ΠT,L(y=∞)
− v2

k

q2⊥ + Re ΠT,L(y=0)

)
.

(42)

In the limiting case, Re ΠT,L(y=∞) = m2
D/3, Re ΠT

(y=0) = 0, Re ΠL(y=0) = m2
D .

Using the above relations the collision integral becomes,

I f i = ni
32(2π)2

∫
dqxdqy

(
Φn,pz ,s − Φn′,p′

z ,s
′
)

×
⎡
⎣ 2

3(q2⊥ + m2
D

3 )(q2⊥ + m2
D)

− v2
k

6q2⊥(q2⊥ + m2
D

3 )

⎤
⎦F ,

(43)

where,

F = 4πσ0

m2

∑
n′,p′

z ,s
′
[1 + ss′ + m2

ε2
p

(1 − ss′)

×[1 + ss′ − 1

2

ss′

ε2
p − m2 (η′ pn′ − pz)

2]

×[F2
n′,n(u) + F2

n′−1,n−1(u)]]
− ss′uωBm

ε2
p − m2 [F2

n′−1,n(u) + F2
n′,n−1(u)]

− spz + s′η′ p′
n√

ε2
p − m2

[F2
n′,n(u) − F2

n′−1,n−1(u)]. (44)

We change the variable qy to u and perform the integration
as follows,
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Fig. 7 The variation of σ (left) and κ (right) with ρ for different elements. The magnetic field is chosen as 1017 G and temperature as 2 × 1010 T.
We show the behaviour of the transport coefficients for two different EOS s given in Refs. [50,51]

∫
dqxdqy = mωB

∫
dqxdu√

2mωBu − q2
x

= mωBπ

∫
du (45)

Finally, the particle scattering rate becomes,

I f i = ni
2

∑
n′,p′

z ,s
′

∫
du

(
Φn,pz ,s − Φn′,p′

z ,s
′
)

×
[

1

3(u + ζ
3 )(u + ζ )

− v2
k

6u(u + ζ
3 )

]
F , (46)

where, ζ = m2
D/2mωB .

Appendix B

In this appendix, we show the compariosn of the conductivi-
ties considering two equation of states (EOSs), BPS (Baym,
Pethick and Surtherland) [50] and magnetic BPS model [51]
and comment on considering Fe and Mo for numerical anal-
ysis in the paper. In Ref. [50] the equation of state of zero-
temperature matter in complete nuclear equilibrium is given
for mass densities below 5 × 1014 g cm−3. In Ref. [51], the
BPS [50] has been extended to include the physical param-
eters for a low density plasma in presence of high magnetic
field relevant for neutron star crust. In the Fig. 7, we plot σ

and κ with ρ for these two different EOSs. From the plot
Fig. 7 it is evident that the BPS curve matches well with the
Mo curve for both σ and κ . We also include Fe for reference.
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