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Abstract In this paper, we obtain exact phantom (A)dS
black hole solutions in the context of F(R) gravity with
topological spacetime in four dimensions. Then, we study
the effects of different parameters on the event horizon. In
the following, we calculate the conserved and thermody-
namic quantities of the system and check the first law of
thermodynamics for these kinds of black holes. Next, we
evaluate the local stability of the topological phantom (A)dS
black holes in F(R) gravity by studying the heat capacity
and the geometrothemodynamic, where we show that the
two approaches agrees. We extend our study and investigate
global stability by employing the Gibbs potential and the
Helmholtz free energy. In addition, the effects of different
parameters on local and global stabilities will be highlighted.

1 Introduction

The observational evidence such as the luminosity distance
of Supernovae type Ia [1,2], wide surveys on galaxies [3],
and the anisotropy of cosmic microwave background radia-
tion [4], indicates that our Universe is currently undergoing
a period of acceleration. Identifying the cause of this late-
time acceleration is a challenging problem in cosmology.
To describe this acceleration, some candidates are proposed.
One of the simplest ways to address this cosmic acceleration
is related to modifying the left-hand side of general relativity
(GR) field equations. This approach is known as the modified
theory of gravity. Among these modified theories of gravity,
F(R) gravity includes some exciting features from both cos-
mological and astrophysical points of view. The gravitational

a e-mail: eslampanah@umz.ac.ir (corresponding author)
b e-mail: esialg@gmail.com

action in this modified theory of theory is a general func-
tion of the scalar curvature R [5–8]. This theory can be fixed
according to the astrophysical and cosmological observations
[9–15]. Also, F(R) gravity coincides with Newtonian and
post-Newtonian approximations [16,17]. It may explain the
structure formation of the Universe without considering the
dark matter. Moreover, the whole sequence of the Universe’s
evolution epochs: inflation, radiation/matter dominance, and
dark energy may be extracted in F(R) gravity. Another pos-
sibility to explain this accelerated phase of our universe is
the introduction of an exotic fluid called dark energy [18],
where the fluid is isotropic with a negative pressure. An alter-
native to describe this fluid is the phantom scalar field [19],
where the energy density is negative, so the pressure is also
negative, and can model dark energy.

On the other hand, black holes are exciting objects to study
from theoretical and observational points of view. To study
the exciting properties of black holes in any theory of gravity,
we have to extract them. According to the mentioned features
of F(R) gravity, we are interested to extract black hole solu-
tions in this theory. However, the field equations of F(R)

gravity are complicated fourth-order differential equations,
and it is not easy to find exact black hole solutions, especially
in the present matter field. Indeed, adding a matter field to
F(R) gravity makes the field equations much more difficult.
However, some different (un)charged black hole solutions in
F(R) gravity are obtained in Refs. [20–31].

The introduction of phantom fields to describe physical
systems is old. Einstein and Rose [32] introduced the so-
called quasicharged bridge, where the Reissner–Nordström
solution was used, but with a pure imaginary charge, i.e.
q2 → −q2, thus introducing a spin-1 phantom field as mat-
ter describing this gravitational configuration, even though
they did not show the action of the system. Then several sit-
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uations arose where the kinetic energy was negative or the
field was phantom [33]. Phantom black hole solutions are
known in the literature [34–37]. Here, we want to investigate
what the contribution to the structure of the solution and its
fundamental physical properties is when we couple a spin-1
phantom field in a linear manner to the action of the F(R)

theory in a topological metric.
The paper is divided as follows: first, in Sect. 2, we estab-

lish the equations of motion of the F(R) theory, specify the
case of constant curvature, and obtain the solution. Subse-
quently, we define the essential thermodynamic quantities in
Sect. 3. In Sect. 4, we study local and global thermodynamic
stability as well as geomtrothemodynamics. We make our
concluding remarks in Sect. 5.

