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Abstract In this letter we revisit the Standard Model pre-
dictions for B(B → K (∗)νν̄) and discuss the opportunities
that open up when combining its partial decay rate with that
of B → K (∗)��. In the Standard Model a suitable ratio of
these two modes can be used to extractCeff

9 , which is essential
for a reliable phenomenological analysis of the B → K (∗)��

angular observables. The same ratio also proves to be more
sensitive to the presence of New Physics in many plausible
extensions of the Standard Model. We also suggest that the
separate measurement of B(B → Kνν̄) for high and for low
q2’s can be helpful for testing the assumed shape of the vec-
tor form factor, because the lattice QCD data are obtained at
high q2’s, whereas the low q2 region is obtained through an
extrapolation.

1 Introduction

Over the past decade a great effort in the high energy
physics community has been invested in studying the exclu-
sive decays based on the b → sll mode, with l ∈ {e, μ}.
Mediated by the flavor changing neutral current, these decays
can occur only through loops in the Standard Model (SM),
and therefore their measurement was expected to give us
insight into the loop content, which in turn could reveal a
presence of physics beyond the SM (BSM). The LHC exper-
iments performed detailed studies of B → K ∗(→ Kπ)μμ

[1–4] and B → Kμμ [5–7]. The angular distribution of
these decays offered access to a set of new observables, free
of the Cabibbo-Kobayashi-Maskawa (CKM) uncertainties,
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each with an additional and often complementary way to
test the presence of the BSM physics [8,9]. It soon became
clear, however, that the main obstacles to such an endeavor
are the hadronic uncertainties. On the one hand and despite
the improvement in controlling the uncertainties of hadronic
matrix elements of the local operators, an O(10%) uncer-
tainty can be warrantied only in a few cases. On the other
hand, the matrix element of the non-local operators, arising
from couplings to the cc̄-pairs, remains an open problem,
see e.g. Ref. [10]. To get around the latter problem one tries
to stay below the region populated by the cc̄-resonances. To
evaluate the matrix element of the non-local operator one
then opts to either invoke the quark-hadron duality which
then means relying entirely on the perturbation theory [11–
15], or to employ a (hadronic) model calculation [16–19].
The problems related to both kinds of hadronic uncertainties
appear to be almost entirely absent in the measurement of
the ratio RK (∗) = B′(B → K (∗)μμ)/B′(B → K (∗)ee) [20],
where B′ is used to indicate that the partial branching frac-
tions are measured in the interval q2 ∈ [1.1, 6] GeV2, there-
fore below the first cc̄ resonance, m2

J/ψ = (3.097 GeV)2.
Indeed, the measurement of RK and RK ∗ [21], and of
B(Bs → μμ) [22–24] resulted in clean constraints on the
BSM couplings and on the models of physics BSM. Many
BSM scenarios predict a significant deviation of B(B →
K (∗)νν̄) with respect to its SM prediction and therefore
B(B → K (∗)νν̄) can provide us with either a test of valid-
ity of a given model, or with a constraint when building an
acceptable scenario of physics BSM.

In this letter we will first evaluate B(B → K (∗)νν̄) in
the SM by arguing that the most precise information can be
obtained if one splits the B → Kνν̄ events to those with
high- and those with low-q2’s. From the comparison of the
measured B(B → Kνν̄)high−q2 with the one predicted in the
SM, one can check for a consistency with the SM. Instead,
from the ratio B(B → Kνν̄)low−q2/B(B → Kνν̄)high−q2

one can check on the validity of the shape of the sole form
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factor entering the expression for dB(B → Kνν̄)/dq2 ∝
| f+(q2)|2. We will then argue, like in Ref. [25], that the ratio
B′(B → Kμμ)/B′(B → Kνν̄), in the low q2-bin, is essen-
tially free of the form factor uncertainty and, if measured,
it allows us to extract the desired Wilson coefficient Ceff

9 ,
which is the one plagued by uncertainties arising from the
hadronic matrix element of the non-local operator. A simi-
lar discussion, even if somewhat less accurate, can then be
extended to B → K ∗νν̄. In that way one can also assess the
size of the non-factorizable contribution to the Ceff

9 which,
according to Ref. [16], is different in the case of K from the
case of K ∗ in the final state.

On the basis of that information, the controversies in com-
parison of other observables extracted from the experimen-
tal angular analysis of B → K (∗)μμ with their SM values
would be removed, and the search of a scenario of physics
BSM consistent with many more experimental constraints
would become more compelling. We show that a study of
the ratio B′(B → Kμμ)/B′(B → Kνν̄) could provide us
with a useful filter to select among the acceptable models of
physics BSM.

The remainder of this letter is organized as follows: in
Sect. 2 we describe the B → K (∗)νν̄ decays in the SM, with
a focus on hadronic uncertainties. In Sect. 3, we propose
alternative observables that are potentially less sensitive to
hadronic uncertainties, and we discuss their sensitivity to
physics beyond the SM in Sect. 4. Our findings are briefly
summarized in Sect. 5.

2 B → K (∗)νν̄ Decays in the SM

2.1 Effective theory description

Decays based on the b → sνν̄ transition are described by
the following effective Lagrangian,

Lb→sνν
eff = 4GF√

2
λt

∑

a

Ca Oa + h.c. , (1)

where GF is the Fermi constant, λt = VtbV ∗
ts is a suitable

product of the CKM entries, and the only relevant operator
in the SM is given by1

Oνi ν j
L = e2

(4π)2 (s̄LγμbL)(ν̄iγ
μ(1 − γ5)ν j ) . (2)

The SM effective Wilson coefficient
[
C

νi ν j
L

]
SM ≡ δi j CSM

L
is known [26,27],

1 The right-handed operator Oνi ν j
R = e2

(4π)2 (s̄RγμbR)(ν̄iγ
μ(1−γ5)ν j )

is absent in the SM, but it can appear in some of the BSM scenarios
(see Sect. 4).

CSM
L = −Xt/ sin2 θW , Xt = 1.462(17)(2) , (3)

and it includes the NLO QCD corrections [28–30], as
well as the two-loop electroweak contributions [31]. Using
sin2 θW = 0.23141(4) [32], one finally arrives at CSM

L =
−6.32(7), where the dominant source of uncertainty comes
from the higher order QCD crrections.

B → Kνν̄ The SM differential decay rate of B → Kνν̄ can
be written as

dB
dq2 (B → Kνν̄) =NK (q2) |CSM

L |2 |λt |2
[
f+(q2)

]2
, (4)

where 0 < q2 ≤ (mB − mK )2 is the di-neutrino invariant
mass, f+(q2) is the B → K vector form factor which will
be discussed in Sect. 2.2, and NK (q2) denotes a known q2-
dependent function,

NK (q2) = τB
G2

F α2
em

256π5

λ
3/2
K

m3
B

, (5)

with λK ≡ λ(q2,m2
B,m2

K ) being the triangle function
λ(a2, b2, c2) ≡ (

a2 − (b − c)2
) (
a2 − (b + c)2

)
. Note that

in the above expressions we summed over the neutrino fla-
vors.

