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Abstract The study of neutrino pair annihilation into
electron-positron pairs (νν̄ → e−e+) is astrophysically well-
motivated because it is a possible powering mechanism for
the gamma-ray bursts (GRBs). In this paper, we estimate the
gamma-ray energy deposition rate (EDR) arising from the
annihilation of the neutrino pairs in the equatorial plane of
a slowly rotating black hole geometry modified by the bro-
ken Lorentz symmetry (induced by a background bumblebee
vector field). More specifically, owing to the presence of a
dimensionless Lorentz symmetry breaking (LSB) parameter
l arising from nonminimal coupling between the bumblebee
field with nonzero vacuum expectation value and gravity, the
metric solution in question differs from the standard slowly
rotating Kerr black hole. By idealizing the thin accretion disk
temperature profile in the two forms of isothermal and gradi-
ent around the bumblebee gravity-based slow rotating black
hole, we investigate the influence of spontaneous LSB on the
νν̄-annihilation efficiency. For both profiles, we find that pos-
itive values of LSB parameter l > 0 induce an enhancement
of the EDR associated with the neutrino-antineutrino anni-
hilation. Therefore, the process of powering the GRBs jets
around bumblebee gravity modified slowly rotating geom-
etry is more efficient in comparison with standard metric.
Using the observed gamma-ray luminosity associated with
different GRBs types (short, long, and ultra-long), we find,
through the analysis of the EDR in the parameter space l −a
(a2 � 1), some allowed ranges for the LSB parameter l.

a e-mail: m.khodadi@hafez.shirazu.ac.ir
b e-mail: lambiase@sa.infn.it (corresponding author)
c e-mail: lmastrototaro@unisa.it

1 Introduction

The Lorentz invariant (LI), a continuous symmetry repre-
senting the physical results independent of the boost and
rotation, is one of the key characteristics at the heart of mod-
ern physics. Conventionally, LI is related to the scale-free
nature of spacetime. Experimentally this is well-supported,
and there is no reason to believe that LI is broken at the
currently accessible energies [1,2] (for a detailed list of
results see [3]). However, it is expected that the coupling
constants in quantum field theories are energy-dependent.
Namely, unlike low energy scales, the coupling constants
addressing the Lorentz-breaking terms become significant
at high energy. Searching for a Lorentz symmetry breaking
(LSB) is one of the hot topics in theoretical physics since it is
strictly related to fundamental issues, such as quantum grav-
ity and string theory [4,5]. Even though the nature of quan-
tum gravity is not determined, it is well-known that space and
time should break down at small distances (around Planck’s
length), where they can no longer be treated as a classical
continuum [6]. Therefore, there is a pervasive belief that LI
cannot be a well-established symmetry at all scales of nature,
and it becomes invalid by approaching the fundamental scales
[7]. In the modern analyses for detecting experimental devi-
ations from LI, a phenomenological framework, known as
Standard-Model Extension (SME), is utilized in which LI
violating effects are introduced by spontaneous symmetry
breaking [8]. SME is an effective field theory for the devel-
opment of low-energy experiments containing all possible LI
and Charge-Parity-Time (CPT) violating coefficients1 that
include not only Special Relativity but the Standard Model

1 For the deep connection of LI with CPT theorem, in the case of vio-
lating the former, the latter is challenged, too.
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and General Relativity as well [9]. Overall, the presence of
both Nambu–Goldstone and massive Higgs bosons in theo-
ries with spontaneous LSB provide us with rich scenarios for
exhibiting multiple phenomenological effects [10,11]. In this
respect, by implementing the spontaneous LSB into a curved
spacetime via background vector fields, it became possible to
construct some well-known alternatives to General Relativity
such as the Einstein–Aether theory [12] and the Bumblebee
Gravity (BG) model2 [10,14].