2 The field equations in F(R) gravity and black hole
solutions

Here, we consider F(R) gravity in which coupled with
Maxwell field as a matter source. The action of this theory
in four-dimensional spacetime is given by

IF(R) =
∫

∂M
d4x

√−g
[
F(R) + 2κ2ηF

]
, (1)

where the first term is related to the theory of F(R) gravity in
the form F(R) = R+ f (R), which R is scalar curvature, and
also, f (R) is an arbitrary function of scalar curvature R. In
addition, the second is the coupling with the Maxwell field,
when η = 1, or a phantom field of spin 1, when η = −1.
It is notable that F = FμνFμν is the Maxwell invariant.
Also, Fμν = ∂μAν − ∂ν Aμ is the electromagnetic tensor
field, and Aμ is the gauge potential. Moreover, κ2 = 8πG,
and G is the Newtonian gravitational constant. In the above
action, g = det (gμν) is the determinant of metric tensor gμν .
Hereafter, we consider G = c = 1.

We can obtain the equations of motion of F(R) theory by
varying the action (1) with respect to the gravitational field
gμν , and the gauge field Aμ, lead to the following forms

Rμν (1 + fR) − gμνF(R)

2
+

(
gμν∇2 − ∇μ∇ν

)
fR = 8πTμν,

(2)

∂μ

(√−gFμν
) = 0, (3)

where fR = d f (R)
dR . Also, Tμν is the energy–momentum ten-

sor, and for four-dimensional spacetime can be written

Tμν = 2η

(
1

4
gμνF − F α

μ Fνα

)
. (4)

We consider a topological four-dimensional static space-
time with the following form

ds2 = g(r)dt2 − dr2

g(r)
− r2d�2

k, (5)

where g(r) is the metric function. Also, in the above equation,
d�2

k is given by

d�2
k =

⎧⎨
⎩
dθ2 + sin2 θdϕ2 k = 1
dθ2 + dϕ2 k = 0
dθ2 + sinh2 θdϕ2 k = −1

, (6)

It is notable that the constant k indicates that the boundary
of t = constant and r =constant can be elliptic (k = 1), flat
(k = 0) or hyperbolic (k = −1) curvature hypersurface.

In the following, we want to obtain the solutions for the
constant scalar curvature is R = R0 = constant in four-
dimensional spacetime. The trace of Eq. (2) yields

R0
(
1 + fR0

) − 2 (R0 + f (R0)) = 0, (7)

where fR0 = fR∣∣∣R=R0

, and the solution for R0 gives

R0 = 2 f (R0)

fR0 − 1
. (8)

Substituting the Eq. (8) into Eq. (2), we obtain the equa-
tions of motion in F(R)-Maxwell (or phantom) theory which
can be written as

Rμν

(
1 + fR0

) − gμν

4
R0

(
1 + fR0

) = 8πTμν. (9)

In order to obtain electrically charged black hole solutions,
we consider a radial electric field which its related gauge
potential is in the following form

Aμ = h (r) δtμ (10)

We can find the following differential equation by using
Eqs. (3) and (5)

rh′′(r) + 2h′(r) = 0, (11)

where the prime and double prime are the first and the second
derivatives with respect to r , respectively. So the solution of
the Eq. (11) is

h(r) = q

r
, (12)

where q is an integration constant which is related to the
electric charge. Considering the obtained h(r) in Eq. (12),
the electromagnetic field tensor is given by

Ftr = ∂t Ar − ∂r At = q

r2 . (13)

Using the introduced metric (5) and the field equations
(9), we want to obtain exact solutions for the metric function
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g (r). After some calculation, we find the following differ-
ential equations

eqtt = eqrr = 2r3 (
1 + fR0

) (
r R0

2
− rg′′(r) − 2g′(r)

)

−4ηq2, (14)

eqθθ = eqϕϕ = 4r2 (
1 + fR0

) (
g (r) − k − r2R0

4
+ rg′(r)

)

+4ηq2, (15)

where eqtt , eqrr , eqθθ and eqϕϕ , respectively, are compo-
nents of t t , rr , θθ and ϕϕ of field equations (9). We are in
a position to obtain exact solutions for the constant scalar
curvature (R = R0= const). We can extract the following
metric function by considering Eqs. (14 ) and (15) as

g(r) = k − 2m

r
+ R0r2

12
+ η

q2(
1 + fR0

)
r2

, (16)

where m is an integration constant related to the total mass
of the black hole. The solution (16) satisfies all components
of the field equations (9).