B → K ∗νν̄ Similarly to the previous case, the B → K ∗νν̄

branching fraction can be written as:

dB
dq2 (B → K ∗νν̄) = NK ∗(q2)|CSM

L |2|λt |2F(q2) , (6)

where the kinematical factor reads,

NK ∗(q2) = τB
G2

F α2
em

128π5

λ
1/2
K ∗ q2

m3
B

(mB + mK ∗)2 , (7)

with λK ∗ ≡ λ(q2,m2
B,m2

K ∗), and F(q2) given by

F(q2) = [A1(q
2)]2 + 32 m2

K ∗m2
B

q2(mB + mK ∗)2 [A12(q
2)]2

+ λK ∗

(mB + mK ∗)4 [V (q2)]2 . (8)

The B → K ∗ form factors A1(q2), A12(q2) and V (q2) will
be defined shortly, in Sect. 2.3.

Besides the small and controlled uncertainty in CSM
L , two

other sources of theoretical uncertainties in the above expres-
sions come from: (i) the B → K (∗) form factors that must
be determined nonperturbatively, see Sects. 2.2 and 2.3, and
(ii) the product of the CKM matrix elements λt = VtbV ∗

ts ,
which will be discussed in Sect. 2.4.
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2.2 B → K form factors

The B → K hadronic matrix element is the main source
of theoretical uncertainty entering the B → Kνν̄ branching
fraction. It is usually decomposed as

〈K̄ (k)|s̄γ μb|B̄(p)〉 =
[
(p + k)μ − m2

B − m2
K

q2 qμ
]
f+(q2)

+ m2
B − m2

K

q2 qμ f0(q
2) , (9)

where f+ ( f0) are the so-called vector (scalar) B → K
form factors, satisfying at q2 = 0 the condition f+(0) =
f0(0). Note also that the scalar form factor does not enter the
theoretical expression for B(B → Kνν̄), cf. Equation (4),
since the neutrino masses are negligible.

While this letter was in writing an update of the lattice
QCD result by the HPQCD collaboration appeared [33]. We
used the information provided in their paper, combined it
with the lattice QCD results by the FNAL/MILC collabora-
tion [34] and followed the same procedure as FLAG [35] in
order to provide the new average of the lattice QCD form
factors, cf. Appendix A. Our average therefore supersedes
the one presented in Ref. [35], in which now already obso-
lete HPQCD results from Ref. [36] have been used. Since
the lattice QCD results are obtained for q2 � 16 GeV2, an
extrapolation is needed to cover the entire B → Kνν̄ physi-
cal region. This is provided by the parametrization of the q2

dependence of the form factors, which is discussed in Ref.
[35]. In Fig. 1 we show the newly averaged form factors and
their shapes (solid curves), and compare them with the previ-
ous ones (dashed) presented in [35]. Clearly, the effect of the
inclusion of the new HPQCD results is that the form factors
at low q2’s are now more accurate.

One should keep in mind, however, that the low-q2 region
is a result of an extrapolation which is a potential source
of systematic uncertainty, not accounted in the error budget.
We propose a way to monitor such an uncertainty by splitting
the sample of B → Kνν̄ events into two bins: low q2’s for
q2/(mB − mK )2 ∈ (0, 1/2), and high q2’s for q2/(mB −
mK )2 ∈ (1/2, 1).2 From the measured ratio:

rlh = B(B → Kνν̄)low−q2

B(B → Kνν̄)high−q2
, (10)

one can check whether or not the result is consistent with
prediction, which is obtained by using lattice QCD results

2 Here we propose to split the sample in two bins, but obviously splitting
the sample into more than two bins would be even better when it comes
to monitoring the shape of the form factor.

Fig. 1 The results of our fit for f+(q2) and f0(q2) form factors are
depicted by the blue and red solid curves respectively. The dashed lines
correspond to the results reported by FLAG [35]. The synthetic data
points by HPQCD (green) [33] and by FNAL/MILC (orange) [34] are
also shown for comparison. P+,0(q2) are the inverse pole terms defined
in Eq. (A5)

for f+(q2) at high q2, and the ones obtained through extrap-
olation to low q2. Note that the above ratio rlh is independent
on the CKM factor, and on the Wilson coefficient regardless
of the presence of physics BSM, provided we consider the
left-handed neutrinos. Using the new average for the form
factor provided in this paper we find,

rlh = 1.91(6) , (11)

which is obviously consistent with rlh = 1.92(20), obtained
by using solely the FNAL/MILC form factors [34], as well
as with rlh = 1.85(9), that we obtain by using only the
new HPQCD values [33]. Finally, and for future refer-
ence we note that from our average f+(0) = 0.336(10),
which again is consistent with the FNAL/MILC value,
f+(0) = 0.335(36), and with the new one obtained by
HPQCD, f+(0) = 0.332(12). All these values are not far
from f+(0) = 0.304(42), often used in the literature and
obtained by using the so-called light cone sum rules (LCSR)
[37].

regarding the total branching fraction, with our new aver-
age of the lattice QCD form factor, we obtain:

B(B → Kνν̄)SM/|λt |2 =
{

(1.33 ± 0.04)KS × 10−3 ,

(2.87 ± 0.10)K+ × 10−3 ,

(12)
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Fig. 2 Rescaled differential branching fraction |λt |−2 dB(B+ →
K+νν̄)/dq2 is plotted by using the form factor f+(q2) from the FLAG
review [35], and by using the one discussed in this letter. The lower
panel shows the relative uncertainty on this quantity as a function of q2

using the FLAG form factors

where we factored out the CKM dependence and distin-
guished the charged from the neutral kaon case.3 The com-
parison of this prediction with the ones available in the litera-
ture is provided in Table 1, each corresponding to a different
choice of the form factor f+(q2): in Ref. [26,27] the lat-
tice results of Ref. [36] are combined with the LCSR value;
in Ref. [38] only the FNAL/MILC lattice results [34] have
been used; in Ref. [39] only the new HPQCD results are
considered [33]; in obtaining our result for the branching
fraction we use the average of the form factor result obtained
by FNAL/MILC [34] and the new HPQCD result [33]. In
Fig. 2 we show the impact of the new form factor on the dif-
ferential branching fraction. In the same plot we emphasize
the consequence of using the new form factor average on
the error of the branching fraction in the low q2 region (Fig.
3). One should, however, keep in mind that the form factor
at low q2’s is obtained through an extrapolation from large
q2’s where the actual lattice QCD data are available. This is
done by using a pole-like shape of the form factor, multiplied
by a suitable polynomial, as proposed in the model of Ref.
[40]. It is therefore of major importance to devise strategies
aiming at reducing the impact of hadronic uncertainties in
the observables that can be accessed experimentally, as we
explore in Sect. 3.

Before continuing, we need to stress that the difference
between B(B0 → KSνν̄) and B(B+ → K+νν̄) is related to

3 Note that the charged mode is also affected by the non-negligible
tree-level contribution proportional to G4

F , as discussed in Sect. 2.5 of
the present letter.