Concerning the BG, to which we are interested in, the
LSB mechanism occurs owing to the nonzero vacuum con-
densation of a vector field (the bumblebee field), indicating a
preferred frame [15,16]. The most peculiar feature of the BG
model that has attracted a lot of attention is that it has no local
U (1) gauge symmetry, but the propagation of massless vec-
tor modes is still allowed [17]. Indeed, in the BG model, the
massless photon modes arise as Nambu–Goldstone bosons
when the spontaneously LSB occurs. Bumblebee vector
fields can be a source of cosmological anisotropies since
they generate a preferred axis [18]. This means, in turn, that
a fraction of the anisotropies observed in the universe can
be ascribed to LI violation [19]. In this regard, it has been
recently derived, by implementing the big bang nucleosyn-
thesis and gravitational baryogenesis governing in early uni-
verse within the BG-based cosmology, some tight constraints
for the Lorentz-violating bumblebee vector field [20]. Ref.
[21] shows that spontaneous LSB arising from the bumblebee
field in the background can describe the dark energy issue.
Unlike general SME that suffers from the lack of an exact
gravitational solution, in the BG model it is possible to find
a Schwarzschild-like solution [22] (see also the spherically
symmetric solution in recent Ref. [23] which shows the effect
of the LSB on both the temporal and radial components), as
well as a Kerr-like black hole [24] (traversable wormhole
solutions have been found in [25]). A Kerr-like black hole
solution derived in [24] was re-evaluated in [26]. The conclu-
sion is that, at the present, there is no yet full rotating black
hole solution for the Einstein-bumblebee theory. The case
of slowly rotating metric has been derived in [27], whose
validity is confirmed in [26], too.

In these solutions, the LSB arises from a nonzero vac-
uum expectation value (VEV) of the bumblebee vector field
coupled to the spacetime curvature. These solutions allow
to study various aspects of the role of spontaneously LSB
on the physics of compact objects, such as black holes and
wormholes (e.g, see Refs. [28–39]). It would be interesting
to mention that the study of causality in Lorentz-violating
models is a relevant topic. In Refs. [40,41], the authors have
studied the Gödel-type solution for the BG model. In the light

2 An advantage of BG model, compared to Einstein–Aether theory, is
that it has no difficulties of Einstein–Aether in the perturbative descrip-
tion [13].

of confronting this model with astrophysical bodies, such as
stars, were derived tight constraints for the LSB parameter
[42].

The aim of this paper is to study the modification induced
by BG on the energy deposition rate (EDR) of neutrinos
emitted from a thin accretion disk [43,44]. More exactly,
if the disk is hot enough and the accretion rate of black hole
obeys the condition Ṁ ∼ (0.1–1) M� s−1, then the disk is a
source of neutrinos (ν) and anti-neutrinos (ν̄), which partially
annihilate above the disk and convert into electron (e−) and
positron (e+), as follows [45–48]

νν̄ → e+e− . (1)

This process has significant consequences for the cosmolog-
ical gamma-ray bursts (GRBs) jets, which are the most lumi-
nous objects in the universe. Accretion disks around black
holes are the favourite candidates for the central engine of
GRBs. Such a configurations are formed by the merging of
compact objects (neutron-neutron stars, black hole-neutron
stars) or by supernova. The hot accretion disk in these systems
is the source of neutrinos/antineutrinos, and their annihilation
into electrons/positrons may power GRBs. However, in order
that the relativistic fireball produces GRBs, the fireball must
contain an extremely small amount of the baryon density.
The latter, above the accretion disk, is low near the rotation
axis so that the neutrino pair annihilation has the possibil-
ity of producing a clean fireball which allows to solve the
baryon contamination problem, which hinders the creation
of relativistic shocks and the emission of gamma-rays (see
[43] and references therein). More exactly, the jets produced
via neutrino annihilation, in essence, are cones relatively free
of baryons. Note, finally, that in the processes of emission of
neutrinos from the hot accretion disk and pair annihilation
are important the relativistic effects that essentially take into
account the gravitational redshift, the bending of the neu-
trino trajectories, and the redshift due to rotation. The EDR
is affected by these effects when Kerr geometry is modified
by LI violating corrections, as will see in what follows.