One of quantities that can give us information about the
existence of singularity is related to the Kretschmann scalar.
Considering the four-dimensional spacetime in Eq. (5), with
the metric function (16), we can obtain the Kretschmann
scalar in the following form

Rαβγ δR
αβγ δ = R2

0

6
+ 48m2

r6 − 96mηq2(
1 + fR0

)
r7

+ 56η2q4

(
1 + fR0

)2
r8

, (17)

which indicates that the Kretschmann scalar diverges at r =
0. In other words, the Kretschmann scalar at r → 0, leads to

lim
r−→0

Rαβγ δR
αβγ δ −→ ∞. (18)

So, there is a curvature singularity located at r = 0. Also, it
is finite for r �= 0.

The asymptotical behavior of the Kretschmann scalar is
given by

lim
r−→∞ Rαβγ δR

αβγ δ −→ R2
0

6
, (19)

also, the asymptotical behavior of the metric function leads to

limr−→∞ g (r) −→ R0r2

12 , which shows the spacetime will
be asymptotically AdS, when we define R0 = −4�. It is
mentioned that we should restrict ourselves to fR �= −1, to
have physical solutions.

To show that there is at least an event horizon in which
covers the singularity, we have to find the real roots of the
obtained metric function (16). We plot the metric function
versus r in Fig. 1. As shown in Fig. 1, there is an event horizon
for the obtained metric function. Our findings indicate that

the obtained solution in Eq. (16) is related to the black hole
solution in F(R) gravity with Maxwell or phantom fields.
It is worthwhile to mention that the solution ( 16) reduces
to Reissner–Nordström-(A)dS, when fR0 = 1, R0 = − 4�

and η = 1. In addition, we encounter with the anti-Reissner–
Nordström-(A)dS (or phantom), when fR0 = 1, R0 = − 4�

and η = − 1. Also, we restrict ourselves to fR0 �= − 1.

3 Thermodynamics

Now, we are going to calculate the conserved and thermody-
namic quantities of the topological AdS phantom black hole
solutions in F(R) gravity to check the first law of thermody-
namics.

For studying the thermodynamic properties of the obtained
black hole solutions, it is necessary to express the mass (m)
in terms of the radius of the event horizon r+ and the charge
q as follows. Equating gtt = g(r) to zero, we have

m = kr+
2

+ R0r3+
24

+ ηq2

2
(
1 + fR0

)
r+

. (20)

Here, we want to obtain the Hawking temperature for these
black holes. The superficial gravity of a black hole is given
by

κ = g′
t t

2
√−gtt grr

=
∣∣∣∣
r=r+

= g′(r)
2

∣∣∣∣
r=r+

, (21)

where r+ is the radius of the events horizon. Considering the
obtained metric function (16), and by substituting the mass
(20) within the Eq. (21), one can calculate the superficial
gravity as

κ = k

2r+
+ R0r+

8
− ηq2

2
(
1 + fR0

)
r3+

, (22)

and by using the Hawking temperature as T = κ
2π

, we can
extract it in the following form

T = k

4πr+
+ R0r+

16π
− ηq2

4π
(
1 + fR0

)
r3+

. (23)

The electric charge of black hole per unit volume, V , can
be obtained by using the Gauss law as

Q = Q̃

V = Ftr
4π

∫ 2π

0

∫ π

0

√
gkdθdϕ = q

4π
(24)

where Ftr = q
r2 , and for case t = constant and r =constant,

the determinant of metric tensor gk is r4 det
(
d�2

k

)
(i.e.,

gk = det (gk) = r4 det
(
d�2

k

)
). It is worthwhile to

mention that in the above equation, we consider V =∫ 2π

0

∫ π

0

√
det

(
d�2

k

)
dθdϕ, where it is the area of a unit vol-

ume of constant (t , r ) space. Notable, V is 4π for k = 1.
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Fig. 1 The metric function g(r) versus r for different values of the
parameters. Left panels for η = 1, and right panels for η = −1

Considering Fμν = ∂μAν − ∂ν Aμ, one can find the
nonzero component of the gauge potential in which is At =

− ∫
Ftrdr , and therefore the electric potential at the event

horizon (U ) with respect to the reference (r → ∞) is given
by

U = −
∫ +∞

r+
Ftrdr = q

r+
. (25)

In order to obtain the entropy of black holes in F(R) =
R + f (R) theory, one can use a modification of the area law
which means the Noether charge method [38]

S = A(1 + fR)

4
, (26)

where A is the horizon area and is defined

A =
∫ 2π

0

∫ π

0

√
gθθgϕϕ

∣∣∣∣
r=r+

= r2
∣∣∣
r=r+

= r2+, (27)

so, the entropy of topological phantom AdS black holes per
unit volume, V , in F(R) gravity is given by replacing the
horizon area (27) within Eq. (26) as

S = S̃

V = (1 + fR)r2+
4

, (28)

which indicates that the area law does not hold for the black
hole solutions in R + f (R) gravity.

