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Abstract We present herein a new class of singularity-free
interior solutions to describe realistic anisotropic compact
stellar objects with spherically symmetric matter distribu-
tion. A specific form of anisotropy is assumed to obtain
the exact solution for the field equation. Smooth matching
of interior solutions thus obtained with the Schwarzschild
exterior metric over the bounding surface of a compact star,
together with the condition that the radial pressure vanishes
at the boundary, is used to obtain the mathematical form for
the model parameters. The pulsar 4U1608-52 with its current
estimated data (mass = 1.57 M� and radius = 9.8±0.8 km;
Özel et al. in ApJ 820:28, 2016) is used to study the model
graphically.

1 Introduction

Obtaining the exact solution for spherically symmetric per-
fect fluid solutions in general relativity and later on in mod-
ified gravity has been rigorously studied since the pioneer-
ing work by Schwarzschild. Schwarzschild obtained the first
exterior solution [2] and interior solution [3] in 1916 consid-
ering that a uniform-density sphere corresponds to a fluid
sphere. In the field of theoretical astrophysics, the quest
for exact solutions of Einstein field equations for geometri-
cally significant spacetime that satisfies physical constraints
is momentous, as they enable the distribution of matter in the
stellar interior to be modeled in terms of simple algebraic
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relations. However, the extreme nonlinearity of Einstein’s
field equations makes it difficult to obtain exact solutions
representing compact objects. Furthermore, a realistic solu-
tion must satisfy certain conditions for physical acceptabil-
ity. Recently, the modeling of relativistic stars has progressed
from the regime of toy models to much more sophisticated,
realistic stellar structures.

Initially, it was assumed that the nature of spherically sym-
metric matter is similar to that of a perfect fluid, where radial
pressure coincides with tangential pressure. But in 1922,
Jeans’ [4] groundbreaking work changed this concept, sug-
gesting that anisotropic pressure needs to be considered due
to the extreme and unusual conditions reigning throughout
the interior of compact objects. Later, Lemaître [5] examined
the first anisotropic model entirely dependent on tangential
pressure and constant density. In 1972, Ruderman [6] theo-
retically observed that, predominantly because of its high-
density (> 1015 g/cm3) interior, the radial pressure may not
be equal to the tangential pressure in massive stellar objects.
Several studies have suggested various factors for the gen-
eration of anisotropy inside stellar objects, such as a very
high magnetic field [7–14], pion condensation [15], phase
transitions [16], relativistic nuclear interaction [17], crystal-
lization of the core [18], and superfluid core [19–21]. Bowers
and Liang [22] were the first to consider the anisotropic pres-
sure on the equilibrium configuration of relativistic compact
star-like neutron stars. The Bowers–Liang model is primar-
ily based on the following assumptions: (i) the anisotropy
should vanish quadratically at the origin, (ii) the anisotropy
should depend nonlinearly on radial pressure, and (iii) the
anisotropy is gravitationally induced [23]. Their study also
claimed that anisotropy might have non-negligible effects
on the surface redshift and equilibrium mass [24]. Since
then, exact solutions of Einstein’s field equations (EFEs)
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considering anisotropic pressures have been studied exten-
sively in several observations [25,26]. Effects of anisotropy
on macroscopic properties of a stellar structure, namely its
mass, radius, moment of inertia, tidal deformability, and non-
radial oscillation, can be found in [27–38].

Generally, with the increasing magnitude of the anisotropic
parameter, the magnitudes of macroscopic properties are also
observed to increase, and vice versa. Several authors have
investigated anisotropic models; one of the remarkable works
is by Lake [39], who obtained general algorithms for gen-
erating static anisotropic solutions. A complete review on
anisotropic fluid spheres can be found in the work of Herrera
and Santos [40]. Introducing charge into matter distribution,
relativistic charged anisotropic super-dense star models were
investigated by Maurya and Gupta [41]. Maurya et al. also
studied the anisotropic analog of the Durgapal and Fuloria
[42] perfect fluid solution [43]. Pandya et al. [44] observed
a compact stellar model using the Finch–Skea metric and
found it to be compatible with known data. Bhar and collab-
orators investigated an anisotropic solution in Tolman space-
time [45] and in 2 + 1 dimensions in Finch–Skea spacetime
[46]. Some of the recent work on anisotropic compact stars
and cosmological modeling can be found in [47–63].

However, at this juncture we would specifically like to
mention the seminal work by Herrera [64], where the result
somehow supersedes all previous arguments to justify the
presence of pressure anisotropy, and forces us to consider
pressure anisotropy whenever relativistic fluids are involved.
Indeed, as shown in [64], physical processes of the kind
expected in stellar evolution will always tend to produce pres-
sure anisotropy, even if the system is initially assumed to be
isotropic. The important point to stress here is that any equi-
librium configuration is the final stage of a dynamic regime,
and there is no reason to think that the acquired anisotropy (no
matter how small) during this dynamic process would disap-
pear in the final equilibrium state; therefore, the resulting con-
figuration, even if it initially had isotropic pressure, should in
principle exhibit pressure anisotropy. In other words, we do
not know of any real physical process expected in a collapse
scenario which could “isotropize” the pressure anisotropy
appearing during the evolution of a star. Accordingly, the
presence of pressure anisotropy in compact objects is not an
exception, but rather a rule.