Table 1 SM predictions for B(B+ → K+νν̄)/|λt |2 and the corre-
sponding form factors used in the computation. Note that the non-
negligible contribution proportional to G4

F has not been included in
the above results, cf. Sect. 2.5

Ref. Form factors B(B+ → K+νν̄)/|λt |2

Buras et al. [26,27] [36,37] (2.5 ± 0.3) × 10−3

Blake et al. [38] [34] (2.8 ± 0.3) × 10−3

Parrott et al. [39] [33] (2.81 ± 0.15) × 10−3

This work [33–35] (2.87 ± 0.10) × 10−3

the symmetry relation among the matrix elements:

〈KS|b̄γμs|B0〉 = −〈KS|s̄γμb|B̄0〉
= 1√

2
〈K+|s̄γμb|B̄+〉 , (13)

where we accounted for the Clebsch-Gordan coefficient, so
that in the end we have

B(B0 → KS νν̄) = B(B
0 → KS νν̄)

= 1

2

τB0

τB+
B(B+ → K+νν̄) , (14)

where, for illustration purposes, we neglect the tiny phase
space difference. In our numerics, however, we use the cor-
rect masses of the charged and of the neutral kaons. Note
in particular that it is important to properly account for the
B-meson lifetimes, because τB+/τB0 = 1.076(4) [32].

2.3 B → K ∗ form factors

The hadronic matrix element entering the B → K ∗νν̄ decay
can be parameterized as follows 4

〈K̄ ∗(k)|s̄γμ(1 − γ5)b|B̄(p)〉 = εμνρσ ε∗ν pρkσ 2V (q2)

mB + mK ∗

− iε∗
μ(mB + mK ∗)A1(q

2)

+ i(p + k)μ(ε∗ · q)
A2(q2)

mB + mK ∗

+ iqμ(ε∗ · q)
2mK ∗

q2

[
A3(q

2) − A0(q
2)

]
,

(15)

where εμ is the polarization vector of K ∗, while V (q2) and
A0,1,2,3(q2) are the form factors. In the above definition we
use A3(q2), while in Eq. (8) we used A12(q2). They are both

4 The convention used in Eq. (15) is ε0123 = +1.
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related to A1(q2) and A2(q2) as:

A3(q
2) = mB + mK ∗

2mK ∗
A1(q

2) − mB − mK ∗

2mK ∗
A2(q

2),

A12(q
2) = (mB + mK ∗)(m2

B − m2
K ∗ − q2)

16mBm2
K ∗

A1(q
2)

− λK ∗

16mBm2
K ∗(mB + mK ∗)

A2(q
2), (16)

so that at q2 = 0 they satisfy: 8mBmK ∗ A12(0) = (m2
B −

m2
K ∗)A0(0), and A3(0) = A0(0). Since the pseudoscalar

form factor A0(q2) does not contribute to the decay rate in
the massless neutrino limit, three independent form factors
are needed to compute B → K ∗νν̄, namely V , A1 and A2.

The situation for the B → K ∗ transition is far more intri-
cate than for B → K because there are more form factors.
Furthermore, the results of only one lattice QCD study at
nonzero recoil have been reported so far, with a specific lat-
tice setup [41]. In this paper, we take the results of Ref. [42]
in which the lattice QCD values from Ref. [41] were com-
bined with those obtained by using the LCSR. By adopting
the form factor parameterizations and inputs from Ref. [42],
we obtain

B(B → K ∗νν̄)SM/|λt |2 =
{

(5.9 ± 0.8)K ∗0 × 10−3 ,

(6.4 ± 0.9)K ∗+ × 10−3 ,

(17)

in good agreement with Ref. [38].5 We should point out,
however, that this result is obviously less robust than the
one for B(B → Kνν̄). This is strengthening even more our
motivation to look for the options that allow one to reduce
sensitivity to the form factor uncertainties, see Sect. 3.

2.4 CKM couplings

The uncertainty on the CKM factor λt = VtbV ∗
ts intro-

duces the largest parametric uncertainty in B(B → K (∗)νν̄).
The usual procedure, often adopted in the literature, is to
determine |Vcb| from the tree-level processes and then, by
virtue of the CKM unitarity, evaluate |λt |, cf. e.g. Ref.
[26,27]. In that way the loop-induced processes are used
to probe the effects of physics BSM. Unfortunately, that
procedure is intrinsically ambiguous too, because the CKM
coupling |V incl

cb | extracted from the inclusive semileptonic
decay, does not coincide with |V excl

cb | obtained from the
exclusive modes. The latest HFLAV average values of the
inclusive |Vcb| read: |V incl

cb |kin = (42.2 ± 0.8) × 10−3 or
|V incl

cb |1 S = (42.0 ± 0.5) × 10−3 [47]. Those values are

5 Notice that slightly smaller values are obtained in Refs. [43–45] by
using the B → K ∗ form factors provided in Ref. [46].

Fig. 3 Predictions for |λt |−2 dB(B0 → K ∗0νν̄)/dq2 obtained by
using the form factors from Ref. [42]. The lower panel shows the relative
uncertainty on this quantity as a function of q2

larger than |V B→D
cb | = (40.0 ± 1.0) × 10−3 [35] obtained

after combining the experimental results on the exclusive
B → Dlν decays [47] (with l = e, μ) with the LQCD form
factors from Refs. [48,49]. This discrepancy remains true if
one compares the inclusive values with the one derived from
B → D∗lν, namely |V B→D∗

cb | = (38.5 ± 0.7)× 10−3 [47].6

In other words, there is a discrepancy in |λt | depending on
the particular input considered,

|λt | × 103 =
⎧
⎨

⎩

42.2 ± 0.8, (B → Xclν̄)

40.0 ± 1.0, (B → Dlν̄)

38.5 ± 0.7, (B → D∗lν̄)

(18)

where the inclusive value is about 1σ and 2σ larger the
the ones derived from B → Dlν̄ and B → D∗lν̄ decays,
respectively.

For future reference, we will use |λt |excl = (40.0 ±
1.0) × 10−3, and |λt |incl as noted above. Notice that by
using |λt |excl we obtain the branching fractions in Eqs. (12,
17) 1.5σ smaller than the values we get by using |λt |incl,
which again highlights the importance of clarifying the issue
of the determination of Vcb.7 Another possibility is to rely
on the CKM unitarity and extract the Vcb from the global
fit with data in which b → c�ν experimental input is
removed. This leads to |VUTfit

cb | = 42.2(5) × 10−3 [51,52],
or |VCKMfitter

cb | = 41.3(3) × 10−3 [53], mostly constrained

6 The quoted |V B→D∗
cb | value agrees with |V B→D∗

cb | = (38.9 ± 0.9) ×
10−3 reported by FLAG [35].
7 Notice that this discrepancy would be even stronger if instead of
|V B→D

cb | we used the HFLAV value of |V B→D∗
cb | [47]. Note also that a

larger |V B→D∗
cb | has been recently advocated in Ref. [50].
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by the K 0 − K
0

and Bs − Bs mixing. Clearly, one could
extract λt from �mBs , as advocated in Ref. [43–45]. In
all these alternative strategies, an excellent control over the
matrix element of the Bs − Bs mixing is required, usually

referred to as fBs

√
B̂Bs , which is currently not the case. In

the FLAG review, fBs

√
B̂Bs = 274(8) MeV (Nf = 2 + 1),

and fBs

√
B̂Bs = 256(6) MeV (Nf = 2 + 1 + 1), which

again renders the value of λt ambiguous. One way to avoid
the ambiguity on the CKM couplings will be discussed in
Sect. 3.