Using Ashtekar–Magnon–Das (AMD) approach [39,40],
we find the total mass of these black holes per unit volume,
V , in F(R) gravity as

M = M̃

V = m (1 + fR)

4π
, (29)

where substituting the mass (20) within the Eq. (29), yields

M = (1 + fR) r+
2

(
k + R0r2+

12

)
+ ηq2

2r+
. (30)

It is straightforward to show that the conserved and ther-
modynamics quantities satisfy the first law of thermodynam-
ics

dM = TdS + ηUdQ, (31)

where T = (
∂M
∂S

)
Q , and ηU =

(
∂M
∂Q

)
S
, and they are in

agreement with those of calculated in Eqs. (23) and (25),
respectively.

4 Thermal stability

Considering the black hole as a thermodynamic system, we
want to study the local and global stability. In the following,
we investigate the effects of the topological constant (k), the
constant scalar curvature (R0), and the parameter of η on the
local and global stability of the topological phantom (A)dS
black holes in F(R) gravity.
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4.1 Local stability

Here, we would like to study the local stability of the topo-
logical phantom (A)dS black holes in the context of F(R)

gravity. For this purpose, by considering these black holes
we will study the heat capacity and the geometrothemody-
namics.

4.1.1 Heat capacity

In the canonical ensemble context, a thermodynamic sys-
tem’s local stability can be studied by heat capacity. The
heat capacity carries crucial information regarding the ther-
mal structure of the black holes. This quantity includes three
specific exciting pieces of information:

(i) The discontinuities of heat capacity mark the possible
thermal phase transitions that the system can undergo.

(ii) The sign of it determines whether the system is thermally
stable or not. In other words, the positivity corresponds to
thermal stability while the opposite indicates instability.

(iii) The roots of heat capacity are also of interest since they
may yield the possible changes between stable/unstable
states or bound points.

Due to these important points, we want to calculate the
heat capacity of the solutions and investigation of local sta-
bility of the black holes by using such quantity.

Before obtaining the heat capacity, let us first re-write the
total mass of the black hole (30) in terms of the entropy (28)
in the following form

M (S, Q) = π2Q2 (1 + fR) η + S(SR0+3(1+ fR)k)
12

π
√
S (1 + fR)

, (32)

using the Eq. (32), we re-write the temperature in the follow-
ing form

T =
(

∂M (S, Q)

∂S

)
Q

=
S(SR0+(1+ fR)k)

4 − π2Q2 (1 + fR) η

2π S3/2√
1 + fR

.

(33)

The heat capacity is defind as

CQ = T(
∂T
∂S

)
Q

=

(
∂M(S,Q)

∂ S̃

)
Q(

∂2M(S,Q)

∂S2

)
Q

, (34)

by considering Eqs. (32) and (33), we can obtain the heat
capacity in form

CQ =
2S2

(
SR0

(1+ fR)
+ k

)
− 8π2Q2Sη

12π2Q2η + S
(

SR0
(1+ fR)

− k
) . (35)

In the context of black holes, it is argued that the root of
heat capacity

(
CQ = T = 0

)
is representing a border line

between physical (T > 0) and non-physical (T < 0) black
holes. We call it a physical limitation point. Indeed, the sys-
tem in the case of this physical limitation point has a change
in sign of the heat capacity. Also, it is believed that the diver-
gences of the heat capacity represent phase transition critical
points of black holes. So, the phase transition critical and
limitation points of the black holes in the context of the heat
capacity are calculated with the following relations
⎧⎪⎪⎨
⎪⎪⎩

T =
(

∂M(S,Q)
∂S

)
Q

= 0, physical limitation points

(
∂2M(S,Q)

∂S2

)
Q

= 0 phase transition critical points

.