In this paper, we study a compact stellar object with
anisotropy inside the matter composition. A particular form
of anisotropy is assumed to obtain an exact solution to Ein-
stein field equations that represents the compact stellar struc-
ture. The remainder of the paper is organized as follows: Sec-
tion 2 offers a brief discussion on Einstein field equations.
The novel solution describing the anisotropic configuration
is given in Sect. 3. Matching conditions at the boundary to
obtain the model constants are discussed in Sect. 4. The phys-
ical analysis and stability analysis for the obtained model are

described in Sects. 5 and 6, respectively. The compatibility
of our model with other known compact objects is illustrated
in Sect. 7. Finally, Sect. 8 presents concluding remarks on
our obtained model.

2 Einstein field equations

The line element describing the spacetime of the interior of a
spherically symmetric star with zero angular momentum in
Schwarzschild coordinates x0 = t , x1 = r , x2 = θ , x3 = φ

can be written as

ds2− = −A2
0(r)dt

2 + B2
0 (r)dr2 + r2(dθ2 + sin2 θdφ2), (1)

where A0(r) and B0(r) are the gravitational potentials, and
these metric functions are functions of radial coordinate r
only. For the matter distribution of the stellar interior to
be anisotropic in nature, the energy-momentum tensor is
described by that of a perfect fluid, considered in the form

Tαβ = (ρ + pt )uαuβ − pt gαβ + (pr − pt )χαχβ, (2)

where ρ represents the energy density, pr and pt denote fluid
pressure along the radial and transverse directions, respec-
tively, uα is the 4-velocity of the fluid, and χα is a unit space-
like 4-vector along the radial direction. Since we considered
the configuration of our system to be in a co-moving coordi-
nate system, we have the following relations for the 4-vectors:

uαuα = 1; χαχα = −1; uαχα = 0. (3)

The spherically symmetric line element Eq. (1) then pro-
vides the Einstein field equations governing the evolution of
the system as follows (we set G = c = 1):

8πρ =
[

1

r2 − 1

r2B2
0

+ 2B ′
0

r B3
0

]
, (4)

8πpr =
[
− 1

r2 + 1

B2
0r

2
+ 2A′

0

r A0B2
0

]
, (5)

8πpt =
[

A′′
0

A0B2
0

+ A′
0

r A0B2
0

− B ′
0

r B3
0

− A′
0B

′
0

A0B3
0

]
, (6)

where “prime” in Eqs. (4)–(6) denotes differentiation with
respect to radial coordinate r . Now, using Eqs. (5) and (6),
we define the anisotropic parameter of the stellar system as
[65]

	(r) = 8π(pt − pr )

=
[

A′′
0

A0B2
0

− A′
0

r A0B2
0

− B ′
0

r B3
0

− A′
0B

′
0

A0B3
0

− 1

r2B2
0

+ 1

r2

]
.

(7)

Anisotropy 	(r) is assumed to vanish at the interior of
a stellar configuration, i.e. pr (r) = pt (r). The anisotropic
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force which is defined as 2	/r will be repulsive or attractive
in nature depending upon whether pt > pr or pt < pr . For
the matter distribution we have considered, repulsive force
pt > pr supports the construction of compact objects other
than isotropic fluid spheres [66]. Additionally, the mass con-
tained within a radius r of the sphere is defined as

m(r) = 4π

∫ r

0
ω2ρ(ω)dω. (8)

3 New analytical solution for the model

The system of field equations Eqs. (4)–(6) consists of three
equations and five unknowns (ρ, pr , pt , A0, B0), so to find
exact solutions, any two of them can be freely chosen. We
are motivated to investigate the metric potential in this form
considering it as a grr metric, and given by

B2
0 (r) = 1 − 2aCr2

1 + aCr2 , (9)

where a is positive and C is assumed to be negative. Clearly,
the metric is finite, continuous, and well defined within the
stellar structure. This metric potential was used earlier by
[67] to model a compact stellar object in isotropic pressure
conditions. Interestingly, we are using the same potential for
an anisotropic stellar structure in this paper. B2

0 (r = 0) = 1
depicts the finite nature and the non-singularity of the met-
ric potential at the center of the stellar configuration. Also,(
B2

0 (r)
)′
r=0 = 0 represents the regularity of metric potentials

at the center. With this choice of B0(r), Eq. (7) then reduces
to

	(r) = r
[
aCr

(−r
(
2aCr2 + 1

)
A′′

0(r) + 2
(
aCr2 + 2

)
A′

0(r) + 6aCr A0(r)
) + A′′

0(r)
] − A′

0(r)

r A0(r)
(
1 − 2aCr2

)2 . (10)

On rearranging Eq. (10), we get

A′′
0(r)