2.5 Numerical predictions

Before we give our final numerical results, we need to account
for one significant correction. It was first noted in Ref. [54]
that there is an important tree level contribution to the charged
B± → K±νν̄ mode arising from the weak annihilation
mediated by the on-shell τ -lepton. We will follow Ref. [54]
and call this new contribution as “Tree”, while keeping in
mind that its amplitude is ∝ G2

F . To be more specific, we
write:

dB(B+ → K+νν̄)Tree

dq2dp2
τ

= τB+G4
F |VusVub|2 f 2

K f 2
B

64π3m3
B

p4
τ

× m2
B(p2

τ − m2
K ) − p2

τ (p
2
τ + q2 − m2

K )

(m2
τ − p2

τ )
2 + m2

τ�
2
τ

, (19)

where p2
τ and �τ are the invariant mass and the full width of

the intermediate τ -lepton. After integrating over the phase
space we have:

B(B+ → K+νν̄)Tree = τB+G4
F |VusVub|2 f 2

K f 2
B

128π2m3
B

× mτ

�τ

(m2
τ − m2

K )2(m2
B − m2

τ )
2 , (20)

where we have used a narrow-width approximation. Simi-
larly, for the B+ → K ∗+νν̄ mode we have,

dB(B+ → K ∗+νν̄)Tree

dq2dp2
τ

= τB+G4
F |VusVub|2 f 2

K ∗ f 2
B

64π3m3
B

p4
τ

× (m2
B − p2

τ )(p
2
τ − m2

K ∗) − q2(p2
τ − 2m2

K ∗)

(m2
τ − p2

τ )
2 + m2

τ�
2
τ

, (21)

which leads to,

B(B+ → K ∗+νν̄)Tree = τB+G4
F |VusVub|2 f 2

K ∗ f 2
B

128π2m3
B

mτ

�τ

× (m2
τ − m2

K ∗)2(m2
B − m2

τ )
2

(
1 + 2m2

K ∗
m2

τ

)
. (22)

Table 2 Our final predictions for the branching fractions of the most
relevant b → sνν̄ decay modes. The first uncertainty comes from the
hadronic form factors and the second one is dominated by the uncer-
tainty of |λt |
Decay Branching ratio

B+ → K+νν̄ (5.22 ± 0.15 ± 0.28) × 10−6

B0 → KSνν̄ (2.12 ± 0.07 ± 0.13) × 10−6

B+ → K ∗+νν̄ (11.27 ± 1.38 ± 0.62) × 10−6

B0 → K ∗0νν̄ (9.47 ± 1.28 ± 0.57) × 10−6

To estimate the size of this contribution we take fK =
155.7(3) MeV and fB = 190.0(1.3) MeV from the FLAG
review [35], in addition to fK ∗ = 205(6) MeV, which we
extracted from the measured B(τ → K ∗ν) = 1.20(7)%
[32], and by using |Vus | = 0.2259(5) [55], |Vub| =
3.74(17) × 10−3 [35]. We finally obtain

B(B+ → K+νν̄)Tree = (6.28 ± 0.06) × 10−7 ,

B(B+ → K ∗+νν̄)Tree = (1.07 ± 0.10) × 10−6 .
(23)

Despite being ∝ G4
F this contribution is indeed numerically

significant. We find that it amounts to more than 10% with
respect to the dominant effect ∝ G2

F , and therefore if we aim
at the 10% experimental precision or better at Belle-II, the
“Tree” contribution must be included [56]. We do so to obtain
our final estimates for the total branching fractions collected
in Table 2, which are just below the current experimental lim-
its [57,58]. Note, once again, that in our final results we used
|λt | = (4.00 ± 0.10) × 10−2. For the readers’ convenience,
in Tables 3 and 4 we also provide the binned values for the
B → K (∗)νν̄ branching fractions.

Before closing this section, we should stress that depend-
ing on the precision the so-called “Tree” contribution can
be important when discussing the ratio rlh (10). While the
case of B → KSνν̄ remains unchanged, we note that for the
charged mode:

B(B+ → K+νν̄)Tree

B(B+ → K+νν̄)
≈ 11 %

∣∣∣∣
low−q2

, 13%

∣∣∣∣
high−q2

, (24)

where the denominator represents the sum of values obtained
by using Eqs. (4) and (19).

3 Improved strategies

We now explore the strategies allowing us to reduce the
impact of hadronic uncertainties, while trying to keep the
sensitivity to the BSM physics pronounced. In the following
discussion, we focus on B → KS νν̄ which is not impacted
by the above mentioned “Tree” contribution.
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Table 3 SM predictions for the partially integrated B → Kνν̄ branch-
ing fraction, in a given q2-bin, obtained by using our fit to the lattice
form factors from HQPCD [33] and FNAL/MILC [34], and the CKM
input |λt | = 4.00(10) × 10−2. The first uncertainty comes from the

hadronic form factors and the second one is dominated by the uncer-
tainty on |λt |2. The total relative uncertainty of each observable is shown
in the last column

q2-bin [GeV2] B(B+ → K+νν̄) × 106 σBK+ /BK+ B(B0 → KSνν̄) × 106 σBKS
/BKS

[0, 4] (1.241 ± 0.058 ± 0.066) 0.07 (0.506 ± 0.027 ± 0.030) 0.08

[4, 8] (1.196 ± 0.041 ± 0.065) 0.06 (0.493 ± 0.019 ± 0.030) 0.07

[8, 12] (1.097 ± 0.028 ± 0.060) 0.06 (0.455 ± 0.013 ± 0.027) 0.07

[12, 16] (0.916 ± 0.021 ± 0.050) 0.06 (0.378 ± 0.010 ± 0.023) 0.07

[16, q2
max] (0.765 ± 0.018 ± 0.040) 0.06 (0.292 ± 0.008 ± 0.017) 0.07

[0, q2
max] (5.22 ± 0.15 ± 0.28) 0.06 (2.12 ± 0.07 ± 0.13) 0.07

Table 4 SM predictions similar to those presented in Table 3 but for the case of vector meson in the final state, B → K ∗νν̄

q2-bin [GeV2] B(B+ → K ∗+νν̄) × 106 σBK∗+ /BK ∗+ B(B0 → K ∗0νν̄) × 106 σBK∗0 /BK ∗0

