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Abstract We analyze a class of topological static spheri-
cally symmetric vacuum solutions in f (Q)-gravity. We con-
sidered an Ansatz ensuring that those solutions trivially sat-
isfy the field equations of the theory when the non-metricity
scalar is constant. In the specific, we provide and discuss
local solutions in the form of black holes and traversable
wormholes.

1 Introduction

The Equivalence Principle forces gravity to possess a geo-
metrical nature. General Relativity (GR) is a geometric the-
ory of gravity in which space-time is described as a Rie-
mannian manifold, namely, a manifold in which the affine
connection is the metric-compatible and torsion-free Levi-
Civita connection totally defined by the metric. Thus, in GR,
the scalar curvature R is the fundamental quantity describing
the manifold. However, the Riemannian geometry is an arbi-
trary request and in general a manifold is characterized by
three fundamental geometrical objects: the curvature R, the
torsion T and the non-metricity Q [1]. As a consequence,
different theories of gravity can be built according to the
properties of their connection. In particular, sub-classes of
metric-affine geometry are dobbed as torsion-free (T = 0),

Riemann–Cartan (Q = 0), and teleparallel (R = 0). More-
over, further subsets are obtained if Q and T , or Q and R, or
R and T vanish simultaneously. In this cases the geometries
take the names of Riemannian (T = Q = 0), Weitzenböck
or teleparallel (R = Q = 0), and symmetric teleparallel
(R = T = 0). A last trivial subset is when the three quanti-
ties vanish together and the manifold is merely Minkowskian.

It is important to notice that there exist equivalent and
alternative formulations of GR. One is the Teleparallel Equiv-
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alent of GR (TEGR) [2–12], equipped with a Weitzenböck
connection and vanishing curvature and non-metricity. A sec-
ond equivalent formulation is the Symmetric Teleparallel
Equivalent of GR (STEGR) [13–20] in which both curva-
ture and torsion vanish. Similarly to GR, in those equivalent
theories the Lagrangian density coincides with the respec-
tive scalars T and Q. Recent reviews and comparisons of
this equivalent formulations can be found in Refs. [21–23].

Despite GR successful results in describing the Solar
System and larger structures of our Universe, many open
problems including the dark contents of the Universe, the
early-time inflation and the difficulties in its quantization
remain. Today, it is well accepted that GR (or its equiva-
lent formulations) may be not the ultimate theory of gravity
and some modifications may be required. Thus, when one
deals with GR, TEGR or STEGR, the simplest modifica-
tion consists in changing the Lagrangian density allowing it
to depend on a function of respective curvature, torsion or
non-metricity scalars. In this way one obtains the so-called
theories of f (R)-gravity [24,25], f (T )-gravity [26–34] and
f (Q)-gravity [18,19,35–39]. Recently, the similarities to
and differences from f (R), f (T ), and f (Q) gravity in terms
of symmetry breaking and degrees of freedom have also been
analyzed [40].

Finding exact (vacuum) Static Spherically Symmetric
(SSS) solutions in a gravitational theory is an interesting task
especially in the light of last observations. The LIGO/Virgo
Collaboration detection of gravitational waves from Black
Hole (BH) coalescence [41] and the Event Horizon Tele-
scope direct observation of the BH shadows at the center of
the Milky Way [42] and of M87 [43], represent new possi-
bilities to test gravity in a strong-field regime [44–46]. Those
observations motivate the research of local solutions in the
form of BHs, Wormholes (WHs) or ultra-compact stars and
the simplest description of this objects is provided by SSS
geometries. In this respect, many local solutions have been
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already explored in f (R)-gravity [47–51], in f (T )-gravity
[52–56] and lately also in f (Q)-gravity [57–69].

In Ref. [51] SSS space-time vacuum solutions in the
framework of f (R)-gravity have been explored for a spe-
cial class of models where (on shell) the Lagrangian density
vanishes and the Ricci scalar R is a constant. Here, in an
analogue way, we consider (topological) SSS vacuum solu-
tions in f (Q)-gravity models where the Lagrangian density
vanishes and the non-metricity scalar Q is a constant. With
these requirements the equations of motion are automatically
satisfied in vacuum without solving them explicitly. As a con-
sequence, a wide class of new solutions can be found and we
discuss several possibilities by focusing our attention on BH
and WH description.