A0(r)
+

[
2aCr2(2 + aCr2) − 1

]
A′

0(r)[
r − aCr3(1 + 2aCr2)

]
A0(r)

= r	(r)(1 − 2aCr2)2 − 6a2C2r3[
r − aCr3(1 + 2aCr2)

] . (11)

Now, Eq. (11) can be solved for A0(r) if 	(r) is specified
in a particular form. The anisotropy factor needs to be taken
in such a way that regularity at the center is satisfied and the

factor becomes a monotonically increasing function of radial
coordinate ‘r ′ [66]. The increasing trend of anisotropy gen-
erally yields a well-behaved solution. We are considering
anisotropy in polynomial form such that regularity and a
monotonically increasing condition are satisfied, and at the
same time Eq. (11) can be easily integrable.

Thus, we impose the second condition by assuming that
the component gtt has no contribution to the anisotropy
parameter, so

	(r) = 6a2C2r2(
1 − 2aCr2

)2 . (12)

The above choice for anisotropy is physically reasonable,
as at the center (r = 0), anisotropy vanishes as expected.
Also, d	(r)

dr is positive throughout the stellar structure, as r
is positive, which makes 	(r) a monotonically increasing
function.

Now this choice of anisotropy provides a solution to
Eq. (11) in closed form. Substituting Eq. (12) in Eq. (11),
we obtain

A′′
0(r)

A0(r)
+

[
2aCr2(2 + aCr2) − 1

]
A′

0(r)[
r − aCr3(1 + 2aCr2)

]
A0(r)

= 0. (13)

We obtain a simple solution of Eq. (13) in the form

A0(r)

=
D1

(
2
√
aCr2+1

√
1−2aCr2+3

√
2 sin−1

(√
2
3

√
aCr2+1

))
4aC

+D2,

(14)

where D1 and D2 are integration constants which will be
obtained from the boundary conditions. With the choices
of the metric potentials, the matter density, radial pressure,
transverse pressure, and mass function are now obtained as

8πρ = 3aC
(
2aCr2 − 3

)
(
1 − 2aCr2

)2 , (15)
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8πpr = − aC(
1 − 2aCr2

)3/2 √
aCr2 + 1

(
2D1

√
aCr2 + 1

√
1 − 2aCr2 + 3

√
2D1 sin−1

(√
2
3

√
aCr2 + 1

)
+ 4aCD2

)

×
[

14D1

(
aCr2 + 1

) (
2aCr2 − 1

)
− 9D1

√
2 − 4aCr2

√
aCr2 + 1 sin−1

(√
2

3

√
aCr2 + 1

)

−12aCD2

√
aCr2 + 1

√
1 − 2aCr2

]
, (16)

8πpt = aC(
1 − 2aCr2

)5/2 √
aCr2 + 1

(
2D1

√
aCr2 + 1

√
1 − 2aCr2 + 3

√
2D1 sin−1

(√
2
3

√
aCr2 + 1

)
+ 4aCD2

)

×
[

2D1

(
aCr2 + 1

) (
2aCr2 − 1

) (
8aCr2 − 7

)
+ 9D1

√
aCr2 + 1

√
2 − 4aCr2 sin−1

(√
2

3

√
aCr2 + 1

)

+12aCD2

√
aCr2 + 1

√
1 − 2aCr2

]
, (17)

m(r) = (3aCr3)

(−2 + 4aCr2)
. (18)

4 Junction condition for the obtained solution

In general relativity, the Jebsen–Birkhoff theorem states that
the Schwarzschild solution is the unique spherically symmet-
ric solution of the vacuum Einstein field equations. In that
case, a spherically symmetric gravitational field in empty
space outside a spherical star must be static and asymp-
totically flat. Therefore, the exterior spacetime for a non-
radiating star can be described by the Schwarzschild metric,
and given as

ds2 = −
(

1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1
dr2

+r2(dθ2 + sin2 θdφ2), (19)

where r > 2m, m is the stellar mass. Theoretically, the
boundary conditions help to obtain the numerical values
for the model parameters. Now, the junction conditions are
essentially the continuity of the first and second fundamental

forms (the intrinsic metric and extrinsic curvature) across the
non-null boundary surface in the spacetime [68,69].

Continuity of the first fundamental form at the boundary
allows the matching of the interior solution to the vacuum
exterior Schwarzschild solution at the boundary, provided
the mass remains the same as above [70]. This continuity of
the metric across the boundary leads to

A2
0(b) =

(
1 − 2m

b

)
and B2

0 (b) =
(

1 − 2m

b

)−1
. (20)

Moreover, the continuity of the second fundamental form
at the boundary indicates that the radial pressure drops to
zero at a finite value of r , known as the radius of the star,
and so from the condition pr (r = b) = 0, one can easily
find the radius of the star. Thus, from both the aforemen-
tioned boundary conditions for the spacetime and curvature,
the model constants are determined in terms of the mass and
radius of the star as

aC = 2m

b2(4m − 3b)
,

D1 =
m

√
b−2m
3b−4m

√
1 − 2m

b

b2
√

b
3b−4m (b − 2m)

