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Abstract Using the enhanced symmetry in the near-
horizon region of the near-extremal dyonic Kerr—Newman
(KN) black hole in the (A)dS space, we find the exact solu-
tions for dyonic charged scalar field in terms of the hypergeo-
metric function and explicitly compute the Schwinger effect
for the emission of electric and/or magnetic charges. The
emission formula confirms a universal factorization of the
Schwinger formula in the AdS; and another Schwinger for-
mulain the two-dimensional Rindler space determined by the
effective temperature and the Hawking temperature with the
chemical potentials of electric and/or magnetic charges and
the angular momentum. The emission of the same species
of charges from the KN black hole is enhanced in the AdS
boundary while it is suppressed in the dS boundary. In addi-
tion, the dragging of particles in the KN black hole diminishes
the emission of charges in both AdS and dS spaces. The AdS
geometry of near-horizon gives the Breitenloher—Freedman
(BF) bound, within which the stability of dyonic KN black
holes is guaranteed against both the emission of charges and
Hawking radiation.

1 Introduction

The Einstein-Maxwell theory in four dimensions has
Reissner—Nordstrom (RN) black holes and Kerr—Newnman
(KN) black holes in the asymptotically flat spacetime. The
RN and KN black hole solutions are also known in the
(anti-)de Sitter space (for review and references, see [1]).
In the asymptotically flat spacetime the RN and KN black
holes have, in addition to the mass and angular momentum,
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one more hair (parameter), the charge of the hole, and show
a richer structure than Schwarzschild and Kerr black holes.
The RN black hole, for instance, has two horizons: the event
horizon and the Cauchy (inner) horizon. When two hori-
zons coincide and form a degenerate horizon, the RN black
hole becomes an extremal black hole and is described by an
AdS; x S? geometry near the horizon [2], in which quantum
fields can be analytically studied. The KN black hole has,
in addition to mass M, two additional hairs (parameters), the
angular momentum a as well as the charge O and can become
an extremal black hole in the limit of M2 = a2 + QZ, whose
near-horizon geometry is a warped AdS3 x S! [3]. In the
(A)dS space the RN and KN black hole has an extra param-
eter, the radius L of the (A)dS space. Hence, the RN and KN
black holes in the (A)dS space exhibit much richer structure
than those in the asymptotically flat space. For instance, the
near-horizon geometry AdS; x S? of the extremal RN black
hole that is obtained by coinciding the event horizon with
the Cauchy horizon has two different radii R445 and Rg [4].
Furthermore, the RN black hole has the Nariai limit when the
event horizon and the cosmological horizon coincide, whose
near-horizon geometry is dS; X S? (see, for instance, [5].)
Hawking radiation exhibits part of quantum aspects of
black holes [6]. A puzzling property of Hawking radiation
is that the vanishingly small Hawking temperature for near-
extremal black holes exponentially suppresses Hawking radi-
ation. The black hole thermodynamics is not apparently obvi-
ous for extremal black holes. In the case of charged black
holes in an asymptotically flat space, the electric field on
the horizon is strong enough to discharge the hole’s charge
via the Schwinger mechanism [7,8] and in the (A)dS space
[9,10]. Further, the quantum field of a massive charge in
the near-extremal black holes can be solved in terms of
known functions, and the Schwinger emission of charges
has been explicitly found for the RN and KN black holes
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in the asymptotically flat space [3,11-13]. Recently, the
Schwinger emission from (near-)extremal RN black holes
also was found in the (A)dS space [4,14, 15]. The AdS bound-
ary compresses the horizon radius, on which the electric field
becomes stronger than that in the asymptotically flat space.
Hence, the Schwinger effect for a fixed mass is enhanced
in the AdS space. In contrast, the dS boundary stretches the
horizon radius and the weakened electric field suppresses the
Schwinger effect.

The rotation of near-extremal KN black hole affects the
Schwinger effect via two opposite factors: decreasing the
“inertial mass” of charge due to the spacetime dragging but
increasing the horizon radius. Hence, the rotation of the black
hole lowers the Unruh temperature for the charge accelera-
tion on the horizon and thereby the effective temperature
for the leading Boltzmann factor for the Schwinger effect
[3,13]. In fact, the spacetime dragging around the event hori-
zon affects the radial equation for the charges reducing the
“inertial mass”.