[0, 4] (1.82 ± 0.20 ± 0.09) 0.12 (1.44 ± 0.18 ± 0.09) 0.14

[4, 8] (2.33 ± 0.24 ± 0.12) 0.12 (1.93 ± 0.22 ± 0.12) 0.13

[8, 12] (2.73 ± 0.32 ± 0.15) 0.13 (2.32 ± 0.29 ± 0.14) 0.14

[12, 16] (2.82 ± 0.41 ± 0.16) 0.16 (2.42 ± 0.37 ± 0.14) 0.17

[16, q2
max] (1.57 ± 0.32 ± 0.09) 0.21 (1.33 ± 0.29 ± 0.08) 0.22

[0, q2
max] (11.27 ± 1.38 ± 0.62) 0.13 (9.47 ± 1.28 ± 0.57) 0.15

3.1 B → Kνν̄ at high-q2

For B → Kνν̄ decays, the simplest strategy to reduce the
theoretical uncertainty is to focus on the high-q2 region,
which is where f+(q2) is precisely determined in LQCD.
This restriction to high q2’s does hamper the sensitivity of
this quantity to New Physics which would only rescale the
entire q2-spectrum for left-handed neutrinos (see Sect. 4).8

The main disadvantage of this approach is that less statistics
would be available in the experimental measurement, which
to our view is outweighed by the advantage of having better
theoretical control over the SM prediction.

By considering the two intervals, q2 ≥ 12 GeV2 (bin
I) and q2 ≥ 16 GeV2 (bin II), we find that they comprise
about 30% and 15% of the full event sample, respectively.
The corresponding SM predictions in these bins are:

B(B → KSνν̄)SM
bin I = (0.670 ± 0.018 ± 0.040) × 10−6 ,

(25)

B(B → KSνν̄)SM
bin II = (0.292 ± 0.008 ± 0.017) × 10−6 ,

(26)

where the form factor uncertainties become subdominant
in comparison with the one arising from the CKM matrix
elements. Note also that the relative uncertainties in these

8 See Ref. [59] for a discussion that includes right-handed neutrinos
too.

intervals are about a factor of 2 smaller than the one from the
total branching fraction, see Table 2.

This strategy provides a clear way to avoid the uncon-
trolled form factor uncertainties in the B → K transi-
tion, provided the binned information will be made available
by Belle-II. However, there are several limitations to this
approach. Firstly, the uncertainty associated with the CKM
factor remains important, in particular the one arising from
discrepancies between different determinations of |Vcb|, cf.
Section 2.4. Moreover, as of now, this idea cannot be fully
exploited for B → K ∗ decays since the LQCD results at
nonzero recoil have only been obtained by one collaboration
and without a full control over systematic uncertainties [41].
These limitations call for the alternative approaches to reduce
the theoretical errors, as discussed in the following.

3.2 (ν/�) ratios

In this Section we explore an alternative way to reduce the
theoretical uncertainty on both B → Kνν̄ and B → K ∗νν̄

decays by exploiting the similarity with the corresponding
decays into charged leptons. More precisely, we study the
following ratio,

R(ν/ l)
K (∗) [q2

0 , q2
1 ] ≡ B(B → K (∗)νν̄)

B(B → K (∗)ll)

∣∣∣∣
[q2

0 ,q2
1 ]

, (27)
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where l ∈ {e, μ}, and the branching fractions are inte-
grated over the same q2 interval, [q2

0 , q2
1 ], both in the numer-

ator and in the denominator. Since the considered lepton
masses are negligible with respect to the other mass scales in
the process, we can expect a cancellation not only of the CKM
factors, but also of the form factors in Eq. (27), provided the
q2-bin is chosen judiciously. Of course, the region around the
cc̄ resonances must be avoided, as the resonances would com-
pletely spoil the benefits of the ratio R(ν/ l)

K (∗) [q2
0 , q2

1 ]. More-

over, one should consider a region where Ceff
9 (q2) is under

reasonable theoretical control. The optimal choice turns out
to be the interval q2 ∈ [1.1, 6] GeV2, the one that is already
considered in the experimental tests of lepton flavor univer-
sality (LFU) [21].

We briefly remind the reader that the processes based
on b → s�� can be described by the following effective
Lagrangian [60]:

Lb→s��
eff = 4GF√

2
λt

∑

i

(
C�
i O�

i + C�
i ′ O�

i ′
)

+ h.c. , (28)

where the effective coefficients C��
i ≡ C��

i (μ) and operators
O��

i ≡ O��
i (μ) are defined at the scale μ = mb. The relevant

operators to our study are

O��
9 = e2

(4π)2

(
s̄γμPLb

)(
�̄γμ�

)
, (29)

O��
10 = e2

(4π)2

(
s̄γμPLb

)(
�̄γμγ5�

)
, (30)

in addition to the chirality flipped ones, O��
i ′ , obtained from

O��
i by replacing PL ↔ PR , and the dipole operators O7,8.

The contributions from the four-quark operators O1−6 are
included in the redefinition of the coefficients C7,9 [60–62].

By relying on the theoretical inputs described above, we
obtain the following predictions for the B → K (∗)ll partial
branching fractions (with l = e, μ),

B(B0 → KSll)
SM[1.1,6]/|λt |2 = 0.507(24) × 10−4 , (31)

B(B0 → K ∗0ll)SM[1.1,6]/|λt |2 = 1.46(21) × 10−4 . (32)

The difference between the rates with muons and with elec-
trons in the final state is completely marginal with respect
to the current theoretical uncertainties. By combining these
results with B(B → K (∗)νν̄)[1.1,6], we find:

R(ν/ l)
K [1.1, 6]

∣∣∣∣
SM

= 7.58 ± 0.04 , (33)

and

R(ν/ l)
K ∗ [1.1, 6]

∣∣∣∣
SM

= 8.6 ± 0.3 , (34)

Fig. 4 The ratios R(ν/μ)
K and R(ν/μ)

K ∗ are plotted in orange and blue
respectively, as functions of q2 in the region well below the first cc̄
resonance. In the lower panel we display the relative error in order to
better appreciate the precision with respect to those shown in Figs. 2
and 3

which are shown in Fig. 4. For the ratios based on B → K
decays, we obtain a relative uncertainty less than 1%, which
is much smaller the 7.5% error on B(B → Kνν̄)[1.1,6].
The cancellation of the f+(q2) form factor in R(ν/ l)

K is
indeed efficient, since the contributions involving the scalar
( f0) and tensor ( fT ) form factors are suppressed by m2

l /q
2

and by |C7|/|C9| ≈ 0.1, respectively. The same argument
holds true for the pseudoscalar (A0) and the tensor form fac-
tors (T1,2,3) entering the B → K ∗ observables. However,
in the latter case, there are more form factors that survive
even in the limit in which the charged lepton mass and the
photon-dipole are neglected. Therefore the cancellation of
the form factors work to a lesser extent and the ratio R(ν/ l)

K ∗
is predicted with a relative uncertainty of about 5% in the
bin we chose, q2 ∈ [1.1, 6] GeV2. This resulting uncer-
tainty is, however, almost a factor 3 smaller than the one in
B(B → K ∗νν̄)[1.1,6], proving that the proposal to study the
ratio could be advantegous also in this case.

