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Abstract We investigate the effect of superradiance shield-
ing for the analogue rotating black holes simulated by optical
vortices by calculating the radial motion of massless parti-
cles in such spacetime background. We add the conditions
E < L�re and L > 0 to judge the classically forbidden
region of superradiance. It is found that the superradiance
forbidden region exists near the static limit inside the ergo-
sphere, which will limit the classical Penrose process for the
particles with some specific energies and angular momenta.
Once these particles satisfying the superradiance conditions
are measured at the outside of the ergosphere, this shows that
the Penrose process can be quantum.

1 Introduction

The superradiance of rotating black holes was proposed [1]
firstly by Penrose in the year of 1971. This can be used to
extract the rotational energy of a rotating black hole in such
a way that an object is emitted into the ergosphere where it
is split into two pieces, in which one has negative energy and
the other one can escape from the ergosphere with a positive
energy gain. Furthermore, Zel’dovich [2] gave the conditions
for the existence of rotational superradiance,

ω < n�. (1)

where � is the angular velocity of the rotating black holes,
ω is the angular frequency of the incident wave, and n is
the wave winding number concerning the rotation axis. The
superradiance can occur for the classical or quantum waves.
However, radiation screening [3] for the particles with cer-
tain energies and angular momenta exists inside and outside
the ergosphere for the Kerr spacetime [4] and Kerr-Newman
spacetime [5], which restricts the motion of the classical par-
ticles in the ergosphere and so restricts the occurrence of
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classical Penrose process. For these restricted particles, the
Penrose superradiance can occur by the quantum tunneling.
These particles can be Hawking radiations from the event
horizon, and can also be that emitted into the ergosphere
from the outside [4].

In the past several years, the Penrose superradiance was
studied in the analogue rotating black holes [6–10]. The con-
cept of the analogue black holes was put forward initially in
1981 [11], based on the relation between the motion of sound
waves in a convergent fluid flow and the motion of a scalar
field in the background of Schwarzschild spacetime, and the
analog horizon is defined by equating the velocity of the
fluid with the local sound velocity in this fluid. The analogue
Hawking radiation can be emitted from the analogue horizon,
which has been studied in many different physical systems
[12–18]. Besides simulating the Schwarzschild black holes,
rotating black holes were also simulated using the physical
systems [19], and some related phenomena such as super-
radiance [8], black-hole bombs [20], and scalar clouds [21]
were investigated. In this paper, we focus on the superradi-
ance of analogue rotating black holes, which could be mea-
sured experimentally [22–24] in some physical systems. It
is pointed out that there will be no superradiance when the
angular momentum is negative in the optical systems [23,24].
In this paper, we aim to explore whether the radiation shield-
ing regions exist under the background of analogue rotating
black holes simulated by the optical vortices and their influ-
ence on the Penrose superradiance.

The paper is organized as follows. In Sect. 2, we review
how the metric of the analogue black holes is derived from
the nonlinear Schrödinger equation and investigate the radi-
ation shielding regions for the analogue rotating black holes.
In Sect. 3, we use the conditions for the occurrence of super-
radiance to discuss the superradiance forbidden regions in
the optical rotating black holes. Then, we study the turning
(boundary) points of the classically forbidden region using an
experimentally generated analogue rotating spacetime with

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-11389-y&domain=pdf
http://orcid.org/0000-0001-9128-1458
mailto:zhangbaocheng@cug.edu.cn


233 Page 2 of 8 Eur. Phys. J. C (2023) 83 :233

a static limit but without an event horizon in Sect. 4. We also
calculate the probability of the classically forbidden parti-
cle tunneling through the ergosphere. Finally, we give the
conclusion in Sect. 5.