(36)

Using Eq. (33) and solving it in terms of the entropy, we
can obtain physical limitation points as⎧⎪⎪⎨
⎪⎪⎩
Sroot1 = −(1+ fR)k

2R0
+

√
[(1+ fR)k2+16π2Q2ηR0](1+ fR)

2R0

Sroot2 = −(1+ fR)k
2R0

−
√

[(1+ fR)k2+16π2Q2ηR0](1+ fR)

2R0

.

(37)

To have the real root(s), we have to respect (1 + fR) k2 +
16π2Q2ηR0 ≥ 0. This constraint gives us information about
the effects of different parameters on the roots of temperature
(33). For example, the temperature has one root for k = 0,
provided ηR0 > 0. For k = ± 1, the temperature has two

roots when ηR0 < 0, provided R0 >
−(1+ fR)k2

6π2Q2η
. In addition,

the relation R0 >
−(1+ fR)k2

6π2Q2η
, imposes that for a large value of

the electrical charge and k = ± 1, the temperature does not
have any root when the constant scalar curvature is negative.
Indeed, the temperature of higher-charged black holes does
not have any root when k = ± 1 and R0 < 0.

In order to study the phase transition critical points (or
divergence points of the heat capacity), we have to solve the

relation
(

∂2M(S,Q)

∂S2

)
Q

= 0. So, we have

⎧⎪⎪⎨
⎪⎪⎩
Sdiv1 = (1+ fR)k

2R0
−

√
[(1+ fR)k2−48π2Q2ηR0](1+ fR)

2R0

Sdiv2 = (1+ fR)k
2R0

+
√

[(1+ fR)k2−48π2Q2ηR0](1+ fR)

2R0

,

(38)

where indicate that we have to respect (1 + fR) k2 −
48π2Q2ηR0 ≥ 0, for having the real divergent point(s). Our
analysis shows that the heat capacity has one divergent point
for k = 0, provided ηR0 < 0, and also there is no divergent
point when ηR0 > 0. According to Eq. (38), for large val-
ues of the electrical charge, the heat capacity does not have
any divergent point. In other words, the heat capacity of the
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Table 1 The local stability of the black holes for Q = 0.02, fR = 0.1, and different values of k

k Number of Sroot Number of Sdiv Physical area (T > 0) CQ > 0 Local stability and physical area

+ 1 1 2 S > Sroot
Sroot < S < Sdiv1

S > Sdiv2

Sroot < S < Sdiv1

S > Sdiv2

0 1 0 S > Sroot S > Sroot S > Sroot

− 1 1 0 S > Sroot S > Sroot S > Sroot

+ 1 2 1 Sroot1 < S < Sroot2
Sroot1 < S < Sdiv

S > Sroot2
Sroot1 < S < Sdiv

0 0 1 No area S > Sdiv No area

− 1 0 1 No area S > Sdiv No area

+ 1 0 1 Always positive S > Sdiv S > Sdiv

0 0 1 Always positive S > Sdiv S > Sdiv

− 1 2 1
S < Sroot1
S > Sroot2

Sroot1 < S < Sdiv
S > Sroot2

S > Sroot2

+ 1 1 0 S < Sroot S > Sroot No area

0 1 0 S < Sroot S > Sroot No area

− 1 1 2 S < Sroot
Sroot < S < Sdiv1

S > Sdiv2

No area

First three rows are for R0 = 1, and η = 1. Second three rows are for R0 = − 1, and η = 1. Third three rows are for R0 = 1, and η = − 1. Fourth
three rows are for R0 = − 1, and η = − 1.

higher-charged black holes does not have any divergent point.
For k = +1 ( k = −1), the heat capacity has two divergence
points when η > 0 (η < 0) and R0 > 0 (R0 < 0).

Now we can evaluate the local stability by using the behav-
ior of temperature and heat capacity. For this purpose, we plot
Fig. 2 and analyze them with more details in Table 1.

Our findings reveal some interesting behaviors which are:

(i) The topological charged AdS black holes in F(R) gravity
satisfy the local stability condition when they have large
radii (or large entropy), see the first three rows of Table 1,
for more details.

(ii) The charged dS black holes with medium radii can be
only locally stable for k = 1 (see the second three rows
of Table 1, for more details).