The paper is organized as follows. In Sect. 2 we revisit
the formalism of f (Q)-gravity. In Sect. 3 we introduce a
class of f (Q)-models with exact SSS solutions for con-
stant non-metricity scalar and we provide some examples
of Lagrangians. Sections 4 and 5 are devoted to the study
of vacuum topological BH and WH solutions, respectively.
Conclusions and final remarks are given in Sect. 6.

We use units of kB = c = h̄ = 1 and we denote the
gravitational constant κ2 = 8πGN .

2 f (Q)-gravity

In this section we outline some general features of f (Q)-
gravity. We will restrict our description in terms of compo-
nents (the reader will find a more rigorous derivation in terms
of forms in Ref. [57]).

The general affine connection of a parallelizable and dif-
ferentiable manifold reads,

�σ
μν = �̃σ

μν + K σ
μν + Lσ

μν. (1)

Here, �̃σ
μν is the well-known Levi-Civita connection defined

by the metric as

�̃σ
μν = 1

2
gσρ

(
∂μgρν + ∂νgρμ − ∂ρgμν

)
. (2)

Moreover, K σ
μν is the contortion

K σ
μν = 1

2
T σ

μν + T σ
(μ ν), (3)

with T σ
μν = 2�σ[μν] torsion tensor. Finally, Lσ

μν is the defor-
mation and reads,

Lσ
μν = 1

2
Qσ

μν − Q σ
(μ ν), (4)

where Qσ
μν is the non-metricity tensor given by

Qσμν = ∇σ gμν = ∂σ gμν − �ρ
σμgνρ − �ρ

σνgμρ. (5)

Therefore, the non-metricity scalar results to be,

Q = gμ,ν(Lα
βνL

β
μα − Lβ

αβL)αμν

Qσμν P
σμν, (6)

where Pσμν is the non-metricity conjugate given by,

Pσ
μν = 1

4

(
−Qσ

μν + 2Q σ
(μ ν) + Qσ gμν

−Q̃σ gμν − δσ
(μQν)

)
, (7)

with Qσ = Q μ
σ μ, and Q̃σ = Qμ

σμ.
If torsion and non-metricity are null, the connection is

equivalent to Levi-Civita connection which is metric com-
patible. In symmetric teleparallel gravity, curvature and tor-
sion are null and the non-metricity depends on metric and
connection.

Modified symmetric teleparallel gravity was introduced
in Ref. [18] and the action reads,

I = − 1

2κ2

∫

M
f (Q)

√−gd4x +
∫

M
Lm

√−gd4x, (8)

where g is the determinant of the metric tensor gμν , M is
the space-time manifold, f (Q) is a generic function of the
non-metricity scalar Q and Lm is the Lagrangian density of
matter contents.

In order to obtain the field equations of the theory one
applies to (8) independent variations with respect both the
metric and the connection, having so

2√−g
∇α

(√−g fQ Pα
μν

) + 1

2
gμν f

+ fQ
(
PμαβQ

αβ
ν − 2PαβμQ

αβ
ν

) = κ2Tμν, (9)

∇μ∇ν

(√−g fQ Pα
μν

) = 0, (10)

where Tμν is, as usually, the energy-momentum tensor of
matter, namely

Tμν = − 2√−g

δ(
√−gLm)

δgμν
. (11)

In the expression above, f ≡ f (Q) and fQ = d f (Q)
dQ . We

note that the Lagrangian density of matter is taken indepen-
dent with respect the connection, so no hyper-momentum
appears. Moreover, at is well known, one obtains the results
of GR (in STEGR framework) by posing f (Q) = Q, such
that the Lagrangian density reads L = − Q

2κ2 + Lm .