2 Radiation shielding

In order to investigate the radiation shielding phenomenon
under the background of analogue gravity, we first introduce
how the metric of the analogue black holes is obtained in the
physical system of optical vortices. Start with the nonlinear
Schrödinger equation (NLSE) [25] in the paraxial approx-
imation, which governs the evolution of the electric field
ε(x, y, z) of the vortex beam as,

∂zε = i

2k
∇2⊥ε − i

kn2

n0
ε|ε|2, (2)

where z is the propagation direction, k = (2πn0) /λ is
wave number along the z-direction, n0 is the linear refractive
index, and n2 is the nonlinearity coefficient. In this equa-
tion, z = ct̃/n0 is equivalent to time due to the constant
light speed. The first term on the right-hand side describes
the diffraction effect, and the second term describes the
self-defocusing effects. If the electric field is expressed as
ε = √

ρ0eiφ , the NLSE becomes the continuity and Euler
equations,

∂t̃ρ + ∇ · (ρv) = 0, (3)

∂t̃ψ + 1

2
v2 + c2n2

n3
0

ρ − c2

2k2n2
0

∇2ρ1/2

ρ1/2 = 0, (4)

where c is the speed of light, the optical intensity ρ cor-
responds to the fluid density, v = c

kn0
∇φ ≡ ∇ψ is the

fluid velocity, and the third term is the quantum pressure
which is usually ignored in the linearized process for the
derivation of the analogue metric. Linearizing these equa-
tions with ρ = ρ0+ερ1 and ψ = ψ0+εψ1, it is obtained that

(
ρ0

cs
)2(−∂2

t ψ1 −∂tδi jν j∂ jψ1 +c2
s ∂iδi j∂ jψ1 −∂iδi jν j∂tψ1 −

∂ivi∂ jv jψ1) = 0 where c2
s = c2n2ρ0/n3

0 is the local speed
of sound and i, j = 1, 2. Rewrite the equation with the form,
∇2ψ1 = (

1/
√−g

)
∂μ

(√−ggμν∂νψ1
)
, one can obtain the

metric as [26],

ds2 =
(

ρ0

cs

)2 [
−(c2

s − v2
t )dt̃

2 − 2vr drdt̃

−2vθrd θ̃dt̃ + dr2 + (rd θ̃ )2
]
, (5)

where vr = ∂rψ0, vθ = 1
r ∂θ̃ψ0 are the radial and tangential

velocity components, and v2
t = v2

r + v2
θ is the total velocity.

Making the time and angle transformations, dt = dt̃ +
|vr |

(c2
s−v2

r )
dr , and dθ = d θ̃ + |vr |vθ

r(c2
s−v2

r )
dr , the analogue metric

(5) becomes

ds2 =
(

ρ0

cs

)2 [
−(c2

s − v2
t )dt

2 + c2
s

c2
s − v2

r
dr2

+(rdθ)2 − 2vθrdθdt

]
. (6)

It is similar to the Kerr metric in general relativity, and has
the event horizon when cs = vr and the static limit when
cs = vt .

Such analogue metric has been realized by the optical vor-
tex as given in Ref. [28] and the superradiance was studied in
Ref. [29]. In this paper, we take the same parameters as in Ref.
[29] to analyze the screening effect of the analogue space-

time. Take the electric field ε = √
ρ0exp(imθ − 2iπ

√
r
r0

)

where ρ0 is a constant optical intensity, and r0 = 100µm
is an experimental parameter to form the optical black hole.

vr = − cπ
kn0

√
r0r

, vθ = cm
kn0r

, and cs =
√

c2n2ρ0

n3
0

are the radial,

angular, and sound velocities, respectively. Moreover, the
refractive index change takes n2ρ0 = 2 × 10−6 which gives
the sound velocity as cs = √

18×105 m/s. Other parameters
take ξ = cπ

kn0cs
= 275µm, vθ = mξcs

πr , and vr = − ξcs√
r0r

.
Thus, the event horizon of the optical black hole locates at
re ≈ 756µm, and the static limit at rs ≈ 893µm, with the
topological charge m = 4 of the vortex beam. With these
expressions in mind, the contravariant form of the analogue
metric (6) can be written as

gμν =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

1
ξ2
r0r

−1
0

mξ
πr

r
(

ξ2
r0r

−1
)

0 1 − ξ2

r0r
0

mξ
πr

r
(

ξ2
r0r

−1
) 0

−1+ ξ2

r0r
+

(
mξ
πr

)2

r2
(

ξ2
r0r

−1
)

⎞

⎟⎟
⎟⎟⎟⎟
⎠

. (7)

In the following, we will calculate the equations of motion
for particles moving in the analogue spacetime following the
method by Chandrasekhar for the geodesic motion in the
spacetime of Kerr black holes [30]. Considering a particle
with the action S moving freely in the spacetime described
with the metric (6), the Hamilton–Jacobi (HJ) equation is
given as