3.3 Standard model considerations

The caveat in the above discussion is related to the choice
of Ceff

9 (q2) that one has to make in order to evaluate the
full and/or partial branching fractions, B(B → K (∗)ll). That
issue attracted quite a lot of attention in the literature and we
will not dwell on it here. To obtain the results in Eqs. (33, 34)
we relied on the quark-hadron duality and used the two-loop
results from Ref. [14]. The inclusion of the non-factorizable
nonperturbative cc̄-contribution toCeff

9 has been discussed in
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Ref. [17], and recently improved in Refs. [18,19]. A reliable
estimate of that contribution remains a challenging task. In
practice, for example, the quark-hadron duality, mentioned
above, in the intervalq2 ∈ [1.1, 6] GeV2, leads toCeff

9 � 4.4,
also used in the popular flavio code [63]. Instead, in Ref.
[64] the value Ceff

9 � 4.1 is preferred. This is actually the
main source of disagreement among various collaborations
while performing the global analyses of the experimental
data for the angular observables in the exclusive b → sll
decay modes [64–68].

We can now turn that problem around and actually use
our ratios R(ν/e)

K (∗) [1.1, 6] in order to extract the Ceff
9 from the

data. If we stick to the SM, we obtain

1

R(ν/ l)
K [1.1, 6]

∣∣∣∣
SM

�
[

7.15 − 0.45 · Ceff
9 + 0.42 ·

(
Ceff

9

)2
]

× 10−2 , (35)

1

R(ν/ l)
K ∗ [1.1, 6]

∣∣∣∣
SM

�
[

9.98 − 1.45 · Ceff
9 + 0.42 ·

(
Ceff

9

)2
]

× 10−2 , (36)

where we neglect the q2-variation of Ceff
9 , which is why in

Fig. 5 we employed 〈Ceff
9 〉 to emphasize that it corresponds to

the average of Ceff
9 (q2) over the interval of q2’s in which the

ratio R(ν/ l)
K (∗) has been measured. It is interesting to note that if

R(ν/ l)
K [1.1, 6] is measured with a precision of 10% (20%), the

error on the extracted 〈Ceff
9 〉 would be ±0.4 (±0.8). Finally,

we should stress that it is important to consider both the
pseudoscalar and the vector kaon in the final state, since the
non-factorizable contributions are expected to be smaller in
the case of K than in the case of outgoing K ∗ [17].

4 BSM implications

In this Section we discuss the sensitivity of the observables
discussed above to the contributions arising from physics
BSM. We will provide the most general expressions for the
ratios defined in Eq. (27) and briefly illustrate their variation
with respect to the SM in the case of a peculiar New Physics
scenario.

General expressions:We factorize the SM contribution and,
in a given q2-bin, we write:

R(ν/ l)
K (∗) = R(ν/ l)

K (∗)

∣∣∣
SM

(
1 + δR(ν/ l)

K (∗)

)
, (37)

where δR(ν/ l)
K (∗) is the New Physics contribution. Similarly,

δBνν̄
K (∗) and δBll

K (∗) are the respective shifts of B(B →

Fig. 5 The ratios R(ν/μ)
K and R(ν/μ)

K ∗ are plotted as a function of the
average value of Ceff

9 in a fixed q2 bin. The black points correspond to
the predictions obtained using the Ceff

9 input from Ref. [63]. Note that

the ratio R(ν/μ)
K is practically constant in the low-q2 region and, for this

reason, is only plotted in the [1.1, 6] GeV2 bin, see Fig. 4

K (∗)νν̄) and B(B → K (∗)ll) in a given q2 bin, arising from
BSM,

B(B → K (∗)νν) = B(B → K (∗)νν)

∣∣∣
SM

(
1 + δBνν

K (∗)

)
,

B(B → K (∗)ll) = B(B → K (∗)ll)
∣∣∣
SM

(
1 + δBll

K (∗)

)
.

(38)

In other words, we can write:

δR(ν/ l)
K (∗) = δBνν̄

K (∗) − δBll
K (∗)

1 + δBll
K (∗)

. (39)

The δBνν̄
K (∗) can be easily expressed in terms of the Wilson

coefficients defined in the Lagrangian (1), namely,

δBνν̄
K (∗) =

∑

i

2Re[CSM
L (δCνi νi

L + δCνi νi
R )]

3|CSM
L |2

+
∑

i, j

|δCνi ν j
L + δC

νi ν j
R |2

3|CSM
L |2

− ηK (∗)

∑

i, j

Re[δCνi ν j
R (CSM

L δi j + δC
νi ν j
L )]

3|CSM
L |2 ,

(40)

where we sum over the neutrino flavors i, j ∈ {1, 2, 3}. Note
that the last term vanishes for B → Kνν̄ (ηK = 0), but it
is nonzero for B → K ∗νν̄. Using the form factor described
in Sect. 2, we find that ηK ∗ = 3.47(10) in the [1.1, 6] GeV2
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Table 5 Numerical coefficients defined in Eq. (41) for l = e, μ, which
are computed in the [1.1, 6] GeV2 bin by using the B → K and
B → K ∗ form factors from Ref. [35] and Ref. [42], respectively. The

difference between electron and muon coefficients lies within the quoted
uncertainties

Decays (l = e, μ) aVV aV A aAV aAA bVV bV A bAV bAA

B → Kll 0.2430(1) −0.260(1) 0 0 0.0316(2) 0.0317(2) 0 0

B → K ∗ll 0.0012(48) −0.038(8) −0.191(10) 0.255(6) 0.0048(10) 0.0047(10) 0.0312(7) 0.0311(7)

bin. Similarly for δBll
K (∗) we have,

δBll
K (∗) =

∑

i

ai Re
(
δCll

i

) +
∑

i

bi |δCll
i |2 (41)

where i ∈ {VV , AV , V A, AA}, with

δCll
V V = δCll

9′ + δCll
9 , δCll

V A = δCll
10′ + δCll

10 ,

δCll
AV = δCll

9′ − δCll
9 , δCll

AA = δCll
10′ − δCll

10 .
(42)

We computed the numerical coefficients ai and bi , and the
results are collected in Table 5.

SMEFT: Since we are interested in New Physics sce-
narios defined well above the electroweak scale, the low-
energy effective theory must be replaced by the SM effec-
tive field theory (SMEFT), which is invariant under the full
SU (3)c × SU (2)L × U (1)Y gauge symmetry [69,70]. The
main interest of using this approach is that contributions to
theb → sνν̄ are partially correlated tob → sμμ via SU (2)L
gauge invariance [26,27,71–73].

The d = 6 semileptonic operators relevant to our study
are:

[O(1)
lq

]
i jkl = (

Liγ
μL j

)(
QkγμQl

)
,

[O(3)
lq

]
i jkl = (

Liγ
μτ I L j

)(
Qkτ

IγμQl
)
,

[Oeq
]
i jkl = (

eiγ
μe j

)(
QkγμQl

)
,

[Old
]
i jkl = (

Liγ
μL j

)(
dkγμdl

)
,

[Oed
]
i jkl = (

eiγ
μe j

)(
dkγμdl

)
,

(43)

where Q, L denote the SM quark and lepton SU (2)L dou-
blets, and u, d, e are the quark and lepton weak singlets.
Flavor indices are denoted by i, j, k, l. In what follows, we
work in the flavor basis defined with diagonal down-quark
Yukawa matrix, i.e. the CKM matrix appears in the upper
component of Qi = [(V † u)i , di ]T .