D2 =

√
1 − 2m

b

(
14b

√
b − 2m − 3m

√
8 − 6b

m

√
3b − 4m

√
− b

m sin−1

( √
b−2m√
3b
2 −2m

))

8b
√
b − 2m

. (21)
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5 Analysis of the physical features of the model

5.1 Regularity of the metric

For our model, the gravitational potentials satisfy A2
0(0) =⎛

⎝ D1

(
2+3

√
2 sin−1

(√
2
3

))
4aC + D2

⎞
⎠

2

= constant , B2
0 (0) = 1,

i.e. finite at the center (r = 0). Also, we have (A2
0(r))

′
r=0 =

(B2
0 (r))′r=0 = 0, indicating the regularity of the metric at

the center and the well-behaved nature throughout the stellar
interior.

A physically acceptable model should comply with the
regularity of matter variables along with that of the metric
potentials at both the center and stellar interior. The density
ρ, radial pressure pr , and tangential pressure pt should be
positive inside the star, and ρ(0), pr (0), and pt (0) should be
finite at the center. It is evident from Figs. 2 and 3 that our
model satisfies the regularity of matter variables. It shows that
the density decreases from its maximum value at the center
towards its boundary. Moreover, the central density seems to
be increased for the higher value of the model parameter a.

Fig. 1 Metric potentials A2
0(r) and B2

0 (r)

Fig. 2 Density profile

Fig. 3 Radial pressure and transverse pressure

The radial and tangential pressures also radially decrease
outward to its boundary from its maximum value at the center.
The radial pressure drops to zero at the boundary, but the
tangential pressure remains nonzero at the boundary. The
central density, central radial pressure, and central tangential
pressure in this case are given as

ρ(0) = −9aC,

pr (0) = pt (0) =
aC

[
14D1 + 9

√
2D1sin

−1
√

2
3 + 12aCD2

]

2D1 + 3
√

2D1sin−1
√

2
3 + 4aCD2

.

Since aC is a negative quantity, the central density is
always positive.

The key feature of the model is the similarity of pr (0) and
pt (0), i.e. the absence of anisotropy at the center. However,
the anisotropy increases within the configuration, as shown
in Fig. 4, indicating that the direction of anisotropic force
is outward. Theoretically, it proves the existence of a repul-
sive force which interpolates more compact objects using
anisotropic force than using isotropic force [71].

Using the Zeldovich condition for the density and pressure
of a stable configuration, we have pr

ρ
≤ 1 at the center, i.e.

D1
D2

≤ −aC
1.44066 .

5.2 Gradient

Any model is considered to be a viable model of an
anisotropic compact star if the energy density ρ and pressures
(pr , pt ) are greatest at the center and decrease monotonically

towards the surface of the star, i.e.
(

dρ
dr

)
r=0

= 0 =
(

dp
dr

)
r=0

and
(
d2ρ

dr2

)
r=0

< 0,
(
d2 p
dr2

)
r=0

< 0 such that the gradients are

negative within 0 < r < b, b being the star’s radius. Here,
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Fig. 4 Variation of anisotropy 	

the gradient of energy density, radial pressure, and tangential
pressure are respectively obtained as

dρ

dr
= 12a2C2r

(
5 − 2aCr2

)
(
2aCr2 − 1

)3

dpr
dr

= − 8a2C2r(
1 − 2aCr2

)5/2 √
aCr2 + 1

(
2D1

√
aCr2 + 1

√
1 − 2aCr2 + 3

√
2D1 sin−1

(√
2
3

√
aCr2 + 1

)
+ 4aCD2

)2

×
[

48a3C3D1D2r
4 + 4a2C2

(
7D2

1r
4
√
aCr2 + 1

√
1 − 2aCr2 − 6D2

2

√
1 − 2aCr2

√
aCr2 + 1 + 12D1D2r

2
)

−8D2
1

√
1 − 2aCr2

√
aCr2 + 1 + 2aCD1

(
D1r

2
√

1 − 2aCr2
√
aCr2 + 1 − 18D2

)

+9D1 sin−1

(√
2

3

√
aCr2 + 1

) (√
2D1

(
2aCr2 − 1

) (
2aCr2 + 3

)

−3D1

√
1 − 2aCr2

√
aCr2 + 1 sin−1

(√
2

3

√
aCr2 + 1

)
− 4aCD2

√
aCr2 + 1

√
2 − 4aCr2

)]

dpt
dr

= 8a2C2r(
1 − 2aCr2

)7/2 √
aCr2 + 1

(
2D1

√
aCr2 + 1

√
1 − 2aCr2 + 3

√
2D1 sin−1

(√
2
3

√
aCr2 + 1

)
+ 4aCD2

)2

×
[

2

(
8a3C3D1r

4
(

2D1r
2
√

1 − 2aCr2
√
aCr2 + 1 − 3D2

)
− 24a2C2

(
D2

1r
4
√
aCr2 + 1

√
1 − 2aCr2

−D2
2

√
1 − 2aCr2

√
aCr2 + 1 + 2D1D2r

2
)