2
∂S

∂τ
= gμν ∂S

∂xμ

∂S

∂xν
, (8)

where τ is the proper time of the particle. Assuming the
energy and the angular momentum of the particle are constant
E and L , the action can be expressed as

S = −1

2
δτ − Et + Lθ + Sr (r), (9)
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where δ is a constant and determines whether the motion
equation of the particle describes a time-like geodesic (δ > 0)
or a light-like geodesic (δ = 0). Substituting metric tensor
gμν (7) and the action (9) into the HJ equation, we have

r2
(

ξ2

r0r
− 1

)2 (
∂Sr (r)

∂r

)2

= r2E2 + r2
(

ξ2

r0r
− 1

)
δ

+
(

−1 + ξ2

r0r
+

(
mξ

πr

)2
)

× L2 − 2mξEL

π
. (10)

Integrating the Eq. (10), we obtain

Sr (r) =
∫ r

√
Vef f

r
(

ξ2

r0r
− 1

)dr, (11)

where the effective potential is expressed with the form

Vef f = r2E2 + r2
(

ξ2

r0r
− 1

)
δ

+
(

−1 + ξ2

r0r
+

(
mξ

πr

)2
)

L2 − 2mξEL

π
. (12)

With the expression of Sr (r) in the action (9), we can
obtain the equations of motion of the particle as

r
dr

dτ
= √

Vef f , (13)

r
dt

dτ
= 1

r
(

ξ2

r0r
− 1

)
(
r2E − mξL

π

)
, (14)

r
dθ

dτ
= 1

r
(

ξ2

r0r
− 1

)

×
(
mξE

π
−

(

−1 + ξ2

r0r
+

(
mξ

πr

)2
)

L

)

. (15)

These equations of motion are derived from the principle of
the least action, ∂S

∂δ
= 0, ∂S

∂E = 0, ∂S
∂L = 0, respectively.

Under the spacetime background of optical black holes with
the metric (6), we consider the massless particles which is a
vortex beam emitted into the spacetime generated by another
vortex beam, and their equations of motion can be derived
by taking δ = 0.

Note that 1
2

( dr
dτ

)2
has the meaning of kinetic energy, so the

negative effective potential makes no sense since the velocity
dr
dτ

has to be the complex value. This means that dr
dτ

must be
real in the calculation. However, the effective potential (12)
can be negative for some physically allowable values of the
energy E and angular momentum L under the real black-
hole spacetime background. The region in which the effective

potential is negative is called the classically forbidden region
[3,4].

Now, we analyze whether the classically forbidden region
exists under the analogue spacetime background. Fixed the
angular momentum of the particle, and thus, the effective
potential can be expressed as a function of E ,

VE = r2E2 − 2
mξEL

π
+

(

−1 + ξ2

r0r
+

(
mξ

πr

)2
)

L2.

(16)

It is not hard to get the negative VE which is derived between
the two roots due to the quadratic term of the effective poten-
tial being positive. The classically forbidden region for values
of E lies between the two roots,

E± = mξL

πr2

⎛

⎜⎜
⎝1 ±

√√
√√√√1 −

ξ2

r0r
+

(
mξ
πr

)2 − 1
(
mξ
πr

)2

⎞

⎟⎟
⎠ . (17)

Figure 1 presents the classically forbidden region in which
the radial motion of the particles is restricted. In particular,
the motion for the particles within the energy range (E−, E+)
are constrained between the blue and orange surfaces. This
shows that the classically forbidden region exists for the ana-
logue black-hole spacetime. It is also noted in Fig. 1 that
the forbidden region of energy will widen when the angular
momentum increases. We also present the energy forbidden
region at the static limit of the analogue rotating black holes

Fig. 1 Energy as the function of r and L . It indicates that the screen-
ing of Hawking radiation with certain values of energy and angular
momentum between blue and orange surfaces
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Fig. 2 Energy as a function of L . The shielding region for particles
with energies and angular momenta at the static limit is marked with
the yellow color

in Fig. 2. The results are similar to that in the Kerr black
holes [4], which means that the optical black hole indeed
can simulate the properties of the Kerr black holes. In what
follows, we will focus on the shielding of Penrose superradi-
ance with an addition of the superradiance conditions in our
consideration.