In this paper, we study the Schwinger effect from the near-
extremal KN black holes in the (A)dS space. This model is
physically interesting since the rotation of the black hole,
with constrained mass by near-extremal condition, reduces
the Schwinger effect while the AdS (dS) boundary increases
(decreases) the Schwinger effect. Thus, the rotation coop-
erates the suppression in the dS boundary but competes for
the enhancement with the AdS boundary. We show that the
Unruh temperature for charge acceleration and the effective
temperature for Schwinger effect are higher in the AdS space
than in the asymptotically flat space while they are lower
in the dS space than in the flat space. We then extend the
Schwinger effect to the emission of dyons with electric and
magnetic charges and find a universal formula for the mean
number of produced dyons from the near-extremal KN black
holes in the (A)dS space.

The organization of this paper is as follows. In Sect. 2,
we study the near-horizon geometry of near-extremal KN
black holes in the (A)dS space. The degenerate horizon of
extremal KN (A)dS black holes gives a constraint among the
mass, angular momentum, charges and (A)dS radius, which
expresses one parameter in terms of the others. Here we
parameterize the degenerate horizon and charges by the mass,
angular momentum and the radius of the (A)dS space, and
also express the degenerate horizon and the mass in terms of
the charges, angular momentum and the radius of the (A)dS
space. In Sect. 3, we analyze the quantum field for dyons in
the near-horizon geometry and find the mean number of pro-
duced dyons for the Schwinger effect. We numerically study
the effect of the angular momentum and the radius of the
(A)dS space on the horizon radius, inertial mass, Unruh tem-
perature as well as the effective temperature. The BF bound
is found for the KN black holes in the AdS space. In Sect. 4,
we discuss the effect of the rotation and the (A)dS bound-
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ary on the Schwinger effect for emission of charges, electric
and/or magnetic charges from the KN black holes.

2 Extremal dyonic KN black holes in (A)dS space

In this section we express the near-horizon geometry of near-
extremal KN black holes in the (A)dS space. The KN-(A)dS
black holes are the most general stationary solutions, as
shown in Fig. 1, where the KN black hole in the asymp-
totically flat space and the RN black hole in the (A)dS space
are the limit of the infinite (A)dS radius and the zero angular
momentum, respectively. The four-dimensional dyonic KN-
(A)dS black holes consisting of four physical quantities, the
mass M/ E2, angular momentum J = Ma/E?, electric and
magnetic charges O/ & and P/E, have the metric and the
gauge potential

[

2
A sin® 6 by by
ds? = =20 (dr - 2 2 )+ ar? + 6>
g Ay Ao

-
®

Ap r2+a2 2
+§sin29 adt — de) |

Apy = Qr — I;a cosé (dt B aSi;IZGd(p) . P(cos: _J)dgo,
(D
where
2
Ay = (2 +a?) (l:tﬁ> —2Mr + Q% + P,
Ao=17F 2 cos“ 0,
a2
Y =r? 4+ a®cos? 6, E=1F . )

Here the upper (lower) sign corresponds to the AdS (dS)
space and 0 = =1 denotes a different choice of the Dirac
string. The dual gauge potential is

A Pr + Qacos6 (dt— asi:129d¢>

[1] > =

SLERlm Dy, &)

=

The associated thermodynamic quantities, such as the Hawk-
ing temperature, entropy, horizon angular velocity and chem-
ical potential are given by, respectively,
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Dyonic KN-(A)dS BH
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L=o0 a=10
Dyonic KN BH Dyonic RN-(A)dS BH
M QP a M QP L
a=10 L=
Dyonic RN BH

M QP

P=0
RN BH

M Q

Fig. 1 Chartof charged black holes from the (A)dS space to the asymp-
totically flat space

The extremal limit with a degenerate horizon at ry can be
achieved by requiring the conditions A, (rg) = AL (r9) =0
thatidentify the relation of physical parameters. We introduce
two convenient ways to express the physical quantities: first
in terms of mass and then in terms of charges. In the dS space
the degenerated horizon ro = r4 = r_ is given, in terms of
mass, by