+ 7D2
1

√
aCr2 + 1

√
1 − 2aCr2

−6aCD1

(
D1r

2
√

1 − 2aCr2
√
aCr2 + 1 − 5D2

)

+9D1 sin−1

(√
2

3

√
aCr2 + 1

) (√
2(−D1)

(
2aCr2 − 1

) (
2aCr2 + 5

)

+6D1

√
aCr2 + 1

√
1 − 2aCr2 sin−1

(√
2

3

√
aCr2 + 1

)
+ 8aCD2

√
aCr2 + 1

√
2 − 4aCr2

]
. (22)

The gradients of density, radial pressure, and tangential
pressure are negative inside the stellar body, as shown graph-

Fig. 5 Gradient of pressures and density

ically in Fig. 5. For our model, gradients of density and radial
pressure are shown to be negative throughout the structure.
However, the gradient of transverse pressure is positive up to
7.45 km and then eventually becomes negative.

123



Eur. Phys. J. C (2023) 83 :307 Page 7 of 13 307

5.3 Energy condition

A physically stable stellar composition must satisfy some
energy conditions throughout the interior. Since the equation
of state in any stellar interior is still an unexplored arena,
the energy conditions of Einstein gravity (classical general
relativity) are designed to decode as much information as
possible from classical general relativity without the admin-
istration of a particular equation of state for the stress-energy
[72]. Even if the information on the constituents that portray
this material substance inside the compact structure is known,
it could be extremely intricate to precisely depict the state of
the stress-energy tensor [73]. Basically, the general relativ-
ity framework allows one to describe energy conditions as
the local inequalities that process a relation between energy
density ρ and pressures (pr , pt ) with certain constraints.
Though there are various ways to calculate energy conditions,
the focus mainly revolves around the null energy condition
(NEC), weak energy condition (WEC), strong energy condi-
tion (SEC), and dominant energy condition (DEC), defined
as

NECr : ρ(r) + pr (r) ≥ 0, NECt : ρ(r) + pt (r) ≥ 0,

WECr : ρ(r) ≥ 0, ρ(r) + pr (r) ≥ 0,

WECt : ρ(r) ≥ 0, ρ(r) + pt (r) ≥ 0,

DECr : ρ(r) − |pr (r)| ≥ 0, DECt : ρ(r) − |pt (r)| ≥ 0,

SEC : ρ(r) + pr (r) + 2pt (r) ≥ 0. (23)

All these energy conditions are satisfied simultaneously
by the solutions presented herein, as shown graphically in
Fig. 6. However, positive density and pressures lead to a
positive SEC, so we have graphically examined the trace
energy condition (TEC: ρ − pr − 2pt ≥ 0), and it is found
to be satisfied.

Now, to obtain the bounds on the model parameters, let us
check the nature of the SEC at the center, such as

0 ≤ SEC |r=0

�⇒ 0 ≤
2aC

(
12aCD2 + 14D1 + 9

√
2D1 sin−1

(√
2
3

))

4aCD2 + 2D1 + 3
√

2D1 sin−1
(√

2
3

)

−
aC

(
−12aCD2 − 14D1 − 9

√
2D1 sin−1

(√
2
3

))

4aCD2 + 2D1 + 3
√

2D1 sin−1
(√

2
3

) − 9aC

�⇒ −aC

1.54982
≤ D1

D2
. (24)

Fig. 6 Different energy conditions plotted against radial coordinate r

6 Stability analysis

6.1 Stability under three forces

The stability of any star in static equilibrium is checked under
three forces, namely gravitational force, hydrostatic force,
and anisotropic force. This equation, suggested by Tolman,
Oppenheimer, and Volkoff, is known as the TOV equation
[74,75], and it states that the resultant forces must be zero
throughout the star,

Fg + Fh + Fa = 0. (25)

The TOV equation defines the internal structure of a spher-
ically symmetric compact stellar body, and it is expressed in
the presence of anisotropy as

− MG

r
(ρ + pr )

A0(r)

B0(r)
− dpr

dr
+ 2

r
(pt − pr ) = 0, (26)

where MG(r) is the effective gravitational mass and can be
derived with the help of the Tolman–Whittaker mass formula
given as

MG(r) = r B0(r)A′
0(r)

A0(r)2 . (27)

Using the expression of MG(r) in Eq. (27), we obtain the
expression as

− A′
0(r)

A0(r)
(ρ + pr ) − dpr

dr
+ 2

r
(pt − pr ) = 0. (28)

Thus, equivalently, gravitational force, hydrostatic force,
and anisotropic force can be represented respectively as

Fg = − A′
0(r)

A0(r)
(ρ + pr ), (29)

Fh = −dpr
dr

, (30)

Fa = 2

r
(pt − pr ). (31)
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Figure 7 depicts the nature of these three forces.