3 The model Ansatz

Let us consider topological SSS space-time in the form,

ds2 = −h(r)dt2 + 1

g(r)
dr2 + r2

(
dρ2

1 − kρ2 + ρ2dφ2
)

, (12)
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where h(r) and g(r) are functions of the radial coordinate r

only and the two-dimensional space d
2
k = dρ2

1−kρ2 + ρ2dφ2

may assume three different topologies, depending on the
choice k = 1, 0,−1. Namely, the manifold will be either
a sphere S2, a torus T2 or a compact hyperbolic manifold Y2,
according to whether k = 1, 0,−1, respectively. Metrics of
this type can be denoted as Static Pseudo-Spherically Sym-
metric space-time, but often are simply called SSS space-
time.

In this paper we use the prescription introduced in
Ref. [57] where a detailed discussion about the covariant for-
mulation of the theory can be found. Since the vanishing of
curvature and torsion forces the connection �σ

μν to be purely
inertial, its only non-vanishing components correspond to
the non-vanishing components of Levi-Civita connection in
absence of gravity and for metric (12) we get

�r
φφ = −krρ2, �ρ

rρ = �
φ
rφ = 1

r
, �

φ
ρφ = 1

ρ
,

�r
ρρ = − kr

1 − kρ2 , �ρ
ρρ = kρ

1 − kρ2 ,

�
ρ
φφ = −ρ(1 − kρ2). (13)

Thus, the non-vanishing Qαβγ and Lα
βγ are given by,

Qrtt = −h′(r), Qrrr = − g′(r)
g2(r)

,

Qρrρ = Qρρr = − r − kr
g(r)

(1 − ρ2)
,

Qφrφ = Qφφr =
(

1

g(r)
− 1

)
rρ2, (14)

Lt
tr = Lt

rt = − h′(r)
2h(r)

Lr
tt = −1

2
g(r)h′(r),

Lr
rr = g′(r)

2g(r)
,

Lr
ρρ = − (k − g(r))r

(1 − kρ2)
, Lr

φφ = (g(r) − k)rρ2. (15)

Finally, the non-metricity scalar can be computed as,

Q =
(g(r) − k)

(
h′(r)
h(r) − g′(r)

g(r)

)

r
. (16)

In Ref. [57] SSS solutions in the framework of f (Q)-gravity
have been already investigated in both, vacuum and non-
vacuum cases. In particular, it has been found that, given a
generic model of f (Q)-gravity, the only solution in vacuum
is the Schwarzschild de Sitter/Anti de Sitter (dS/AdS) one.
Here, we point out that, for a special class of f (Q)-gravity
models, new vacuum solutions can be realized.

In fact, if Tμν = 0, Eqs. (9)–(10) are automatically satis-
fied under the assumption

f (Q0) = fQ(Q0) = 0, (17)

where Q0 is a constant value (eventually null) of the
non-metricity scalar and is related to the metric functions
h(r), g(r) through Eq. (16), namely

(g(r) − k)
(
h′(r)
h(r) − g′(r)

g(r)

)

r
= Q0. (18)

Despite to the restriction to fulfill the Ansatz (17) for some
value of non-metricity Q0, the functional form of f (Q) is
not uniquely determined and among all the possible choices
we may find some cases of modified symmetric teleparallel
gravity of physical interest.

In analogy with f (R)-gravity, higher order corrections
incur deviations from Standard Model in the past1 playing a
role in the description of the early-time Universe and support-
ing inflation or bounce cosmology. In this respect, polyno-
mial models in the form (here, γ is a dimensional constant),

f (Q) = γ (Q − Q0)
n, 2 ≤ n, (19)

satisfy condition (17). We can expand the polynomial as,

f (Q) = γ

n∑

k=0

n!
k!(n − k)!Q

n−k(−Q0)
k,

= γ
n!