The matching of the SMEFT Lagrangian to Eq. (28) gives

δC�i �i
9 − δC�i �i

10 = 2π

αemλt

v2

�2

{[C(1)
lq

]
i i23 + [C(3)

lq

]
i i23

}
,

δC�i �i
9 + δC�i �i

10 = 2π

αemλt

v2

�2

[Cqe
]
i i23 ,

δC�i �i
9′ − δC�i �i

10′ = 2π

αemλt

v2

�2

[C�d
]
i i23 , (44)

δC�i �i
9′ + δC�i �i

10′ = 2π

αemλt

v2

�2

[Ced
]
i i23 .

The (pseudo)scalar Wilson coefficients are not explicitly
written since their contributions to B(B → K (∗)ll) are sup-
pressed by the light lepton masses.

Similarly, for the b → sνν̄ effective Lagrangian defined
in Eq. (1) we get:

δC
νi ν j
L = π

αemλt

v2

�2

{[C(1)
lq

]
i j23 − [C(3)

lq

]
i j23

}
,

δC
νi ν j
R = π

αemλt

v2

�2

[C�d
]
i j23 .

(45)

The above relations, together with the general expression
given in Eq. (39), allow us to predict R(ν/ l)

K (∗) in any extension
of the SM.

Illustration: We will now consider the simplest scenario of
New Physics that can contribute to the b → sμμ decay
modes, namely via left-handed effective operators satisfying
δCμμ

9 = −δCμμ
10 , and illustrate its impact onto the ratios (27).

In terms of the SMEFT operators, this scenario can arise from
any combination of C(1)

lq and C(3)
lq , with couplings to muons,

and to 2 → 3 quark-flavor indices. Several concrete mod-
els can induce these operators through the exchange of new
bosons [26,27]. Clearly, these operators contribute not only
to b → sμμ, but also to b → sνμν̄μ, i.e. to both the numer-
ator and denominator of Eq. (27). We classify them in terms
of their SM quantum numbers (SU (3)c, SU (2)L ,U (1)Y ),

• Z ′ ∼ (1, 1, 0) : One of the simplest scenarios is to extend
the SM with a Z ′ that couples exclusively to left-handed
quarks and leptons,

LZ ′ ⊃
[
gi jQ Q̄iγμQ j + gi jL L̄iγμL j

]
Z ′μ, (46)
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Fig. 6 The ratios R(ν/e)
K (∗) (bottom and top left panels) and R(ν/μ)

K (∗) (bot-
tom and top right panels) normalized to their SM values, in the region
q2 ∈ [1.1, 6] GeV2, and plotted against δCμμ

9 = −δCμμ
10 for selected

New Physics scenarios with left-handed couplings to muons, see Sect. 4

where gQ and gL are Hermitian matrices. In this case,
we find that

C(1)
lq �= 0, C(3)

lq = 0. (47)

• V ∼ (1, 3, 0) : Z ′ could be a part of a weak triplet V with
the following interaction Lagrangian [74],

LV ⊃
[
gi jQ Q̄iτ

aγμQ j + gi jL L̄iτ
aγμL j

]
Vμ
a , (48)

where gQ and gL are again Hermitian matrices, and τ a

are the Pauli matrices, with a = 1, 2, 3. In this case,

C(1)
lq = 0, C(3)

lq �= 0. (49)

• S3 ∼ (3̄, 3, 1/3) : S3 is the scalar leptoquark, often used
in the literature [75–77]. Its Yukawa interaction is given
by

LS3 ⊃ yi jL QC
i iτ2

(
τ · S3

)
L j + h.c., (50)

which then imply at tree-level,

C(1)
lq = 3 C(3)

lq . (51)

• U1 ∼ (3, 1, 2/3) : Another leptoquark often used in lit-
erature is the vector leptoquark U1 which interacts with
the left-handed fermions via [75,76],

LU1 ⊃ xi jL QiγμL j U
μ
1 + h.c., (52)

from which we have,

C(1)
lq = C(3)

lq . (53)

This combination of Wilson coefficient is peculiar as it
contributes to b → s�� at tree-level, but not to b → sνν̄

due to a cancellation in Eq. (45).

The concrete models listed above predict different patterns
for the effective coefficients C(1)

lq and C(3)
lq , which imply spe-

cific model-dependent correlations between the b → sμμ

and b → sνμνμ transitions.
In Fig. 6 we plot the New Physics contribution to the ratios

R(ν/μ)
K (left panel) and R(ν/μ)

K ∗ (right panel) for each of the
scenarios listed above. For illustration purposes we consider
the [1.1, 6] GeV2 interval. The SMEFT operators induce not
only a modification of the numerator, but also of the denom-
inator, which actually enhances the effect up to O(40%) in
some models. In other words, besides the theoretical accu-
racy of the R(ν/ l)

K (∗) ratios, which is improved compared to
the separate branching fractions, these ratios also allow us
to increase the sensitivity to the type of New Physics effects
considered here.

The above discussion is based on a minimalistic assump-
tion that only the muonic couplings in the b → s�� and
b → sνν̄ transitions are affected by New Physics, but obvi-
ously that assumption can be changed. For example, one can
test whether or not the New Physics couplings to τ ’s are
significant [72,78,79], such as the case in some leptoquark
scenarios that can accommodate the LFU discrepancies in
the b → cτν transition [80,81]. Since these scenarios pre-
dict an enhancement of B(B → Kντ ν̄τ ) [82–88], it is clear
that the effects depicted in Fig. 6 would only increase in this
case.

5 Summary

In this paper we revisited the SM estimate of B(B →
K (∗)νν̄). This is particularly important for the case of the
pseudoscalar meson in the final state because the rele-
vant form factor has been extensively studied and com-
puted by means of LQCD. Since the new such a calcula-
tion appeared after the most recent release of the FLAG
review, we updated the FLAG average of all three form
factors relevant to the B → K transitions. Since the lat-
tice QCD results are obtained for large q2’s one should be
careful when addressing the issue of systematic uncertain-
ties. For that reason we believe that the most reliable way
to test the SM value for B′(B → K (∗)νν̄) is in the region
of large q2’s. Furthermore, the experimental information on
rlh = B(B → Kνν̄)low−q2/B(B → Kνν̄)high−q2 would be
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helpful to test the validity of the extrapolation of LQCD
results (obtained at high-q2) to lowq2’s. Besides the hadronic
uncertainties in B(B → K (∗)νν̄), it is important to further
improve the λt = VtbV ∗

ts which, by virtue of the CKM uni-
tarity, is related to the problem of reconciling the value of
Vcb extracted from exclusive and from inclusive semileptonic
decays.