2
2 2 9y 20
Q2 + P2 = 3 (l - a_) L7 sin? 3 cos 3~ a’, ®)]

(6)

3 2\ 72y
sinz?=3\/i I Z0oo0<w<
2 L? L

There is an upper limit for the mass and its maximum value
corresponds to 8 = 7 /2. A simple way to give the associated
physical quantities in AdS space is analytically continuing
L —- —iL,v — i, or equivalently flipping the sign of the
cosmological constant, leading to

1/2
2 a? s
r():\/;(l—i-ﬁ) LSlnhg,

2 2\2 2
0+ P =3 (1 n %) L2 sinhzgcoshé —a2,

SRS

where

-3/2
ahe =32 (144 " Mo 8
she=3o\'tz) T ®

Another parametrization of the extremal KN black holes, in
terms of charges, gives'

L5 L3(1+4)+s]vs
:—, M = ) 9
rQ 7 0 376 )
where
2\ 2 2
Szi(ﬂlia) iw_(lia)),
L2 L2 L?
(10)

A few comments are in order. Extremal black holes require
that A, in (2) should have two equal roots, which lead to the
zero discriminant for the quartic equation [16] and give a
constraint equation among parameters:

2

2.3 M2 2 2 2 2

a 0 a\Q"+P +a
((liﬁ) j:54F:F36(1j:ﬁ)—L2 )

a’\2 Q%+ P? +d? .
:((1:i:ﬁ) 112T> . (11)

Alarge L expansion of (11) gives (Mg — (Q2 +P? —i—az))/L2
up to O(1/L*) and recovers My = / Q2% + P2 + a2 in the
asymptotically flat space (L = o0). Notice that the second
equation in (5) and Eq. (9) satisfy the constraint (11) while
the first equation in (5) and Eq. (9) determine the horizon
in terms of (Mg, a, L) and (a, Q2 + P2, L), respectively.
Still another parametrization was introduced in Ref. [17] that
expresses the horizon radius as a function of Mo, Q% + P>
and L.

As discussed in [4], the boundary AdS space decreases the
horizon radius while the dS space increases the radius. For
an extremal rotating charged BH, the rotation provides an
additional repulsive centrifugal force for produced particles
requiring, with fixed charge, larger mass which increases the
horizon radius in both dS and AdS spaces, see Fig. 2. More-
over, in AdS space, the contributions from a and L are com-
petitive so that their dominance switches at almost the same

! There is another degenerate limit in the dS space, namely the Nariai
branch rg = ry = rc¢, in terms of mass,

\/5 a? 12 . T U
ro=4/={1—— Lsin| —-— =],
3 L? 3 3

2 a? T s 2w 29
2 2 2.2 2
Q°+P =—-|1-——) I e —_— - — ) =
3< 12) s <3 3)COS( 3 3) a

or in terms of charges,
2 a2y _npe+erery (@
"7 6 L2 L2 L2))

The corresponding near-horizon geometry becomes warped dS3 since
the signatures of dt and dp are flipped.
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value of rg and L corresponding to the U-turn (convexity) in
the Unruth temperature.
The near-horizon geometry of v, = r_ = ry can be
obtained by applying the following transformation
N rg +a® 1
0 —> @+ Qut, r—>rotep, t— -,
Ay €

A
M — Mo+ =2 B2, (12)
2rg

and then taking € — O limit. The parameter B character-
izes the deviation from the extremal limit. Finally, the near-
horizon geometry of KN-(A)dS black hole is given by

>0 dp2 Ao
ds> = = [ —(p? = BHd1? + —— + —db?
s A0<('0 )r+p2—Bz+A9
2
n (rg + a2)2A9 sinZ 0 dy 2arg pdt
%o E (1§ +d)Ao
2 2 .02
ry —a-cos“0) —2Pargcos6
A[l] _ o( 0 ) 0 odt
Y0Ao
Qargsin? 6 — P(rg +a?)cosh + 0P
- = dy,
Yo
(13)
where
2 2
a 6r,
Aozlj:ﬁj:L—g, %o = rg + a*cos 6. (14)
The dual gauge potential is
_ P(r?2 — a%cos?0) + 2Qarg cos
PO ) +20arocosd
Y0Ao
3 ParysinZ 6 + Q(rg +a?)cost — oQEod
S0 v
(15)

Note that the near horizon geometry of extremal KN-(A)dS
black hole (B = 0) has an enhanced symmetry with AdS, x
S? rather than a warped AdS3 [17].