(n − 1)! (−Q0)
n−1Q + γ (−Q0)

n

+γ

n−2∑

k=0

n!
k!(n − k)!Q

n−k(−Q0)
k . (20)

If γ n!
(n−1)! (−Q0)

n−1 = 1, the linear term corresponds to
STEGR formulation of GR, and if we assumeγ � 1 the pow-
ers of Q are relevant only for large values of it, when Q ∼ Q0.
Note that also a cosmological constant term appears, but
some suppressing mechanism can be easily introduced with-
out destroying the feature of the model. For example, by
starting from the second row of (17), we can rewrite the
Lagrangian by replacing γ → γ (Q), where γ (Q) is a func-
tion of non-metricity scalar, in front of the cosmological con-
stant term (−Q0)

n only. If γ (Q0) = 1 and γ ′(Q0) = 0, the
model still satisfies (17). The function γ (Q) can now be con-
structed in order to vanish at low red-shift, when Q � Q0.
For instance, we may take

γ (Q) = e−β(Q−Q0)2m
, β > 0,m > 1. (21)

Other examples of Lagrangians that satisfy condition (17) for
a given value of Q0 and whose implementation makes sense

1 On Friedmann–Robertson–Walker space-time we have Q = 6H2,
with H Hubble parameter.
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at large values of non-metricity scalar can be constructed
with trigonometric and hyperbolic functions as:

f (Q) = γ (cos(β(Q − Q0)) − 1) ,

f (Q) = γ (cosh(β(Q − Q0)) − 1) . (22)

Here, γ and β are dimensional constant. In this cases, the
STEGR formulation of GR plus higher order corrections is
recovered after Taylor expansions around Q 
 Q0.

In the context of dark energy phenomenology, we can
consider the following Lagrangian,

f (Q) = Q + 2�
(

1 − e
Q

2�

)
, (23)

where � is the cosmological constant. This model falls in the
class of theories under investigation, since the condition (17)
is satisfied when Q0 = 0 and offers the equivalent descrip-
tion of one-step models of f (R)-gravity [70–79], since for
large values of Q we recover the results of STEGR plus cos-
mological constant with f (Q) 
 Q + 2�.

In the following sections we will discuss BH and WH
solutions which always are admitted as vacuum solutions in
these models of f (Q)-gravity. The required and common
propriety of the various metrics is that they lead to a constant
value of non-metricity scalar which is fixed by the gravita-
tional Lagrangian itself and which allows to trivially solve
the field equations of the theory.

4 Black hole solutions

In this section we are interested in topological black hole
solutions which satisfy Eq. (18) for some value of Q0. Thus,
it is useful to replace h(r) = e2α(r)g(r) inside the metric
(12), in order to obtain,

ds2 = −e2α(r)g(r)dt2 + 1

g(r)
dr2 + r2 d
2

k . (24)

Here, α(r) and g(r) are functions of the radial coordinate r
only. In general, a zero of g(r), namely a value of r = r0

for which g(r0) = 0, defines an event horizon as soon as
g′(r0) > 0, such that one deals with a positive surface gravity.

At first, we observe that, when α(r) = 0 (the result can
be easily generalized to the case α = const with a constant
rescaling of time coordinate), the non metricity scalar Q is
identically null. Namely, Eq. (18) holds true for Q0 = 0. This
is fully consistent with Ref. [57], where it is stressed that the
Schwarzschild solution makes the non-metricity scalar van-
ish and satisfies the vacuum field equations in the framework
of f (Q)-gravity. Here, we find a more general result for our
class of Lagrangians. Given a topological SSS solution in the
form

ds2 = −g(r)dt2 + 1

g(r)
dr2 + r2

(
dρ2

1 − kρ2 + ρ2dφ2
)

, (25)

the special class of models with the propriety

f (0) = 0, fQ(0) = 0, (26)

admits this space-time as vacuum solution for any choice of
g(r). For example, in the quadratic model f (Q) = Q2 any
topological BH solution (25) can be realized and some inter-
esting scenarios may take place. Apart the Schwarzschild
BH solution, regular BHs free of central singularity can be
reproduced without invoking exotic matter and avoiding in
this way the instability related to the negative speed of sound
which often appears in the framework of GR. Moreover, one
may look for solutions describing rotation curves of galaxies,
like, for example, the (topological) Riegert-inspired solution
[80–82] with

g(r) = k + m

r
+ c0r, (27)

where m is a mass parameter and c0 is a constant. In this
expression, we can read the contribution of baryonic mat-
ter content and phenomenological dark matter content, sep-
arately. The first one corresponds to the classical Newtonian
potential, while the second one is linear with respect to the
radial coordinate and can reproduce the observed flattening
of the rotation curves [83,84].