6.2 Herrera cracking method

Another approach for investigating potentially unstable
anisotropic configurations is by checking the overturning or
the cracking of the model. The general idea is that at both
sides of the cracking point, the fluid elements are accelerated
with respect to each other. The cracking method is necessary
to describe the behavior of a fluid distribution just after its
departure from equilibrium [76].

This concept of cracking refers to the tendency of the
configuration only to split (or to compress) at a particular
point within the distribution but not to collapse or to expand.
For self-gravitating compact objects, the concept of cracking
for anisotropic matter distribution was first studied by Her-
rera [77]. This condition is used to determine the stability of
a configuration of anisotropic fluid. The Herrera condition
suggests that for any stellar model to be physically accept-
able, both sound speeds (radial and transverse) need to satisfy
causality conditions, i.e. v2

r ≤ 1 and v2
t ≤ 1 (taking c = 1

and v = dp
dρ

).
Now, the radial and transverse velocity of sound for the

model are given as

dpr
dρ

= −2
(
2aCr2 − 1

)3

3
(
1 − 2aCr2

)5/2 (
5 − 2aCr2

)√
aCr2 + 1

(
2D1

√
aCr2 + 1

√
1 − 2aCr2 + 3

√
2D1 sin−1

(√
2
3

√
aCr2 + 1

)
+ 4aCD2

)2

×
[

48a3C3D1D2r
4 + 4a2C2

(
7D2

1r
4
√
aCr2 + 1

√
1 − 2aCr2 − 6D2

2

√
1 − 2aCr2

√
aCr2 + 1 + 12D1D2r

2
)

−8D2
1

√
1 − 2aCr2

√
aCr2 + 1 + 2aCD1

(
D1r

2
√

1 − 2aCr2
√
aCr2 + 1 − 18D2

)

+9D1 sin−1

(√
2

3

√
aCr2 + 1

) (√
2D1

(
2aCr2 − 1

) (
2aCr2 + 3

) − 3D1

√
1 − 2aCr2

√
aCr2 + 1

× sin−1

(√
2

3

√
aCr2 + 1

)
− 4aCD2

√
aCr2 + 1

√
2 − 4aCr2

)]
,

dpt
dρ

= 2
(
2aCr2 − 1

)3

3
(
1 − 2aCr2

)5/2 (
5 − 2aCr2

)√
aCr2 + 1

(
2D1

√
aCr2 + 1

√
1 − 2aCr2 + 3

√
2D1 sin−1

(√
2
3

√
aCr2 + 1

)
+ 4aCD2

)2

×
[

16a3C3D1r
4
(

2D1r
2
√

1 − 2aCr2
√
aCr2 + 1 − 3D2

)
− 48a2C2

(
D2

1r
4
√
aCr2 + 1

√
1 − 2aCr2

−D2
2

√
1 − 2aCr2

√
aCr2 + 1 + 2D1D2r

2
)

+ 14D2
1

√
aCr2 + 1

√
1 − 2aCr2

−12aCD1

(
D1r

2
√

1 − 2aCr2
√
aCr2 + 1 − 5D2

)
+ 9D1 sin−1

(√
2

3

√
aCr2 + 1

) (
8aCD2

√
aCr2 + 1

√
2 − 4aCr2

−√
2D1

(
2aCr2 − 1

) (
2aCr2 + 5

) + 6D1

√
aCr2 + 1

√
1 − 2aCr2 sin−1

(√
2

3

√
aCr2 + 1

) )]
. (32)

Fig. 7 Static equilibrium under three different forces

The causality condition for our model is shown in Fig. 8.
Additionally, Abreu et al. [76] reintroduced a range for Her-
rera’s cracking concept to determine the potentially stable
(or unstable) anisotropic compact object. According to their
study, a potentially stable model should follow the inequality
−1 ≤ v2

t −v2
r ≤ 0 provided there is no sign change of v2

t −v2
r

within the stellar radius. The inequality −1 ≤ v2
t − v2

r ≤ 0
also holds for our model, as shown in Fig. 9.
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Fig. 8 Variation of sound velocities with the radial coordinate r

Furthermore, the Herrera cracking concept at the center
of the structure leads to the following inequality:

24a2C2D2
2 ≥ 50.2413D2

1 + 73.1517aCD1D2 (33)

6.3 Adiabatic index

Let us now test one of the important (in)stability criteria for
any stable structure, the adiabatic index. For fixed energy
density, the nature of the equation of state can be described
by the adiabatic index. Thus, the stability of both relativistic
and non-relativistic compact stars depends on the adiabatic
index. Now, for a relativistic anisotropic structure, the adia-
batic index � is described as the ratio of two specific heats
and is defined as [78]

� = ρ + p

p

dp

dρ
, (34)

where dp
dρ

is the velocity of sound in units of the velocity of
light. Bondi [79] suggested that for the Newtonian sphere,
the stability condition is � > 4

3 , and for neutral equilibrium,
the stability condition becomes � = 4

3 . Later, Heintzmann
and Hillebrandth [80] proposed that for an anisotropic sphere
to be in equilibrium, the adiabatic index � must be > 4