The charge-mass ratio, \/ 02/ 82 + P2/ E2/(My/E?), in
the dS space is shown in Fig. 3. Note that there is an upper
limit of M in dS space corresponding the triple degeneracy
ry = r_ = r¢, the so-called ultracold horizon. The charge-
mass for AdS black holes is shown in Fig. 4.

3 Schwinger emission of dyons

In this section, we are going to briefly summarize the com-
putation of the production rate for the Schwinger effect
occurring in the near-horizon region of near-extremal Kerr—
Newman (KN) black holes in (A)dS space. The detailed cal-
culation can be found in [3,13] for the case with vanish-
ing cosmological constant. The Klein—Grodon equation for

@ Springer

a charged complex scalar field W carrying mass m, electric
charge ¢ and magnetic charge p

(Vi —iqA, —ipAy) (V* —igA" —ipA*) W
—m*¥ =0, (16)

with the following ansatz,

_ pP—
‘I’(T,,O,@,go):exp<—iwr+in G(qﬁ PQ)(/))

]

XR(p)S(0), a7

where w is frequency, n is separation integer constant from
coordinate ¢, and o (¢ P — p Q) term is introduced to remove
the Dirac string singularity, can be separated to the angular
part

1
sin 0
[nEo+ (g Q+pP)arg sin? 6 — (gP—p Q)(ro2 +a?) cos 0>
B ( (r2 + a?)Ag sin2 6

0p(Ap sinb dpS)

—m?a® sinzﬁ—kl) §=0, (18)

and the radial part

Aod, ((,02 - 32)apR)

N [w(r§ +a?)Ao — (qQ + pP)(r§ — a?)p + 2nargp]?
(rg +a?)?Ao(p? — B?)

—m2(r3 + az) — )»[) R =0. (19)

In this paper we are considering the probe limit in which
the back reaction of scalar field to the Einstein equation is
neglected.

The effective mass in the radial equation, proportional to
the constant term in the last parentheses, is

5 »  [2narg—(qQ + pP)(§ — a®)]?
meff:m - 2 273
(r() +a®)’ A
Al
TR (20)
rO—I—a

and the BF bound, a stability condition in the near-horizon
AdS space i.e. mgﬁ > _1/4L/24ds’ is

Ag

2
Mep = T4+ ad)

2D
The pair production, corresponding to the unstable modes,
occurs when the BF is violated [18,19]. As plotted in Fig. 5,
it is clear that the pair production always occurs in dS space,
but for AdS there is a threshold of L which increases as rising
a (see Table 1).

The solution of radial equation is given by the hypergeo-
metric functions [3,13]
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Fig. 2 Horizon radius r¢ in
AdS (blue) and dS (green) with
parameters Q% + P2 = 12. The
dS space increases the horizon
radius while the AdS space
decreases the radius. But the
horizon radius approaches the
flat space limit when the radius
of the (A)dS space becomes
large. The rotation increases the
horizon radius both in the (A)dS
space

Fig. 3 Charge-mass ratio in dS.
For a given M), the charge-mass
ratio is larger for a small dS
radius than for a large dS radius.
The rotation a lowers the
charge-mass ratio for given M)
and L

Fig. 4 Charge-mass ratio in
AdS. For a given My, the
charge-mass ratio is smaller for
a small AdS radius than for
large AdS radius. The angular
momentum a also lowers the
charge-mass ratio for given M)
and L
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Flg 5 The plot of BF bound
eff + T 2+ 5 for AdS (blue)
and dS (green) with parameters
0>+ P> =12,q0+pP =
6,m=1,A; =0,n=0. The
BF bound can be saturated, i.e.
positive region, only in AdS