(iii) The phantom AdS large black holes have local stability
(see the third three rows of Table 1, for more details).

(iv) There is no local stability area for the phantom AdS black
holes with different topological constants (see the fourth
three rows in Table 1, for more details).

We plotted the Fig. 2, for more details. Two up panels in Fig. 2
belong to the charged (A)dS black holes in F(R) gravity for
k = + 1 and k = − 1. Also, the two down panels are related
to phantom (A)dS black holes in F(R) gravity for k = + 1
and k = − 1. In Fig. 2, the hatched areas belong to the
physical and local stability of these black holes.

4.1.2 Geometrothermodynamics

Here, we want to study the phase transition of the topolog-
ical phantom (A)dS black holes in F(R) gravity through
geometrothemodynamics. In the geometrothemodynamics
method, a thermodynamical metric (thermodynamical phase
space) is constructed by considering one of the thermody-
namical quantities as thermodynamical potential and other
quantities as extensive parameters. By calculating the Ricci
scalar of such a thermodynamical metric and determining
its divergence point(s), one can obtain the phase transition
point(s) of the system. In this regard, several thermodynam-
ical metrics have been introduced in order to build a geo-
metrical phase space by thermodynamical quantities. The
famous ones are the Weinhold [41,42], Ruppeiner [43,44],
and Quevedo metrics [45,46]. It was previously argued that
these metrics may not provide us with a completely flaw-
less mechanism for evaluating the geometrothemodynam-
ics of specific types of black holes (see Refs. [47–52], for
more details). Recently, a new metric (which is known as
HPEM metric [47]), was introduced in order to solve the
problems that other metrics may confront with it. In this sec-
tion, we would like to investigate the phase transition of the
topological phantom (A)dS black holes in the non-extended
phase space via the geometrothemodynamics method which
is described by the HPEM metric.

The HPEM metric is given by [47]

ds2 = SMS

M3
QQ

(
−MSSdS

2 + MQQdQ
2
)

, (39)
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Fig. 2 The heat capacity (CQ ) and temperature (T ) versus S for Q =
0.02 and fR = 0.1. We plot them in different scales in order to be more
clear

where MS = ∂M
∂S , MSS = ∂2M

∂S∂S , and MQQ = ∂2M
∂Q∂Q . Since

we are looking for the divergence points of the HPEM’s Ricci
scalar and because its numerator is a smooth finite function,
we focus on the denominator of the HPEM’s Ricci scalar. The
denominator of the HPEM’s Ricci scalar is given by [47]

denom(R) = 2S3M3
SM

2
SS . (40)

To have a proper geometrothemodynamics approach for
studying phase transitions, the thermodynamic Ricci scalar
should diverge at points which we mentioned before with

bound
(
M = ∂M

∂S = 0
)

and phase transition
(
MSS = ∂2M

∂S2 = 0
)

points (see Eq. (36), for more details). Regarding Eq. (40), it
is evident that the divergence points and root of the heat
capacity coincide with divergences of the HPEM’s Ricci
scalar. In other words, the denominator of the Ricci scalar of
the HPEM metric contains the numerator and denominator of
the heat capacity (Eq. (34)). Indeed the divergence points of
the Ricci scalar of the HPEM metric coincide with both roots
and phase transition critical points of the heat capacity. So,
all the physical limitations and the phase transition critical
points are included in the divergences of the Ricci scalar of
the HPEM metric (see Fig. 3, for more detail). As a result, the
HPEM metric provides a successful mechanism for investi-
gating the bound and phase transition points of such black
holes.

Looking at the Fig. 3, we can find another important
behavior of the HPEM metric which is related to the different
behavior of the Ricci scalar before and after its divergence
points. The behavior of HPEM’s Ricci scalar for divergence
points related to the physical limitation and phase transition
critical points is different. In other words, the sign of HPEM’s
Ricci scalar changes before and after divergencies when the
heat capacity is zero. However, the signs of the Ricci scalar
are the same when the heat capacity encounters with diver-
gences. These divergences are called � divergences. There-
fore, considering this approach also enable us to distinguish
the physical limitation and the phase transition critical points
from one another (see Fig. 3, for more details).