On the other side, when α(r) in the metric (24) is not a
constant, Eq. (18) leads to

g(r) = 2kα′(r) + Q0r

2α′(r)
. (28)

Here, we note that only in the spherical topological case with
k = 1, SSS solutions having Q0 = 0 when α(r) �= const
can be realized. In this case g(r) = 1, α(r) is an arbitrary
function, and the solution can not describe a BH. Namely,
BH space-times with zero non-metricity scalar are possible
only when α(r) = const and therefore g00 = g−1

11 .
On the other side, when Q0 �= 0, various examples of

“dirty” black holes can be found by considering

α(r) = − Q0r2+z

2m(2 + z)
, (29)

such that

g(r) = k − m

rz
, (30)

with m a constant and z �= −2 a real number. In order to
obtain g00 ≡ −e2α(r)g(r) > 0 for r → 0+, we may require
m, z > 0 when k = 1 and z < 0 when k = −1. Thus, for
the spherical topological case with k = 1, we obtain a BH

where the event horizon is located at rH = (m)
1
z such that

g′(rH ) > 0. The same happen for the hyperbolic case with
k = −1 when m < 0, where the BH horizon is located at
rH = (−m)

1
z with g′(rH ) > 0.
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One recovers a topological Reissner–Nordstrom-like solu-
tion by taking

α(r)

= −Q0

(
r3

6m
+ c0r2

4m2 + c2
0r

2m3 + c3
0

2m4 log(c0 − mr)

)

,

(31)

which leads to

g(r) = k − m

r
+ c0

r2 , (32)

where m is a mass parameter and c0 and c1 are constants.
In general, the metric may describe a black hole with the
appearance of two horizons, an external event horizon at r =
r+ and an internal Cauchy horizon at r = r−. For example,
by taking k = 1 and m, c0 > 0, by solving the equation
g(r±) = 0, one has

r± = 1

2

(
m ±

√
m2 − 4c0

)
, (33)

with g′(r+) > 0 and g′(r−) < 0. Now, let us have a look
to the role of the metric function α(r) in (31). We assume
Q0 < 0. The metric function h(r) in (12) reads,

h(r) = e2α(r)g(r)

= e
−Q0

(
r3
6m + c0r

2

4m2 + c2
0r

2m3

)

(c0 − mr)
−Q0c

3
0

2m4 g(r), (34)

where we have used (24) and (31). The range of r is restricted
by the condition −g > 0 (we remember that g is the deter-
minant of the metric), namely h(r)

g(r) must be positive and real.
Thus, if c0

m > 0, we have that r0 = c0
m represents a sort of

cut-off of the space-time and r > r0. In particular, when
c0
m < r+, we are still dealing with a BH solution having an
external event horizon and in some cases an internal Cauchy
horizon, but the central singularity at r = 0 is avoidable.
A similar mechanism is at the basis of the so-called black-
bounce space-time [85–88] and represents an interesting way
to make the metric regular without the introduction of a de
Sitter core (see also Ref. [89]).

Finally, we can consider the Lifshitz-like solutions with

α(r) = 1

2
log

(
r

r0

)z

, (35)

where r0 is a length-scale and z �= 0 is a real number. From
Eq. (28) we find

g(r) = k + Q0r2

z
, (36)

which is nothing else than a pure dS/Anti dS solution,
depending on the sign of Q0.