GRBs, in essence, are powerful cosmic explosions of the
characteristic duration of seconds. Commonly are labeled
into two classes: short and long GRBs for timescales, ∼ 1 s
and (1–100) s, respectively [49–51]. Despite the uncertainty
about the origin of these two categories, the evidence suggests
that the former most likely comes from the merger of compact
binaries such as a double neutron star and/or a binary system,
including a neutron star and black hole [52–54], while the
collapse of the core of massive stars (Wolf-Rayet) can be
the origin of the latter [49]. Based on the observed gamma-
ray luminosity L , the luminosity of the long-duration type
of GRBs should not exceed L ∼ 1053 erg/s (more accurate
1052−53 erg/s) [55]. Overall, the order of magnitude of the
luminosity of short and long GRBs is expected to be the same
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[56]. In recent years, however, a new population of ultra-long
GRBs with timescale duration ∼ 103−4 s that reduces the
luminosity up to ∼ 1049−50 erg/s (e.g., see Refs. [57–59])
has been investigated. The relation of the maximum energy
of a neutrino-powered jet as a function of the burst duration
shows that the energy deposition falls down rapidly as the
burst lasts longer [56].

Observations indicate that the process (1), due to the cre-
ation of relativistic e∓-dominated jets, can be a possible can-
didate to explain GRBs observed from galaxies containing
the supermassive black hole in their center, e.g., see [48].
In [52,60–63] it has been shown that the process (1) can
deposit an energy � 1051 erg above the neutrino-sphere of a
type II supernova [62]. In [64,65] it has been shown that tak-
ing into account the effects of the strong gravitational field in
a Schwarzschild spacetime, the efficiency of the process (1),
for collapsing neutron stars, enhances (up to a factor of 30)
compared to the Newtonian case. The same analysis around
a thin and isothermal accretion disk for a Schwarzschild or
Kerr metric was performed in [43,44], The neutrino anni-
hilation luminosity from the disk has been also calculated,
e.g., see [66–72]. Time-dependent models of black hole
accretion disks, such as remnants of neutron-star mergers
or collapse engines, have been investigated, for example, in
Refs. [45,72–78]. The principal output of these studies is
that the neutrino-pair annihilation process, when analyzed in
curved background described by General Relativity, is not
efficient enough to power GRBs. There is another scenario
for energy extraction from disk or black hole to launch the
GRBs jets, the well-known magnetohydrodynamical (e.g.,
[79,80]). According to this scenario, the Blandford–Znajek
process is a more promising mechanism for launching jets.
However, the main issue of this energy extraction model is
whether (yet has been not proven) the magnetic flux arising
from the collapse of the star is sufficient to power the jet
or not [81]. Note that throughout this paper, we will only
address the neutrino effects without considering the contri-
bution of other potential forms of energy deposition, such as
Blandford–Znajek and magnetic reconnection.

The process (1), with neutrino-antineutrino emitted from
the surface of a neutron star, has been also investigated in
the framework of extended theories of gravity [82–85]. By
admitting this idea that the environment around a black hole
potentially is a cleaner place for the launch of a relativistic jet,
we consider the BG-based rotating black hole with broken
LI surrounded by a thin accretion disk from which neutrinos
are emitted [43]. Inspired by Refs. [43,44,86], we assume an
idealized, semi-analytical, stationary state model, indepen-
dent of details regarding the disk formation. Note that the
self-gravitational effects are not taken into account, and the
disk is described by an inner and outer edge.

The plan of our work is as follows. In Sect. 2 we
overview the modified slowly rotating Kerr black hole solu-

tion addressed by the BG model. In Sect. 3 we present the
model used for computing the energy deposition from the
thin disk. In Sect. 4 we characterize the effects of the the-
ories beyond General Relativity on the EDR of neutrino
pair annihilation near the rotational axis of the gravitational
source. We shall consider two profiles for the disk tempera-
ture: T = const and T ∝ r−1. Finally, in Sect. 5 we sum-
marize our results.