4.2 Global stability

In the context of the grand-canonical ensemble, the global
stability of a thermodynamic system can be studied by
Gibbs’s potential. In other words, the negative of the Gibbs
potential determines the global stability of a thermodynamic
system. On the other hand, the negative of the Helmholtz
free energy of a thermodynamic system satisfies the global
stability in the context of the canonical ensemble. Therefore,
by using the Gibbs potential and the Helmholtz free energy,
we want to evaluate the global stability of the topological
phantom (A)dS black holes in F(R) gravity.

4.2.1 Gibbs potential

The Gibbs potential is defined in the following form

G = M (S, Q) − T S − ηUQ, (41)

by using the relation ηU =
(

∂M
∂Q

)
S

and Eqs. (32) and (33),

we get the Gibbs potential as

G =
S

12 (3 (1 + fR) k − SR0) − π2Q2 (1 + fR) η

2π
√
S (1 + fR)

, (42)
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Fig. 3 The heat capacity (CQ ) and temperature (T ) and Ricci scalar
(R) versus S for Q = 0.02 and fR = 0.1. We plot them in different
scales to be more clear

where the roots of the Gibbs potential are given by
⎧⎪⎪⎨
⎪⎪⎩
SG1 = 3(1+ fR)k

2R0
−

√
3[3(1+ fR)k2−16π2Q2ηR0](1+ fR)

2R0

SG2 = 3(1+ fR)k
2R0

+
√

3[3(1+ fR)k2−16π2Q2ηR0](1+ fR)

2R0

.

(43)

In order to study global stability, we must consider G < 0.
In other words, the black holes have a global stable when
G < 0. To evaluate the global stability of the topological

phantom (A)dS black holes in F(R) gravity, we plotted four
panels in Fig. 4 (see the panels (4a), (4b), (4c ), and (4d) in
Fig. 4). Our analysis reveals some results which are:

(i) The charged AdS black holes with k = 0, and k = −1
are stable everywhere (i.e., S ∈ (0,+∞)). For k = 1,
the global stability is located in the range S ∈ (

0, SG1

)∪(
SG2 ,+∞)

, see the panel (4a) in Fig. 4.
(ii) The charged dS black holes with small radii and differ-

ent topological constants have global stability. In other
words, the Gibbs potential is negative for S < SG (see
the panel (4b) in Fig. 4).

(iii) The phantom AdS black holes in F(R) gravity with
large radii and different topological constants are stable
because the Gibbs potential is negative for S > SG (see
the panel (4c) in Fig. 4).

(iv) Whereas the Gibbs potential is negative in the range S ∈(
0, SG1

) ∪ (
SG2 ,+∞)

for the phantom dS black holes
in F(R) gravity with k = −1. In other words, these
black holes are stable in these areas (i.e., S ∈ (

0, SG1

) ∪(
SG2 ,+∞)

), see the panel (4d) in Fig. 4.

4.2.2 Helmholtz free energy

Another mechanism for determining the global stability of
a thermodynamic system is related to the Helmholtz free
energy. It is notable that in the usual case of thermodynamics
the Helmholtz free energy is given by F = U−T S. However,
in the context of the black holes, Helmholtz free energy is
defined in the following form

F(T, Q) = M (S, Q) − T S, (44)

where by considering Eqs. (32) and (33), we can obtain the
Helmholtz free energy as

F(T, Q) = 3π2Q2 (1 + fR) η − S
12 (SR0 − 3 (1 + fR) k)

2π
√
S (1 + fR)

,

(45)

and by solving F(T, Q) = 0, we get the roots of the
Helmholtz free energy that are
⎧⎪⎪⎨
⎪⎪⎩
SF1 = 3(1+ fR)k

2R0
− 3

√
[(1+ fR)k2+16π2Q2ηR0](1+ fR)

2R0

SF2 = 3(1+ fR)k
2R0

+ 3
√

[(1+ fR)k2+16π2Q2ηR0](1+ fR)

2R0

. (46)

The global stability areas are given when the Helmholtz
free energy is negative (i.e., F < 0). To evaluate the global
stability of the topological phantom (A)dS black hole in
F(R) gravity, we plot the Helmholtz free versus S in Fig. 4.
Our results are:
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Fig. 4 G (and F) versus S for Q = 0.02, and fR = 0.1. Also, k = 1
(continuous line), k = 0 (dashed line), and k = −1 (dotted line)

(i) The charged AdS black holes with different topological
constants are stable when S > SF2 . Indeed, the large
black holes have global stability (see the panel (4e) in
Fig. 4).