3 Penrose superradiance shielding

The optical black holes have the classically forbidden region,
so shielding of Penrose superradiance might cause the
absence of Penrose superradiance for the optical black holes.
At first, we obtain the condition for the occurrence of super-
radiance using the metric (6) of optical black holes. Trans-
forming Eq. (10) using the relation d

dr = 1

r
(

1− ξ2
r0r

) d
ds , we

get

(
∂Sr
∂s

)2

= r2E2 + r2
(

ξ2

r0r
− 1

)
δ

+
(

−1 + ξ2

r0r
+

(
mξ

πr

)2
)

L2 − 2mξEL

π
.

(18)

Taking the radial wave function ψ = exp(i Sr ), the one-
dimensional Schrödinger equation is gotten as

d2ψ

ds2 + Vef f ψ = 0. (19)

Then transform back to the coordinate system of r , and the
similar radial Teukolsky equation [31,32] is obtained as

r

(
1 − ξ2

r0r

)
d

dr

[
r

(
1 − ξ2

r0r

)
dψ

dr

]
+ Vef f ψ = 0. (20)

Transforming the radial coordinate r into the tortoise coor-

dinate r∗ by r∗ = r+ ξ2

r0
ln

(
r − ξ2

r0

)
and taking the new form

of radial wave function ψ∗ = √
rψ , we get a linear second-

order differential equation

d2ψ∗

dr∗2 + V
′
e f f ψ

∗ = 0, (21)

where V
′
e f f = 1

4r2

( dr
dr∗

)2 − 1
r2

(
L2 + ξ2

2rr0

) ( dr
dr∗

) + (E −
L mξ

πr2 )2. It is not hard to obtain the asymptotic solution ψ∗ =
ei Er

∗ + Re−i Er∗
for r∗ → +∞, r → +∞, dr

dr∗ → 1,

and another asymptotic solution ψ∗ = T e
i

(
E−L mξ

πr2
e

)
r∗

for
r∗ → −∞ r → r+, dr

dr∗ → 0, where R is the reflection
coefficient and T is the transmission coefficient. Then we
can equate the Woronskian of the two asymptotic solutions
to get the relation

|R|2 = 1 − E − L�re

E
|T |2 , (22)

where �re = mξ

πr2
e

is the angular velocity at the horizon. When

|R|2 > 1, the superradiance occurs, which leads to the super-
radiance condition

E < L�re . (23)

This is consistent with the result in Eq. (1) by Zel’dovich
when taking E = h̄ω and L = h̄n for a quantum energy and
angular momentum of the vortex beam, respectively.

In order to incorporate the superradiance condition (23)
in the following discussions about the classically forbidden
region. We rewrite the effective potential (16) as a function
of E

L ,

VE
L

= r2
(
E

L

)2

− 2
mξ

π

(
E

L

)
+

(

−1 + ξ2

r0r
+

(
mξ

πr

)2
)

.

(24)

Using superradiance condition (23), we can gain the clas-
sically forbidden region of superradiance when VE

L
< 0.

Solving the equation VE
L

= 0, we obtain two roots,

(
E

L

)

±
= mξ

πr2

⎛

⎜⎜
⎝1 ±

√√√
√√√1 −

ξ2

r0r
+

(
mξ
πr

)2 − 1
(
mξ
πr

)2

⎞

⎟⎟
⎠ , (25)

which gives the superradiance forbidden region between
these two roots. The upper panel of Fig. 3 presents the for-
bidden region under the green line �re but above the red
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Fig. 3 E
L and L as the function of r for the upper and lower panel,

respectively. The forbidden regions in two plots are presented with the
event horizon at re ≈ 756µm, the static limit at rs ≈ 893µm, and the
parameters ξ = 275µm, �re = vθ

re
= 612.22

line. We also mark the superradiance forbidden region in the
ergosphere with the red shadow. It is noted that there is also
the allowable region for the superradiance in the ergosphere
below the red line, and the classically forbidden region is
larger than the superradiance forbidden region between the
blue line and the green line in the ergosphere. Thus, we give
the classically forbidden region inside the ergosphere that
the particles with a certain energy and angular momentum in
the red region are shielded. In particular, it requires not only
the condition (23) but also n > 0 which is a supplementary
condition for the occurrence of superradiance, equivalent to
L > 0 [21]. In order to present the influence of the angular

momentum further, the effective potential (16) can be reex-
pressed as a function of L ,

VL =
(

−1 + ξ2

r0r
+

(
mξ

πr

)2
)

L2 − 2
mξEL

π
+ r2E2.