2 Modified slowly rotating Kerr black hole solution
with a background bumblebee field

In this section, we shortly review the slowly rotating Kerr
black hole solution obtained from the nonminimal coupling
of the background bumblebee field to gravity. For that, the
spontaneous LSB occurs in a curved spacetime and the met-
ric tensor must couple to the vector field. This leads to the
bumblebee action [10,14] (in units c = GN = 1)

S =
∫

d4x
√−g

(
1

16π

(
R + ξ BμBυ Rμν

)
(2)

−1

4
BμνBμν − V

(
Bμ

) )
.

Here Bμ is the bumblebee vector field with mass dimen-
sion M , Bμν = ∂μBν − ∂νBμ the bumblebee-field strength
with mass dimension M2, ξ the nonminimally coupling con-
stant between the background bumblebee field and gravity
with mass dimension M−2, and finally, V (Bμ) the potential
defined as

V
(
Bμ

) = BμB
μ ± b2.

The potential V (Bμ) is such that Bμ may acquire a nonzero
VEV 〈Bμ〉 = bμ (spontaneous LSB in the gravitational sec-
tor [10,15]).

The slowly rotating black hole metric derived from the
BG in the Boyer–Lindquist coordinates xμ = (t, r, θ, φ) is
given by (see Ref. [27] for details)

ds2 = −
(

1 − 2M

r

)
dt2 − 4Ma sin2 θ

r
dtdφ

+r2

	̃
dr2 + r2dθ2 + r2 sin2 θdϕ2, (3)

where

	̃ = r2 − 2Mr

l + 1
, l �= −1 (4)

It gets modified by a soft deviation from the standard
slowly rotating Kerr due to the appearance of dimension-
less LSB parameter (l = ξb2), so that the final form of the
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Table 1 The allowed ranges of l, that have been obtained via con-
fronting the BG black hole with observational data. The constraint
reported in the third to fifth rows, respectively come from the three

observational data: GRO J1655-40 [92], XTE J1550-564 [93], and GRS
1915+105 [94], within 1σ level

Allowed range of l and a Scenario References

(− 1, 0.6] for a ∈ [0.5, 1) BG with with Kerr–Sen-like solution in light of Event Horizon Telescope (M87∗)a [35]

[− 0.23, 0.06] for a ∈ [0.28, 0.31] BG with Kerr-like solution in light of quasi-periodic oscillations [36]

[− 0.56, 6.5] for a ∈ [0.32, 0.81] – [36]

[− 0.7, 10.8] for a ∈ [0, 4] – [36]

aNote to this point is essential that the shadow of BG with Kerr-like black hole solution introduced in [24] is not distinguishable from its standard
counterpart, see [90] for more details

metric tensor reads

gμυ =

⎛
⎜⎜⎜⎝

− (
1 − 2M

r

)
0 0 − 2Ma sin2 θ

r

0 r2

	̃
0 0

0 0 r2 0

− 2Ma sin2 θ
r 0 0 r2 sin2 θ

⎞
⎟⎟⎟⎠ , (5)

As it is clear, the parameter l leaves a distinguishable
imprint on the metric via 	̃. As a result, the underlying met-
ric differs from the standard slowly rotating Kerr metric. In
other words, the BG-based metric at hand differs softly from
the standard slowly rotating Kerr metric by a factor (l + 1)

in the standard definition of component of g11 i.e., l+1
1−2M/r .

Due to the play of the constructive role of LSB parameter
l on the results of our analysis, it is worthwhile to discuss
it in a bit of detail. In essence, the sign of l comes from the
sign of the nonminimal coupling constant (ξ ) between the
background bumblebee vector field and gravity. Since there
is no consensus in the literature, we deal with both signs
negative [36] and positive [22,42]. Given the fact that the
BG is a subclass of SME, it is shown that via Parameterized
Post-Newtonian (PPN) analysis, the spacelike background
bumblebee vector field bμ is matched to dimensionless tensor
sμν in SME, see Ref. [87] for more details. Namely, the
LSB parameter l can be limited, via constraints imposed on
Lorentz violating coefficients of the SME, to find most of
the upper bounds extracted on the different combinations
of sμν (see the review paper [88]). In the recent paper [89]
there is a summarized list of the most important physical
frameworks to derive upper bounds on the sμν . Moreover,
stringent constraints on l have been directly inferred in Refs.
[22,42] by considering BG in the framework of astrophysics
and some classic tests. In this regard, it is recommended to
visit some more recent works such as [19,20] as well. The
common feature of all these constraints, whether directly or
through connection with Lorentz violating coefficients of the
SME, is that they have been derived in the weak-field regimes
with the gravitational redshift � 1. However, the Lorentz
violation effects appear at fundamental scales, as pointed
out in the Introduction. The environment around compact