(ii) There are only stable areas for the charged dS black holes
with k = −1 when the entropy is located between two
roots (i.e., SF1 < S < SF2 ), see the panel (4 f ) in Fig. 4.

(iii) The phantom AdS black holes with k = 0, and k = −1
are stable. Whereas for k = 1, the global stability areas
are located in the range S ∈ (

0, SG1

) ∪ (
SG2 ,+∞)

, see
the panel (4 g) in Fig. 4.

Fig. 5 The Gibbs potential and the Helmholtz free energy versus S for
Q = 0.02, and fR = 0.1. Thin and bold lines are related to G and F ,
respectively

(iv) The phantom dS black holes with different topological
constants and small radii are stable (see the panel (4h) in
Fig. 4).

In order to have more details of the global stability from
two points of view, we plot the Gibbs potential and the
Helmholtz free energy together versus the entropy in Fig.
5.

Comparing these points of view, we find some different
behaviors of the global stability for black holes in F(R) grav-
ity. These results are:

(i) Generally, by considering the charged AdS black holes
with different topological constants, the Gibbs potential
covers a large global stability area compared with the
Helmholtz free energy. There is the same behavior for
the charged AdS black holes with large radii. Indeed, the
large black holes with k = 0, ± 1 in two points of view
are stable. However, considering the Gibbs potential, the
small charged AdS black holes are stable. Using the two
points of view, the charged AdS black holes with different
topological constants and large radii are always stable
(see the left-up panel in Fig. 5, for more details).

(ii) Using the Gibbs potential, the charged dS black holes
with small radii and different topological constants are
always stable, whereas there is no stable area for small
black holes in the viewpoint of the Helmholtz free energy.
In addition, from point of view of Helmholtz free energy,
the charged dS black holes with medium radii can be
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stable when k = − 1. As a common result from both
viewpoints, the charged dS black holes with large radii
and k = 0, ± 1 do not have the global stability area (see
the right-up panel in Fig. 5, for more details).

(iii) In total, the Helmholtz free energy covers a large global
stability area compared with the Gibbs potential for the
phantom AdS black holes with different topological con-
stants. Our findings indicate that the phantom AdS black
holes with large radii are always stable in the two points
of view. On the other hand, small phantom AdS black
holes are only stable in the viewpoint of the Helmholtz
free energy (see the left down panel in Fig. 5, for more
details).

(iv) The phantom dS black holes with small radii can be
always stable in the viewpoint of Helmholtz free energy.
However, from point of view of Gibbs’s potential, the
phantom dS black holes with medium radii can be only
stable when k = − 1 (see the right down panel in Fig. 5,
for more details).

5 Conclusions

In Sect. 2, we obtain an exact solution of the case of the theory
F(R) with constant curvature, for a topological metric in four
dimensions, coupling a spin-1 phantom field. We show this
solution has one or two horizons, depending on the value of
the topological constant k, the mass, the charge, the coupling
constant η, and the scalar R0.

In Sect. 3, we define the temperature, electric field, and
entropy of the solution, as well as establish the first law of
thermodynamics, showing that the term related to thermo-
dynamic work can be positive or negative, depending on
whether the field is phantom or not. This property was already
known in phantom solutions [53].

In Sect. 4, we first study local thermodynamic stability,
through the zeros and divergent points of the heat capacity,
as well as the geometrothemodynamics, agreeing between
the two approaches. Then we study global thermodynamic
stability by analyzing the sign of the Gibbs potential and
Helmholtz free energy. In general, the two approaches agree
on slightly different ranges of entropy.

We should also analyze, in a future work, the geodesics
of this solution, as well as the shadow and stability, checking
the absorption and scattering of scalar fields.

We can find astrophysical evidence of the signature of the
phantom modification of the electromagnetic contribution in
the following situations:

(a) the shadow of this black hole must present characteris-
tics of differentiation between the usual Reissner–Nordström
one, thus being able to serve as experimental evidence.

(b) the new phantom signature must also appear in the
gravitational wave ringdown of this solution.

(c) observational evidence can also be obtained through
gravitational lensing phenomena.
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