(26)

Solving the equation VL = 0, two roots are obtained,

L±

=
mξE

π

−1 + ξ2

r0r
+

(
mξ
πr

)2

⎛

⎜⎜
⎝1 ±

√√√√
√√1 −

−1 + ξ2

r0r
+

(
mξ
πr

)2

(
mξ
πr

)2

⎞

⎟⎟
⎠ .

(27)

Since the quadratic term of the Eq. (26) is negative in
the ergosphere and positive at the outside of the static limit,
the classically forbidden region of angular momentum lies
between the two roots in the ergosphere and outside the range
between two roots at the outside of the static limit. The lower
panel of Fig. 3 presents the classically forbidden region for
the angular momentum. It is noted that there is also the
allowable region in the ergosphere for some specific angular
momenta above the blue line, but the forbidden region is near
the static limit, which means that the outer particles are hard
to enter the ergosphere and the Hawking radiation from the
event horizon is hard to leave the ergosphere for the higher
angular momentum. Meanwhile, it is also noted that there is
no shielding of the Penrose superradiance for L < 0 since
the superradiance doesn’t occur in this region. So we get an
angular momentum forbidden region between L+ and L−
inside the ergosphere.

Finally, we have to point out that it is not possible to judge
whether superradiance shielding occurs in the ergosphere
only based on the negative effective potential, and it also
requires to consider the superradiance conditions E < L�re
and L > 0. From Eq. (27), L± are proportional to the energy
E , which means that the smaller the energy, the larger the
range of forbidden region. Thus, the classical particles are
harder to realize the Penross process. Quantum tunneling is
necessary for the occurrence of Penrose superradiance with
low energy. In the following section, we will discuss this
using a model related to the recent experiment for Penrose
superradiance using the optical vortices.

4 Quantum tunneling

As in recent numerical simulation [23] and experimental
measurement [24] about Penrose superradiance, the analogue
metric for optical black holes is written simply as

ds2 ∝ −(c2
s − v2

θ )dt
2 + dr2 + (rdθ)2 − 2vθrdθdt. (28)
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where cs and vθ have the same forms as in the last section.
In Refs. [23,24], two laser beams were applied to simulate
the superradiance phenomena, in which the pump beam was
used to form the background spacetime as given in metric
(28) and the signal beam was transformed into an ampli-
fied output beam under the condition that an idler beam with
the negative-frequency modes trapped within the ergoregion
was generated. It is noted that the optical field of the pump
beam only had an angular phase which was used to define
the angular velocity and the static limit could be obtained by
making the angular velocity be equal to the sound speed, but
no radial velocity exists which indicates the absence of the
event horizon, as presented in the metric (28). This is conve-
nient to study the phenomena derived from the existence of
the static limit, which captures the negative-energy particles
and causes the Penrose superradiance.

Using the same method as in the last section, we obtain
the geodesic equations

r2
(
dr

dτ

)2

= r2E2 − δr2 − 2mξEL

π

+
((

mξ

πr

)2

− 1

)

L2, (29)

r2 dθ

dτ
= −mξE

π
+ L

((
mξ

πr

)2

− 1

)

, (30)

r2 dt

dτ
= −Er2 + mξL

π
, (31)

and the effective potential

Vef f = r2E2 − δr2 − 2mξEL

π
+

((
mξ

πr

)2

− 1

)

L2.

(32)

This effective potential can be expressed as the function of
E
L , and solving Vef f

( E
L

) = 0, we get two roots

(
E

L

)

±
= mξ

πr2

⎛

⎜⎜
⎝1 ±

√√√√√
√1 −

(
mξ
πr

)2 − 1
(
mξ
πr

)2

⎞

⎟⎟
⎠ (33)

and consider the effective potential as the function of L, and
solving Vef f (L) = 0, we get two roots

L± =
mξE

π

−1 +
(
mξ
πr

)2

⎛

⎜⎜
⎝1 ±

√√√√
√√1 −

−1 +
(
mξ
πr

)2

(
mξ
πr

)2

⎞

⎟⎟
⎠ . (34)

By these roots, we can get the classically forbidden region
for the spacetime with the metric (28).