objects, such as a black hole, no longer belongs to the weak-
field regime since its redshift is � 1. So it is reasonable to
imagine that by increasing the redshift of the gravitational
field under investigation (as around black holes), the current
constraints derived in the weak-gravity regime may change
[91]. In light of these points, one can safely relax the above-
mentioned constraints on l for the framework at hand. This
also occurs in the frameworks reported in Table 1 where
some BG black hole scenarios are directly compared with
observational data.

It might be interesting to stress that in Ref. [39] were
used newly the blurred reflection traits in the X-ray spectra
of galactic black hole EXO 1846-031 to constrain l. Despite
the lack of success to do it due to the degeneracy between
the rotation parameter of the black hole and the LSB param-
eter, it is expected to fix this problem by combining other
observations in future analysis. An important point to note
about the above-mentioned constraints for l in the framework
of BG is that they come from taking the Kerr-like solution
[24], which is just valid in the slow rotating limit (a2 � 1)
[26,27]. It means that these constraints can not be reliable
beyond slow-rotating approximation.

3 Energy deposition rate from νν̄ annihilation

Let us consider a black hole with a thin accretion disk around
it that emits neutrinos [43]. We will confine ourselves to the
case of an idealized, semi-analytical, stationary state model,
which is independent of details regarding the disk formation.
The disk is described by an inner and outer edge, with cor-
responding radii defined by Rin and Rout, respectively. Self-
gravitational effects are neglected. We consider the generic
metric

gμν =

⎛
⎜⎜⎝
g00 0 0 g03

0 g11 0 0
0 0 g22 0
g03 0 0 g33

⎞
⎟⎟⎠ . (6)
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The Hamiltonian of a test particle reads

2H = −Eṫ + Lφ̇ + g11ṙ
2 = δ1 , (7)

where δ1 = 0, 1 refers to null geodesics and massive par-
ticles, respectively, E and L are the energy and angular
momentum of the test particles moving around the rotational
axis of the black hole. The non-vanishing components of the
4-velocity are [95]

U3 = φ̇ = E

(
L

E
+ 1

2

g03

g00

) (
g33 − 1

2

g2
03

g00

)−1

,

U0 = ṫ = − E

g00

⎡
⎣1 + g03

2

(
L

E
+ g03

2g00

)(
g33 − g2

03

2g00

)−1
⎤
⎦

ṙ2 = Eṫ − Lφ̇

g11
.

We are interested in the energy deposition rate near the rota-
tional axis at θ = 0◦. We use the value θ = 0◦ for evaluating
the energy emitted in a half cone of 	θ ∼ 10◦. The accre-
tion disk extends from Rin = 2Rph to Rout = 30M , with
Rph the photosphere radius. Moreover, it can be shown that
the following relation for the impact parameter holds [43]

ρν = √
g00(r0, 0)g22(r0, 0) , (8)

with r0 the nearest position between the particle and the cen-
tre before arriving at θ = 0. Finally, from the metric (5), the
equation of the trajectory becomes [43]

∫
dθ√

1 − (ã/ρν)2 sin2 θ
=

∫
dr ′√

g2
22(r ′,0)

ρ2
ν

− g22(r ′,0)
g11(r ′,0)

.