5 Wormhole solutions

We will now analyze some wormhole solutions [90] which
satisfy the condition (18) for some value of Q0, namely which
can be realized as vacuum solution of f (Q)-models under the
Ansatz (17). We remember that in GR, traversable wormholes
take place only in the presence of a matter source violating
the null energy condition [91–101], while here the role of the
anti-gravitational matter can be played by the modification
of gravity itself (see also Refs. [102–105]).

For our purpose it is convenient to rewrite the metric func-
tion h(r) in (12) as h(r) = e2�(r), such that

ds2= − e2�(r)dt2 + 1

g(r)
dr2 + r2

(
dρ2

1 − kρ2 + ρ2dφ2
)

,

(37)

where �(r) is dubbed red-shift function and, as well as g(r),
it depends on the radial coordinate r only.

A traversable wormhole occurs if the radial coordinate is
embedded by a minimal radius or “throat” at r = r0, in order
to prevent the appearance of horizons. The function �(r)
needs to be finite and regular everywhere along the throat
and the following conditions must be satisfied [106–108]:

• �±(r) and g±(r) are well defined for all r ≥ r0;
• �′+(r0) = �′−(r0);
• g±(r0) = 0, g±(r) > 0 for all r ≥ r0;
• g′+(r0) = g′−(r0) > 0.

In general, the coordinate r is ill behaved near the throat, but
the proper radial distance is well defined everywhere as [90]

l(r) = ±
∫ r

r0

dr̃

g(r̃)
. (38)

The minimal value of the proper distance is reached for
r = r0, while the positive and negative values of l ≡ l(r) cor-
respond to the lower and upper universes connected through
the throat of the wormhole. Thus, the travelling time neces-
sary to cross the wormhole between l(r1) = −l1 < 0 and
l(r2) = +l2 > 0 results to be

�t =
∫ l2

l1

dl

ve�(l)
. (39)

Here, v = dl/[e�(l)dt] is the radial velocity of the traveler
when he/she passes a given radius r . If �′(r) < 0, the repul-
sive tidal force makes impossible to travel across the throat.

Firstly, we consider vacuum WH solutions with �(r) con-
stant in (37),

�(r) = const. (40)

This choice corresponds to a vanishing tidal force such that
the proper time measured by a static observer coincides with
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the time coordinate t . In this case Eq. (18) leads to the fol-
lowing solutions for the metric function g(r) when k = ±1,

g(r) = −k W

⎡

⎣−e− c0
k + Q0r

2

2k

k

⎤

⎦ , when Q0 �= 0,

g(r) = k, or g(r) = c1, when Q0 = 0, (41)

where c0, c1 are generic constants. In the first expression,
W ≡ W [x] is the principal solution of the Lambert function.
When we restrict to real values the Lambert function becomes
the inverse function of x = WeW . The solutions for Q0 = 0
are acceptable only in the spherical case k = 1 or for c1 > 0,
and they turn out to be Minkowski space-times (in the second
case the areal radius is rescaled as R(r) = c1r ).

More interesting is the flat case with k = 0, for which we
get

g(r) = c0 − Q0r2

2
, (42)

with c0 constant. The solution describes a WH as soon as
c0 , Q0 < 0. In this case the radial coordinate reaches a

minimal value on the throat of the WH at r0 =
√

2c0
Q0

with

g′(r0) > 0.
This result can be generalized to the case where the metric

function �(r) in (37) assumes the form,

�(r) = 1

2
log

(
r

r0

)z

, (43)

with r0 a length scale and z �= 0 a constant parameter. Then,
for k = ±1, if Q0 = 0 Eq. (18) can be solved as

g(r) = k, or g(r) = c1r
z . (44)

The corresponding solutions can be easily written in Gaussin-
polar coordinates as,

ds2 = −h(r)dt2 + dr2 + R2(r)

(
dρ2

1 − kρ2 + ρ2dφ2

)

. (45)

In the first case, when g(r) = k, only the spherical topology
with k = 1 is admitted and R(r) = r . In the second case,
when g(z) = c1r z , by assuming c1 > 0 and z < 2, after the

radial coordinate transformation r →
(√

c1(2−z)r
2

) 2
(2−z)