BF bound

Table 1 Critical values of ¢ and L of the BF bound in AdS: Q%+ P2 =
12,0+ pP=6m=1,,=0,n=0

a L

0 1.5749
0.4 2.1085
0.8 4.1391
1.2 9.2893

R(p) = c1(p — B)*E (o + B) 26+

F 1+'~+' 1-|— 1+ ! p
3 iK+iu, ik —iu; iK 1/(2 2B

teap — B EE (o + B)IEHO

F (e tip d fic—ip ik i 2 - 2
2 iK 1,u,2 ik —iu; iK 1K,2 28 )
(22)
with the generalized parameters
. w qO + pP)(rg — az) — 2nar
K=—, kK= ,
B (rg +a*) Ao
m2(r2 + a?) A 1
— A (A S 23
H \/K Ao Ao 4 @3)

The solution will reduce to two-parameter Whittaker func-
tion for the extremal limit B — 0. The violation of the BF
bound leads to real value of i which implies the existence of
pair production. According the analysis in [3,13], the mean
number of Schwinger effect is remarkably given by a univer-
sal formula

N e—27‘[(l{—ﬂ) _ e—27r(K+u) 1— e—Zn(/?—K)
= 1+ o2+ “\Tre2nm )

(24)
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It should be noted that for an extremal black hole with B = 0
and k = oo, the second parenthesis deduces to unity and the
first parenthesis is the mean number of pairs in the AdS; [20].
The exponentials can be rewritten as the Boltzmann factors
in thermodynamics with

2k — ) =m/Tegr, 27 + p) = i/ Tesr, (25)

in which the associated “inertial mass” m, the Unruh temper-
ature and the effective temperatures for the Schwinger effect
are defined as

_ A A
2=t S
rgta 4(ry +a*)

A
Tetr = Tu+ | T3 — — 1
472(r 4+ a?)’

Top = T 2_ B0
off = Tu — e

Note that the inertial mass increases in the AdS space while it
decreases in the dS space, and the rotation reduces its value,
as shown in Fig. 6.

The Unruh and effective temperatures are shown in Fig. 7.
Both temperatures basically are inversely proportional to rq
since the electric field is stronger when the horizon is closer to
the origin. Generally the angular momentum reduces these
temperatures via enlarging the horizon. However, in AdS
space, the dominant effect by a or L switches at almost the
same value of L, which causes the U-turns in the Unruh tem-
perature. Moreover, the rg can reduce to a value closed to
a, then the factor rg — a® (assuming n = 0) significantly
suppresses the value of « and, accordingly the Unruh tem-
perature. The effective temperature is physically meaningful
only in the situation that pair production occurs, i.e. violating
the BF bound, otherwise it does not take real values anymore.
The left endpoints of the effective temperature are just the
thresholds of the BF bound.

_ Aok
C 2nmGg +a?)’

(26)
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Fig. 6 Inertial mass m in AdS 1.016

(blue) and dS (green) with

parameters

0?4+ P2 =12,qQ+ pP =

6,m=1,1=0n=0 10147
1.012
1.010
1.008
1.006

0
Fig. 7 Unruh temperature Ty 0.16

and effective temperature Tefr in
AdS (blue) and dS (green) with
parameters 0.14 4 ,.
024+ P2=12,q0+ pP =
6m=1,A,=0,n=0

0.124; -

Ty 0.10 !

0.08 -

0.06

0.04

0.25

0.20

Teff 0.15
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0.05
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Finally, we obtain the remarkable thermal interpretation
for the Schwinger effects [21]

e/ Terr _ =11/ Terr
N=|——+—
( 1 + e—/Tete )

Schwinger effect in AdS,

x :erﬁ/ Tef (e*V;’/Teff

1 — e~ (@+qPu+pPy+nQp)/Th )}

1 4+ e/ Tert e~ (@+qPu+pPu+nQm)/ Tn

Schwinger effect in Rindler ,

27)

The emission formula has a universal factorization of the
Schwinger formula in the AdS, [20] and another Schwinger
formula in the two-dimensional Rindler space [22]. We may
interpret the factorization such that the near-extremal black
holes with non-zero B have the near-horizon geometry which
behaves a two-dimensional Rindler space near p = B
and gives the non-vanishing Hawking temperature though
it becomes the AdS; for large p. The extremal black hole
limit has the zero Hawking temperature and the second fac-
tor reduces to unity and the mean number is the Schwinger
formula in the AdS;. Here, the thermodynamic quantities in
the near-horizon geometry reduce to

To — B _ 2argB
H_ZJT’ H_(ré—i—az)Ao’
Q@r§ —a*)B
CH = T A
(”0 +a“)Ag
i, P(r; —a*)B
by = _Pg—a’)B (28)

(rg +ah) Ao

which are the near extremal limit vy = ro + € B of the cor-
responding quantities in (4):

A B Agpe
Tn—> -5,
27 rg +a?
A ak 2argB EApe
QH —>

rg +a2 (rg +a?)Ag rg +a?’