Figure 4 presents the corresponding forbidden regions
with the parameters from Ref. [24]. For example, the lin-
ear refractive index n0 = 1.32, the nonlinearity coefficient

Fig. 4 E
L and L as the function of r for the upper and lower panel,

respectively. The forbidden regions in two plots are presented with the
static limit at rs ≈ 221µm, and the parameters ξ = 695µm, �rs =
vθ

rs
= 4518.37

n2 = 4.4 × 10−7cm2/W , the wavelength λ = 532nm, the
pump power P = 252mW , the value of the pump waist
ωbg = 1cm, the pump orbital angular momentum (OAM)
l = 1, and the signal OAM s = 2. The pump intensity is got-
ten as I = ρ0 = P/ω2

bg , healing length ξ = λ/
√

4n0|n2|ρ0,

the speed of sound cs =
√
c2|n2|ρ0/n3

0, the flow speed
vθ = c|m|/n0kr , and m = s − l.

In the upper panel of Fig. 4, the superradiance forbidden
region inside the ergosphere is given with the red shadow,
which is near the static limit. The angular momentum forbid-
den region is presented in the lower panel of Fig. 4, and the
forbidden region inside the ergosphere is also near the static
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limit. These show that the shielding of Penrose superradiance
is probable although only the static limit exists and the event
horizon doesn’t exist. Of course, the superradiance shielding
region has to satisfy these conditions E < L�rs and L > 0,
as presented in the upper panel of Fig. 4. Although there is a
red forbidden region in the ergosphere, particles can tunnel
across the forbidden region.

Now consider the quantum tunneling in the analogue met-
ric (28). When δ = 0, the effective potential (32) becomes

Vef f = m2ξ2L2

π2

1

r4 −
(

2mELξ

π
+ L2

)
1

r2 + E2. (35)

To study the quantum tunneling, we need to know the bound-
ary locations of the forbidden region, which can be obtained
by solving Vef f = 0 for the roots of r with the fixed energy
and angular momentum. Because the equation Vef f = 0 is a
biquadratic equation, we can solve the roots for x = r2,

x1,2 = 2mξEL + πL2

2E2π

⎛

⎝1 ±
√√√√1 − 4E2m2ξ2L2

(
2mξEL + πL2

)2

⎞

⎠ .

(36)

x must be real, or else r will take the complex values. Accord-
ing to Descartes’ rule of signs, when the three terms in Vef f
have the sign +−+, the equation Vef f = 0 has two positive
roots for x . Thus,

r1 = √
x1, r2 = −√

x1, r3 = √
x2, r4 = −√

x2, (37)

are four turning points that the forbidden region changes to
the allowable region for the motion of classical particles.

The one-dimensional Schrödinger equation with potential
Vef f is

d2ψ(r)

dr2 = −Vef f ψ(r). (38)

The particles can tunnel through the potential barrier when
Vef f < 0, and the tunneling probability is proportional to
Gamow factor e−2γ , where

γ =
∫ r3

r1

√−Vef f dr. (39)

The distance between the turning points r1 and r3 is
regarded as the width of the potential barrier. The tunneling
probability will decrease as the angular momentum of the
particles increases or the energy of the particles decreases.
So Penrose superradiance shielding in analogue black holes
will reduce the particles with low energies and high angular
momenta, as presented in Fig. 5.

Fig. 5 Gamow factor as the function of angular momentum with the
energy E = 0.00252 in the upper panel and as the function of energy
with the angular momentum L = 0.1

5 Conclusion

In this paper, we investigate the radiation screening under
the background of optical analogue black holes and analyze
mainly the Penrose superradiance shielding for two analogue
metrics, with and without the existence of the event horizon,
respectively. In order to show the existence of superradiance
shielding, we add the conditions for the occurrence of the
superradiance to analyze the classically forbidden region. We
find that the forbidden region is near the static limit for two
different analogue metrics, which means that the superradi-
ance shielding is probable for the particles with the specific
energies and angular momenta. For the forbidden particles,
we calculate the tunneling probability, which shows that the
particles with high energies and low angular momenta are
easier to tunnel through the barrier. We use the experimental
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parameters to make the corresponding analyses for the for-
bidden region and the tunneling, which is helpful to show that
some superradiances with the specific energies and angular
momentum can be measured by the tunneling through the
static limit. Thus, these superradiances are quantum.
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