3 .
Subsequently, some corrections were made by Chan et al.
[78] for the case of a relativistic fluid, and it is expressed as

� <
4

3

[
4

3

pt0 − pr0

r |p′
r0|

+ 8π

3

rρ0 pr0

|p′
r0|

]
max

(35)

where ρ0, pr0, and pt0 are the initial density, the radial
pressure, and the tangential pressure, respectively, in unper-
turbed equilibrium. Here, the first term on the right-hand
side of Eq. (35) corresponds to anisotropy, and the second
term represents the relativistic corrections to the Newto-
nian perfect fluid. Surprisingly, this correction term can also
cause instability inside the configuration, as pointed out by
Chandrasekhar [81]. Thus, a strict condition was imposed on

Fig. 9 Difference in sound speeds belonging to the region (−1, 0) with
radial coordinate r

Fig. 10 Variation of adiabatic index with radial coordinate r for the
pulsar 4U1820-30

the adiabatic indices to prevent such instability, and this is
known as the critical value of the adiabatic index. The critical
value depends on the amplitude of the Lagrangian displace-
ment from the equilibrium and on the compactness factor
(u(r) ≡ m(r)

r ). Finally, taking a specific form of this ampli-
tude, the stability condition reduces to � ≥ �cri t , where
�cri t = 4

3 + 19u
21 .

The growth of instability might be slowed due the effect of
positive anisotropy, which eventually leads to gravitational
collapse in the radial direction [82]. Therefore, the focus
revolves mainly around the adiabatic index in the radial direc-
tion, and Fig. 10 shows that values of �r are greater than 4

3
throughout the stellar configuration.

6.4 Compactness and surface redshifts

An important feature for the stability of any stellar model is
its mass and radius. Mathematically, to be a stable compact
structure, the mass–radius ratio or the dimensionless com-
pactness [u(r) = m(r)/r ] of the model should be < 0.44
[83], as proposed by Buchdahl. Although this Buchdahl limit
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Fig. 11 Variation of mass function and the compactness with radial
coordinate r is increasing in nature

Fig. 12 Variation of compactness with radial coordinate r is increasing
in nature

was suggested for a spherically symmetric isotropic fluid
sphere, several later research works [84–86] indicated that
the same could be applied for an anisotropic sphere as well.

Additionally, the gravitational interior redshift is given as

z =
(

1 − 2M

r

)−1/2

− 1. (36)

From Eq. (36) it is evident that the interior redshift
increases with the increase of M

r . Since the compactness of
a star satisfies the Buchdahl condition, there should exist an
upper bound for gravitational redshifts; it cannot be arbitrar-
ily large for any self-gravitating compact object. The surface
redshifts zb should be less than universal bounds when dif-
ferent energy conditions hold [87]. For an isotropic structure,
z < 2 for a stable configuration [88]. In the anisotropic case,
when the DEC holds, the upper limit is 5.211, and when the
SEC holds, it is 3.842 [89]. A profile of the variation for the
gravitational redshift is plotted in Fig. 13.

Fig. 13 Variation of gravitational redshift with radial coordinate r is
increasing in nature

7 Applicability of the model

In this section, we delve into the realistic applicability of
our model. We begin by obtaining the masses of some
known compact objects and check their compatibility with
our known data. Table 1 illustrates the mass values obtained
for different compact objects using their radii. It also includes
their respective compactness and surface redshifts, whose
values are found to be within the stable boundary.

After checking the compatibility of the masses and radii
of some of the known pulsars, we now check some of
the physical properties of the model compatible with these
pulsars. Table 2 describes some basic physical attributes,
namely density, sound speeds, trace energy condition (TEC:
ρ − pr − 2pt ), and radial adiabatic index at both the center
and the surface. In Table 2, |0 and |b denote the value of these
properties at the center and at the surface, respectively.

8 Discussion

In this work, we have studied a model for a spherically sym-
metric anisotropic fluid sphere by assuming a specific metric
potential B2

0 (r). By imposing a specific form of anisotropy,
we have obtained the exact solution for the field equation.
Smooth matching of the interior solution with the exterior
Schwarzschild allows us to obtain the mathematical expres-
sions for the model constants. For graphical investigation, we
have chosen the pulsar 4U1658-52 with its current estimated
data (mass = 1.57 M� and radius = 9.8±0.8 km [1]). Addi-
tionally, we have considered a = 1, and eventually we obtain
the value of the model constants as C = −0.0023948; D1 =
0.0024604; D2 = 2.141284. The obtained solutions were
then studied both analytically and graphically, and the details
are given as follows:
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Table 1 Mass and radius of some known compact objects

Compact objects Mass (M�) Observed radius (km) Estimated mass (M�) Compactness Redshifts