Most of the uncertainties mentioned above actually can-
cel out if one considers the ratio of the partial decay rates
of B′(B → K (∗)νν̄) and of B(B → K (∗)��), which we
denote by R(ν/ l)

K (∗) . The major hadronic uncertainty in both

rates comes from the form factor which cancels out inR(ν/ l)
K (∗) .

The uncertainty from the multiplicative CKM factor λt can-
cels out as well. However, the price to pay is that the Wilson
coefficient C9, entering B(B → K (∗)��), becomes an obsta-
cle because it is sensitive to the contribution from the non-
local operator arising from the vector current couplings to cc̄.
In the literature that contribution is often estimated by using
the quark-hadron duality or by resorting to the model calcula-
tions. If we stick to the SM, we show that from a measurement
of the ratioR(ν/ l)

K (∗) in a given interval ofq2’s (preferably below

the first cc̄ resonance), one can extract the value 〈Ceff
9 〉, and

indeed check whether of not the sizable non-factorizable con-
tribution would result in 〈Ceff

9 〉K �= 〈Ceff
9 〉K ∗ , as sometimes

argued in the literature. By 〈Ceff
9 〉 we denote the Ceff

9 (q2)

averaged over the interval in which R(ν/ l)
K (∗) is measured.

To further support the benefits of measuring R(ν/ l)
K (∗) , we

also illustrate how it can be used to look for the effects of
physics BSM. In a scenario in which the New Physics con-
tributed at low energy scales through left-handed couplings,
both to quarks and to leptons, we find that R(ν/ l)

K (∗) would be
more sensitive a test of presence of physics BSM than its
numerator and/or its denominator separately. We also pro-
vided an illustration of such a scenario in several simple
models.
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Appendix A: B → K (∗) form factors

B → K: The definitions of the vector ( f+) and scalar ( f0)
form factors are given in Eq. (9), while the tensor form factor
fT is defined as follows

〈K̄ (k)|s̄σμνb|B̄(p)〉 = −i
(
pμkν − pνkμ

) 2 fT (q2)

mB + mK
. (A1)

We consider the same parameterization for the B → K form
factors as provided by FLAG [35],

f+(q2) = 1

P+(q2)

N−1∑

n=0

a+
n

[
zn − (−1)n−N n

N
zN

]
, (A2)

fT (q2) = 1

PT (q2)

N−1∑

n=0

aTn
[
zn − (−1)n−N n

N
zN

]
, (A3)

f0(q
2) = 1

P0(q2)

N−1∑

n=0

a0
n z

n , (A4)

where ain (with i ∈ {0,+, T }) are numerical coefficients, the
pole factors are given by

Pi (q
2) = 1 − q2/M2

i , (A5)

with M+ = MT = 5.4154 GeV and M0 = 5.711 GeV [89],
and z ≡ z(q2) reads

z(q2) =
√
t+ − q2 − √

t+ − t0√
t+ − q2 + √

t+ − t0
, (A6)

where t+ = (mB + mK )2 and we consider t0 = (mB +
mK )(

√
mB−√

mK )2. Since the scalar and vector form factor
satisfy f+(0) = f0(0), it is possible to remove one of the
coefficients in Eq. (A2) and (A3), which we take to be a0

2 ,

a0
2 = f+(0) − a0

0 − a0
1 z(q

2 = 0)

z2(q2 = 0)
. (A7)

In this letter, we update the combined fit to the B → K
form factors made by FLAG [35], by including the latest
HPQCD results [33] that are combined with the ones from
FNAL/MILC [34]. To this purpose, we follow the same
procedure as FLAG which consists in generating synthetic
data points for { f+(q2), f0(q2), fT (q2)} for both HPQCD
and FNAL/MILC form factors at three q2 values, namely
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Fig. 7 The result of our fit for the fT (q2) form factors is depicted by
the blue region respectively, compared to the result reported by FLAG
[35] and the HPQCD (green points) [33] and FNAL/MILC (orange
points) [34] results

q2 ∈ {18, 20.5, 23} GeV2. The central values and the covari-
ance matrix obtained for each collaboration are then fitted in
a combined χ2 assuming that the HPQCD and FNAL/MILC
results are uncorrelated (Fig. 7). We consider the same param-
eterization of FLAG with N = 3, as specified above, and we
remove the a0

2 coefficient by exploiting the scalar/vector form
factor relations at q2 = 0.

The results of our χ2 fit are given in Table 6, includ-
ing the correlation matrix between form factor coefficients.
Our combined fit gives χ2

min/d.o.f � 9.2/10 and, differently
from FLAG [35], we opt for not rescaling the uncertainties of

the fitted parameters by
√

χ2
min/d.o.f. Our results for f+(q2)

are given in Fig. 1, where we see a good agreement between
the two calculations and our combined fit.

We have performed several cross-checks of our fitting
procedure. In particular, we are able to perfectly reproduce
the FLAG results when combining FNAL/MILC [34] with
the previous HPQCD results [36], provided we rescaled the
uncertainties of the fitted parameters by

√
χ2

min/d.o.f. As
already stated above, we opt for not rescaling the uncertain-
ties of our new combined fit.

B → K∗ : The vector and axial form factors entering the
B → K ∗ transition are {A0, A1, A2, V }, which are defined
in Eq. (15). The tensor form factors {T1, T2, T3} are defined
by

〈K̄ ∗(k)|s̄σμνq
ν(1 − γ5)b|B̄(p)〉 = 2iεμαβγ ε∗α pβkγ T1(q

2)

+[
(m2

B − m2
K ∗)ε∗

μ − (ε∗ · q)(k + p)μ
]
T2(q

2)

+(ε∗ · q)

[
qμ − q2

m2
B − m2

K ∗
(k + p)μ

]
T3(q

2) ,

(A8)

where εμ is the polarization vector of K ∗. The B → K ∗
form factor parameterization and input parameters used in
our study are taken from Ref. [42], and we conservatively
assume the fitted parameters to be uncorrelated.

Table 6 Values of the z-expansion coefficients and correlation matrix
obtained by our combined fit to the B → K form factors computed by
HPQCD [33] and FNAL/MILC [34] (with χ2

min/d.o.f � 9.2/10). We
consider the parameterization from Eqs. (A2)–(A4) with N = 3, and

we remove the a0
2 coefficient by imposing the relation f+(0) = f0(0).

The covariance matrix is provided with more digits in an ancillary file.
See text for more details

a+
0 a+

1 a+
2 a0

0 a0
1 aT0 aT1 aT2

0.4742(62) −0.894(51) −0.44(14) 0.2939(36) 0.277(40) 0.4752(92) −0.921(82) −0.53(35)

1 −0.2904 −0.0347 0.7480 0.1844 0.6558 −0.2193 −0.0751

· 1 0.7757 0.2291 0.8527 −0.2569 0.5371 0.2574

· · 1 0.1690 0.8455 −0.1029 0.3700 0.2653

· · · 1 0.4568 0.5232 0.0314 0.0257

· · · · 1 0.0182 0.4501 0.2372

· · · · · 1 −0.0255 −0.0535

· · · · · · 1 0.6920

· · · · · · · 1
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