. Oro Q@2 —a®)B €A

q)H_)rz—}—cﬂ_ (2 +a>)Ag 12 +a?
0 0 0ryta

(29)

The limit is as follows: the first term in 2y is eliminated by
transformation ¢ — ¢ + Qpt, and the first term in @y is
discarded when taking the near horizon limit (it is a divergent

constant). The factor A+022 is simply due to the rescaling of

2
o
time, and E in Qy is from the ¢ dependence in the ansatz of
the scalar field.

4 Conclusion

We have studied the emission of electric and/or magnetic
charges from the near-extremal dyonic KN black holes in
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the (A)dS space. The dyonic KN black holes in the (A)dS
space have the limits: (i) the dyonic KN black holes in the
asymptotically flat space when the (A)dS radius is infinite,
(i) the dyonic RN black holes in the (A)dS space when the
rotation of the hole vanishes and (iii) the KN black holes
in the (A)dS space when the magnetic charge is zero or the
magnetic KN black holes in the (A)dS space when the elec-
tric charge is zero. Using the AdS geometry of near-horizon
region, we have found the solutions of the dyons in terms
of the hypergeometric function and obtained the Schwinger
effect by computing the mean number of the emitted dyons.

We have shown that the emission formula still has a uni-
versal factorization of the Schwinger formula in the AdS; and
another Schwinger formula in the two-dimensional Rindler
space determined by the effective temperature and the Hawk-
ing temperature with the chemical potentials of electric and
magnetic charges and angular momentum. The emission for-
mula recovers the formulae for RN or KN black holes in
the asymptotically flat space and also the formula for RN
black holes in the (A)dS space. Further, we have shown that
there exists a parameter region, known as the Breitenloher—
Freedman bound for the stability of dyonic KN black holes
in the AdS space against both the emission of charges and
Hawking radiation.

We have observed that the Schwinger effect is affected
by the (A)dS boundary and the rotation of the black hole as
follows:

e The boundary AdS space compresses the horizon radius
while the dS space stretches the radius, which in turn
strengthens or weakens the electric field on the horizon
where the pair are mostly produced. This holds for RN
black holes or KN black holes in the boundary (A)dS
space. Hence, the Schwinger effect for a fixed angular
momentum is enhanced in AdS space and suppressed in
dS space.

e The rotation of near-extremal KN black hole decreases
the “inertial mass” of a charge since the dragging of
particles around the event horizon lightens the effective
mass along the radial direction, but increases the hori-
zon radius and reduces the electric field on the horizon.
For a large radius of the (A)dS space, the decreasing
electric field affects more than the decreasing inertial
mass in the charge acceleration for the Unruh temper-
ature. Hence, for a large radius of the (A)dS space, the
angular momentum decreases the Unruh and effective
temperatures and thus, suppresses the Schwinger effect.
However, for a small radius of the AdS boundary, as the
angular momentum changes, there is a crossover of the
horizon radius at almost the same value of the AdS radius:
below the crossover the horizon radius decreases as the
angular momentum while above the crossover the hori-
zon radius increases as the angular momentum. The com-
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petitive effect of the crossover of the horizon radius and
the decreasing inertial mass results in the convexity of
the Unruh and effective temperatures.

e In the AdS space the KN black hole has a BF bound
that depends on the angular momentum and provides a
threshold for the Schwinger effect in AdS space. The
radius of the AdS space for the BF bound increases as
the angular momentum increases. In the dS space the
charge to mass ratio has an upper bound due to the triple
degeneracy of horizons: the Cauchy horizon, black hole
horizon and cosmological horizon. The ratio decreases as
the angular momentum increases for small mass of the
black hole but approaches the same value until the upper
bound.
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