Her X-1 0.85 ± 0.15 8.1 ± 0.41 0.779 0.192 0.1128

LMC X-4 1.04 ± 0.09 8.301 ± 0.2 0.832 0.2003 0.118

EXO 1785-248 1.3 ± 0.2 8.849 ± 0.4 0.9808 0.22169 0.1335

LIGO 1.4 12.9 ± 0.8 2.44 0.3783 0.2682

4U1820-30 1.46 ± 0.21 11.1 ± 1.8 1.7208 0.31006 0.2039

KS1731-207 1.61+0.35
−0.37 10 ± 2.2 1.3349 0.267 0.168

EXO 1745-268 1.65+0.21
−0.31 10.5 ± 1.6 1.505 0.2866 0.184

SAX J 17148.9 − 2021 1.81+0.25
−0.27 11.7 ± 1.7 1.949 0.257 0.1603

PSR J 1614-2230 1.97 ± 0.04 13 ± 2 2.48 0.382 0.272

Arbitrary star 2.6 15.5 3.633 0.468 0.372

Table 2 Physical attributes of
the model Compact objects ρ0 ρb

dpr
dρ

|0 dpr
dρ

|b T EC |0 T EC |b (�r )0

Her X-1 540.633 370.026 0.0444 0.0967 506.08 311.21 2.1279

LMC X-4 647.22 407.627 0.05317 0.1219 587.624 327.804 1.7855

EXO 1785-248 707.775 406.344 0.06627 0.1563 613.35 309.763 1.556

LIGO 222.422 150.055 0.04574 0.10076 207.234 125.254 2.0555

4U1820-30 386.304 1236.989 0.0565 0.1309 346.67 187.786 1.7078

KS1731-207 632.01 340.73 0.07787 0.1843 524.969 249.896 1.457

EXO 1745-268 553.376 303.579 0.07434 0.176 465.583 225.093 1.4812

SAX J 17148.9-2021 435.73 241.67 0.07232 0.17109 369.401 180.408 1.4975

PSR J 1614-2230 342.663 194.749 0.0697 0.1649 293.22 145.134 1.5202

Arbitrary star 279.503 146.105 0.0846 0.19957 226.412 105.065 1.4209

• The metric potentials and the matter variables are found to
be well behaved and well defined for the model. We study
the metrics and the physical matter variables ρ, pr , pt
graphically in Figs. 1, 2, and 3. Also, the anisotropy for
the model increases throughout the structure, as shown
in Fig. 4, which forms a base for our model to be a stable
configuration. Moreover, the radial derivative of matter
variables vanish at the center, and although the gradients
for density and radial pressure are negative towards the
boundary, the gradient for transverse pressure is seen to
be positive up to 7.45 km and then becomes negative for
the rest of the configuration (see Fig. 5).

• To check the stability for the stellar interior, several differ-
ent energy conditions are studied for our model graph-
ically in Fig. 6, and each energy condition is satisfied
inside the stellar structure. Since for positive density and
pressure the SEC(ρ + pr + 2pt ) is bound to be ≥ 0,
to check the stability, we explore the profile of the TEC
(ρ − pr − 2pt ) graphically, and it is found to be fulfilled
for our model. Additionally, the TEC for various known
compact stars (both low mass and high mass) holds per-
fectly, as seen in tabular form in Table 2.

• The effects of different forces on the model with regard
to stability are shown graphically in Fig. 7, and it can be
seen that the dominant gravitational force is balanced by
the combined effect of hydrostatic and anisotropic forces.

• To check the potentially (un)stable region for any
anisotropic model, the cracking method is undoubtedly
an important condition for the stability. The variation of
both the radial and transverse sound speeds are studied
graphically in Fig. 8. One interesting feature of our model
is the negative form of transverse sound speed. However,
the model is shown to be in a potentially stable region
(−1, 0) as seen in Fig. 9, as suggested by Abreu et al.
[76].

• Our model also supports the stability under the adiabatic
index. As positive anisotropy may be one of the causes of
radial instability of any compact model, which eventually
leads to gravitational collapse, we have checked the radial
adiabatic index, and it is seen to be greater than both 4

3
and the critical value of the adiabatic index throughout the
structure (see Fig. 10). Additionally, the radial adiabatic
indices for several known compact objects are studied
extensively in Table 2.

123



307 Page 12 of 13 Eur. Phys. J. C (2023) 83 :307

• For the mass function and the compactness factor, both
are increasing functions of r and they attain maximum
value at the surface, as can be seen in Figs. 11 and 12. We
have estimated the radii of some known compact objects
and calculated their compactness in Table 1. Addition-
ally, the gravitational redshift against the radius of the
star is depicted in Fig. 13. It can be observed that the
redshift vanishes at the center, attaining its maximum at
the surface. In addition, the compactness values for the
known compact stars are presented in Table 2 and are
within the limit predicted by Buchdahl (< 8

9 ). Similarly,
the surface redshifts for several different stellar objects
are seen to follow the upper bound ( < 2) in Table 2.

Hence, a novel model can be described by the aforementioned
metric potentials, as several physical features and stability
criteria required for a physically viable anisotropic compact
configuration are satisfied by our model. However, this study
was conducted considering a = 1, and similar or further
observation can be conducted for another value of a.
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