In this relation one takes into account that the neutrinos are
emitted from the position (R, π/2), with R ∈ [Rin, Rout ],
and arrive at (r, 0). The energy deposition rate of neutrino
pair annihilation is given by [43]

dE0(r)

dtdV
= 21π4

4
ζ(5)KG2

FT
9
eff(R2Rph )F(r, T0) , (9)

where GF is the Fermi constant, k is the Boltzmann constant,
Teff(2Rph) is the effective temperature at radius 2Rph (the
temperature observed in the comoving frame),

K = 1 ± 4 sin2 ωW + 8 sin4 ωW

6π
, (10)

with the + sign for νe and the − sign for νμ/τ , F(r, T0) is
reported in the Appendix (Eq. A1), with T0 the temperature

observed at infinity

T0(R) = Teff
(
R, π

2

)
γ

√
g00

(
R,

π

2

)
− g2

03(R, π
2 )

g33(R, π
2 )

, (11)

γ = 1√
1 − v2/c2

, (12)

v2

c2 = g2
33(r, π/2) (�K − ω)2

g2
03(r, π/1) − g00(r, π/2)g33(r, π/2)

, (13)

�K = −g03,r + √
(g03,r )2 − g00,r g33,r

g33,r

∣∣∣
(r,π/2)

, (14)

ω = −g03(r, π/2)

g33(r, π/2)
. (15)

where Teff is the effective temperature measured by a local
observer and all the quantities are evaluated at θ = π/2. In
the treatment we will ignore the reabsorption of the deposited
energy by the black hole and we will consider the case of
isothermal disk, that is

Teff = const,

and the case of a gradient temperature [43], for which Teff , in
the simplest and acceptable model, is given by (for details,
see [86])

Teff(r) = 2Rph

r
. (16)

4 Applications to the bumblebee metric

In this section, we calculate the emitted energy with the pro-
cedure shown in Sect. 3 for the bumblebee metric in Eq. (5).
We analyze two different cases, corresponding to the isother-
mal model and the temperature gradient model. We find an
enhancement of the EDR for positive values of the LSB
parameter l (l > 0) entering Eq. (5).

4.1 Isothermal model

For our analysis, it turns out convenient to define the function

G(r) = F(r, T0)
r2 + a2

4M2 , (17)

where F(r, T0) is given in Eq. (A1). The function G(r) is
essential for evaluating the EDR and, therefore, the energy
viable for a GRB explosion. The EDR is estimated for the
infinitesimal angle dθ taking into consideration a character-
istic angle 	θ � 10◦ and temperature Teff = 10 MeV. The
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Fig. 1 Plot of G(r) against r/M for the isothermal disk. Upper graph:
different values of l with fixed value 0.3 for the slowly rotating parameter
a. Lower graph: different values of the spin parameter a with l < 0 and
l > 0

explicit EDR expression is given by [43]

dE0

dt
� 4.41 × 1048

(
	θ

10◦

)2 (
Teff(Rin)

10 MeV

)9 (
2M

10 km

)

×
∫ Rout

Rin

G(r)

2M
dr erg s−1. (18)

Before going into the analysis of EDR, a comment is in
order. The function F(r, T0) defined in Eq. (A1), is pro-
portional to g4

11. From (5) it follows that g11 ∝ 1/	̃ and
	̃ ∝ 1/(1 + l), resulting in g11 ∝ (1 + l). Therefore, the
enhanced factor (1 + l)4 appears in the computation of the
EDR. Moreover, the LSB parameter l also contributes, via
the modifications in the metric (5), to the trajectory equation
leading to important changes in the neutrino angular momen-
tum at the rotational axis.

In Fig. 1 we show the behavior of G(r) in BG metric
and its standard counterpart, as well. In the upper graph, we
plot curves with l < 0, l > 0 and l = 0 by fixing the
spin parameter to a = 0.3. As a common feature in both
cases, G(r) initially increases with the distance, reaching a
maximum value, and then decreases with the distance due
to the interplay between temperature and red-shift effects.
However, we see that the presence of the LSB parameter,
with positive values, increases G(r) compared to l = 0,
while for l < 0 the function G(r) decreases. By drawing the
lower graph in Fig. 1, we are interested in investigating the
role of the slowly rotating parameter a on the behavior of
G(r) (subsequently of the EDR) in the interplay with l < 0
and l > 0. As one can see, the spin parameter a does not
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Fig. 2 A contour plot of the parameter space l−a showing the EDRBG