, we

obtain

ds2 = −
⎛

⎝
√
c1(2 − z)r

2r
(2−z)

2
0

⎞

⎠

2z
(2−z)

dt2 + dr2

+R2(r)

(
dρ2

1 − kρ2 + ρ2dφ2
)

,

R(r) =
(√

c1(2 − z)r

2

) 2
2−z

. (46)

Moreover, when z = 2 and c1 > 0, by posing r → e
√
c1r ,

we have

ds2 = −e2
√
c1r

r2
0

dt2 + dr2+R2(r)

(
dρ2

1 − kρ2 +ρ2dφ2
)

,

R(r) = e
√
c1r . (47)

The metrics above clearly do not describe a WH. Note that
when 0 < z ≤ 2 the metric is regular everywhere, and the
singularity at r = 0 is removed with the change of coor-
dinates, otherwise, when z < 0, the metric function h(r)
diverges at r = 0.

As in the previous case, interesting solutions can be found
for the flat topological case with k = 0, for which Eq. (18)
leads to,

g(r) = c0r
z − Q0r2

(2 − z)
, (48)

where c0 is an integration constant. In this case WH solutions
can be realized for negative values of Q0 when z < 2 and
c0 < 0 or when z > 2 and c0 > 0. In both cases the throat

is located at r0 =
(

Q0
(2−z)c0

) 1
z−2

such that g′(r0) > 0. In the

limit z = 0 we recover the solution given by (40) and (42).
Thus, in the special class of models satisfying the Ansatz

(17) for some negative value of Q0, WHs with flat topology
can be realized as vacuum solutions of the theory.

6 Conclusions

In this paper, we studied topological Static Spherically Sym-
metric vacuum solutions in a special class of f (Q)-gravity
models. f (Q)-gravity is a modified theory of symmetric
teleparallel gravity, where the Lagrangian density is a func-
tion of the non-metricity scalar Q only. When the Lagrangian
is proportional to Q, we recover the symmetric teleparallel
formulation of GR. Finding exact vacuum solutions in a grav-
ity theory is an interesting task, especially in the presence of
high order field equations, as it occurs for f (Q)-gravity. We
investigated a class of metrics leading to a constant non-
metricity scalar value Q0. Thus, all the models satisfying
(on-shell) the simple Ansatz, f (Q0) = f ′(Q0) = 0, admit
these metrics as solutions. We stress that the functional form
of f (Q) is not uniquely determined and many Lagrangians
of physical interest belong to this class of models. We also
remark that in some previous paper (for example in Ref. [57])
SSS solutions in general models of f (Q)-gravity have been
investigated, but taking into account our Ansatz, we are able
to find new solutions which suitable describe compact objects
such as black holes and wormholes.
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In the case of BH solutions, in addition to the
Schwarzschild space-time, we can generate a large class of
regular BH solutions, where the central singularity is absent.
Furthermore, the simple metric requirement g00 = g−1

11 is
enough to ensure a zero non-metricity scalar and allows the
construction of SSS solutions with any desired features. For
example, we were able to identify solutions describing the
anomalous rotation of spiral galaxies. Moreover, “dirty” BHs
where g00 �= g−1

11 are also investigated.
Traversable wormholes are hypothetical object connect-

ing two spacetime regions and guaranteeing that an observers
may traverse them in a finite time. The usual theoretical
downside about such solutions dwells in their demand of
a source violating the null energy conditions. With our anal-
ysis, we are able to identify a few traversable configurations
characterized by the conceptual advantage that those solu-
tions are in vacuum and do not require the presence of any
matter sources violating the null energy condition. In par-
ticular, we found some interesting configurations for the flat
topological case.

Nevertheless, at this stage, for both such BH and WH solu-
tions, nothing can be said about the precise form of function
f (Q) of the Lagrangian beside the requirement that it has
to satisfy the constraint f (Q0) = f ′(Q0) = 0. This condi-
tion selects solutions with constant non-metricity scalar and
shows that the solution space is large and deserve to be stud-
ied since provides a rich phenomenology.
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