related to BG-based slowly rotating Kerr black hole in isothermal disk
model. Here the color scale written in the logarithmic form log 10n (the
range of n is from values lesser than 52 to beyond 53)

affect the curves with both negative and positive values of
the LSB parameter l. This means that for the isothermal disk
model in an LSB-based metric such as BG, the rotation of
the black hole has no effective role in the EDR. This can be
seen more clearly in the contour plot of the parameter space
l − a in Fig. 2. As it is evident, the EDRBG increases by
moving from l < 0 to l > 0, independently of the value
of the spin parameter. Indeed, the main contribution to the
increase of the EDR, which makes more efficient the process
for powering the GRBs jets compared to the standard case,
comes from the positive LSB parameter l > 0 embedded
in the background. In other words, rotational energy has no
role in sourcing the energy of GRBs. The parameter scan
performed for l − a within the ranges 0 ≤ a ≤ 0.3 and
−0.5 < l ≤ 0.5, openly tells us that the model T = const
can successfully describe, in the BG-based black hole, the
observed gamma-ray luminosity associated with short and
long GRBs (∼ 1052−53 erg/s), if the LSB parameter falls
down in the range −0.1 < l ≤ 0.3 (see Fig. 2). This result is
independent of the value of the spin parameter of the black
hole. In general, in the model with T = const , for not pro-
ducing GRB with energy higher than the observed one (for
short and long cases), one has to set l ≤ 0.3.

4.2 Temperature gradient model

In the case of a gradient of temperature, the function G(r) is
again calculated by using Eq. (A1), and taking into account
that the temperature varies along with r (Teff ∝ r−1), as well
as along with θν(ν̄). In the upper graph of Fig. 3, we show
G(r) vs r/M for different values of the LSB parameter l and
for a given value of the slowly rotating parameter of the black

123



Eur. Phys. J. C (2023) 83 :239 Page 7 of 10 239

5 10 15 20

0.1

1

10

100

r/M

G
(r
) l=0.9

l=0.4

l=0.2

GR

l=- 0.2

5 10 15 20

0.05
0.10

0.50
1

5
10

r/M

G
(r
) l=0.4, a=0.3

l=0.4, a=0.1

l=- 0.2, a=0.3

l=- 0.2, a=0.1

Fig. 3 Plot of G(r) against r/M for a disk with a temperature T ∝
2Rph/r . Upper graph: different values of l with fixed value 0.5 of the
spin parameter a. Lower graph: different values of the spin parameter
a with l < 0 and l > 0

hole. Similar to the isothermal disk model, we see here, by
moving from l < 0 to l > 0, an evident enhancement of
the EDR induced by the bumblebee metric as compared to
General Relativity (l = 0). Compared to the upper graph in
Fig. 1, one finds that the total energy deposited is lesser than
that one expected from the isothermal model. In the lower
graph of Fig. 3, we probe, on a case-by-case basis, the role
of spin. Unlike the former model, the spin parameter a has
a mild effect on the behavior of G(r) related to l < 0 and
l > 0, so that the EDR for the high value that satisfies the
condition a2 � 1, is a bit bigger than lower values. This mild
dependency on the spin parameter a can be traced through
the contour plot showing the EDRBG for the temperature
gradient model (Fig. 4). Similar to the case of an isothermal
disk, here we also see that the presence of l > 0 induces
an enhancement in EDR. Differently from the case T =
const , and ignoring the mild dependency on a, it is clear
that the neutrino annihilation in the environment of the Kerr
black hole derived from the BG metric with the accretion
disk profile T ∝ r−1, can only explain ultra-long GRBs
(∼ 1049−50erg/s), if − 0.4 ≤ l ≤ 0.1 (see Fig. 4).

As a consequence, this model of accretion disk profile is,
by covering both negative and positive values of LSB param-
eter l, a suitable candidate for the description of luminosity
measured of the ultra-long GRBs jets.

5 Conclusion

It is not clear yet what mechanism conclusively is responsible
for launching the gamma-ray bursts (GRBs) jets. The cen-
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Fig. 4 The same contour plot 2 with the color scale written in the
logarithmic form log 10n (the range of n is from values lesser than 49
to beyond 50), this time for the temperature gradient disk model

tral engine for powering these high energetic jets is usually
found in two well-known models: magneto-hydrodynamical
and neutrino-antineutrino annihilation (νν̄ → e+e−). These
two models, in essence, have been proposed for the energy
extraction from a composite system of black hole/accretion
disk. Concerning the latter (as the mechanism we have con-
sidered in this paper), in the case in which the condition
Ṁ ∼ (0.1 − 1)M� s−1 for the accretion rate of a black hole
is satisfied, as well as high enough temperature for the disk,
it is expected that the disk can play the role of an efficient
neutrino emitter. In this way, the EDR arising from neutrino-
antineutrino annihilation at the jet can justify the energetic
bursts. In other words, by releasing enormous energy into
e+e− pairs by the EDR and subsequently the annihilation
process, it is supplied energy to power high energetic pho-
tons.

In this paper, we have studied the GRBs jets generated by
neutrino pair annihilation for the case in which this process
occurs in a slowly rotating Kerr black hole metric (near the
rotational axis) modified by the Lorentz symmetry break-
ing (LSB) parameter l. The latter comes from the non-zero
VEV of the background bumblebee field Bμ. By employing
two idealized models of the accretion disk, one the temper-
ature Teff = const , and the other a gradient of temperature
for which Teff ∼ r−1, we have shown that in the presence
of the LSB parameter l > 0, there is an enhancement of
the EDR associated with the neutrino-antineutrino annihi-
lation into electron-positron pairs, powering in such a way
the GRBs jets. Concerning the first model of the accretion
disk, the embedding l > 0 into spacetime results in an
improved situation, compared to the standard slowly rotat-
ing Kerr black hole, which is compatible with the observed
gamma-ray luminosity associated with the short and long
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GRBs jets. In this regard, by doing a contour plot analy-
sis of EDR into parameter space l − a, we have extracted
the upper bound l ≤ 0.3 for the LSB parameter. The same
analysis for the second model has shown that, in the cho-
sen range −0.4 ≤ l ≤ 0.1, the neutrino EDR can justify
the observed luminosity of ultra-long GRBs. Moreover, we
want to point out that in both models, the allowed range of l is
mostly independent of the spin parameter a. In other words,
the additional contribution to EDR of GRBs jets arising from
neutrino-antineutrino annihilation around a BG-based slowly
rotating Kerr black hole, merely comes from the bumblebee
vector field embedded in the spacetime background. This
can be considered worthwhile since addresses the construc-
tive role of fundamental modifications in explaining GRBs
observed in the universe.

As a final comment, a follow-up of the present work would
be, indeed, to implement a realist simulation for the disk
temperature in the metric (5) by firstly constructing quasi-
stationary disk models as in Ref. [45] and then releasing a
self-consistent multi-dimensional simulation model.
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Appendix A: Formulas

The expression of F(r, T0) entering Eq. (9) is given by

F(r, T0) = 2π2

T 9
eff(2Rph)

g4
11(r, 0)

(
2

∫ θM

θm

dθνT
5
0 (θν) sin θν

×
∫ θM

θm

dθν̄T
4
0 (θν̄) sin θν̄

+
∫ θM

θm

dθνT
5
0 (θν) sin3 θν

×
∫ θM

θm

dθν̄T
4
0 (θν̄) sin3 θν̄

+2
∫ θM

θm

dθνT
5
0 (θν) cos2 θν sin θν

×
∫ θM

θm

dθν̄T
4
0 (θν̄) cos2 θν̄ sin θν̄

−4
∫ θM

θm

dθνT
5
0 (θν) cos θν sin θν

×
∫ θM

θm

dθν̄T
4
0 (θν̄) cos θν̄ sin θν̄

)
. (A1)
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