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Abstract We investigate the regularized four-dimensional
Einstein–Gauss–Bonnet (4DEGB) gravity with a non-minimal
scalar coupling function, which is an extension of the regular-
ized 4DEGB theory. By introducing non-minimal coupling
to the Gauss-Bonnet term, we demonstrate the additional
contribution to the dynamical equations which is otherwise
absent in the dimensionally regularized theory. Furthermore,
we analyze the stability of the system by using the dynamical
system approach based on fixed points. Then, we consider
time evolution to investigate the history of the universe and
to constrain observational data to obtain the cosmological
parameters of the model.

1 Introduction

Einstein’s theory of gravity predicts the accelerating expan-
sion of the late-time universe, which has been confirmed
by the cosmological observations from type Ia Supernovae
(SNIa) [1,2]. The expansion of the universe can be explained
by the simplest model of the cosmological constant that cur-
rently gives the best fit with the current observational data
from Cosmic Microwave Background (CMB) radiation, the
measurement of Type Ia Supernovae (SNIa), Baryon Acous-
tic Oscillation (BAO), and H0 measurement [3,4]. However,
some issues remain for the cosmological constant or ΛCDM
model as encountered from the observations [3,5,6] and a
seriously theoretical inconsistency [7,8], and for a review,
one may refer to [9,10]. In these regards, several modi-
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fied theories of gravity have been proposed to refine or pro-
vide alternatives. Without exhaustion, we list down some of
the theories which deviate from the standard cosmological
model:

Scalar–tensor theory [11–15], vector-tensor [16], tensor-
tensor theory [17–19], massive gravity [20–22], higher order
derivative theory, in particular, the f(R)-gravity for cos-
mology [23–26], and higher-dimensional and string moti-
vated theory [27–30,44,45]. For the nice review, one can be
referred to [31,32]. Also, there are many dark energy models
under these frameworks such as

Chevallier Polarski Linder (CPL) model [33,34], Holo-
graphic Dark Energy model and its constraint [35–39], Gen-
eralized holographic cosmology via AdS/CFT constraint
with low redshift [40], and Chaplygin gas model [41,42]
to name a few. One can refer to [43] for model comparison
using observational data from Planck 2015.

It is well-known that Lovelock’s theorem is a natural gen-
eralization to general relativity, which satisfies the diffeo-
morphism and local Lorentz invariance in D-dimensional
space-time and, in particular, leads to second-order field
equations [44,46,47]. A special case of this is the second
order in Lanczos-Lovelock gravity Lagrangian density so-
called Einstein–Gauss–Bonnet gravity. Consequently, one
possible modification of General Relativity is the D ≥ 5
Gauss-Bonnet (GB) gravity which satisfies the properties in
Lovelock’s theorem, including the ghost-free [48], natural
generalization with Einstein, and cosmological terms [49].
For its study of higher dimensions in cosmology, one can
refer to [50–52]. However, the GB term in 4D is topologi-
cally invariant, so it does not modify Einstein’s theory since it
does not contribute to gravitational dynamics. Nevertheless,
the GB term can contribute to the 4D dynamical equations if
one introduces a coupling function of a scalar field to the GB
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term [53,54]. Due to the extra scalar degree of freedom, this
consideration leads to many gravity studies, including cosmic
acceleration in inflationary models of the early universe and
gravitational wave, and tested against the observational data
[55–63]. Recently, the observational data using black hole
image has been investigated in GB gravity as well [64,65].

The 4D EGB model proposed in [66] introduces a scaling
coupling constant α → α/(D−4), where D is the space-time
dimensions, and considers the limit D → 4. This model gives
rise to nontrivial contributions to the gravitational dynam-
ics due to the extra contribution in the equations of motion
(EoM) from the GB term as the consequence of the scaling
coupling constant without introducing extra degrees of free-
dom. Notice that in this model the space-time was assumed to
be continuous [67]. To be less exhaustive, there is an interest-
ing work in cosmology adopting this model with the observa-
tional constraints which can resolve the coincidence problem
[68] and also indicate that the re-scaling coupling constant of
the model still needs the help of the cosmological constant to
explain the accelerated expansion. For a review of the model,
one may refer to [69].

Due to its richness and peculiar consequences, comments
and arguments on this novel 4D EGB theory have been raised
[70–76], and the diffeomorphism invariant regularization is
also considered in [77–82] to point out that the theory adver-
tised in [66] is the subclass of Horndeski theory. However,
the arguments from Horndeski theory still rely on a 2 + 1
degrees of freedom where higher dimensions are compact-
ified and where in [66] the space-time is based on the D-
dimensional direct product and D → 4 limit, and further
investigation into this regularized tensor-scalar theory lead-
ing to a strong-coupling scalar field is studied in [79,83] and
without the strong coupling field in [84]. Another investiga-
tion into the regularized 4D EGB theory is that looking at dif-
feomorphism invariant property reveals the inconsistency in
the regularized 4D EGB theory [73,75,76]. Nevertheless, the
consistent study of D → 4 EGB theory can be achieved up
to spatially diffeomorphism invariance by using Hamiltonian
formalism so-called minimally modified gravity theory; oth-
erwise, an extra degree of freedom is required [85,86]. There-
fore, we will proceed by introducing an additional degree of
freedom but still exploiting the regularization scheme which
is expected to render the finite term that contributes to the
dynamics. That is, we will scale α → α/(D − 4) and take
the limit D → 4 after introducing the non-minimal coupling
function to the GB term. In this regard, we are interested in
generalizing this concept by combining the role of the non-
minimal coupling function often used in ordinary 4D gravity
with the scaling coupling constant advocated in the regular-
ized 4D EGB gravity together. This seems to be a redundant
consideration at first because the role of scaling coupling is
to render the term of the overall factor (D − 4) coming from
the GB term so that these higher curvature terms become

relevant, which is also the role of the non-minimal coupling
function. As a result, in the current study, we accept the neces-
sity of the extra scalar degree of freedom in the framework
of regularized 4D EGB.

In this works, we study the extension of regularized 4D
EGB theory by introducing the non-minimal coupling to the
GB term and redefining the coupling function

ξ(φ) → ξ (D−4)(φ),

with flat FRW metric in D-dimensions then take the limit
D → 4. The motivation of the form of coupling function
is obvious so that divergence of the terms associated to the
scaling of α remains well-defined in the EoM. From this con-
sideration, it is obvious that the action could be ambiguous
but not ill-defined since this happens to the original regu-
larized 4D EGB where its action might be investigated fur-
ther [77–82]; this issue is not our concern here. From this,
we apply the dynamical system approach (DSA) [87–91]
with the exponential of the potential and the coupling func-
tion of the scalar field into the dynamical equations of the
model. We find the fixed points and analyze the stability of
the autonomous system equations including the considera-
tion of the evolution of the phase space universe. Particularly
we consider the evolution of the cosmological parameters as
the function of the red-shift and constraint on the potential
parameter with the observational bounds from CMB, BAO,
SnIa, and H0 measurement.

This article is organized as follows. In Sect. 2, we intro-
duce our setup and derive the EoM for our model. As a result,
there appear two types of additional contributions in the 4D
EoM each coming from the non-minimal coupling of the
scalar field to the GB term and the scaling coupling constant
of the GB term. Thus, it is imperative for us to study their
respective role and their dynamic evolution throughout the
cosmic history of the universe. To investigate the dynamical
evolution of the universe for our model, we rewrite the back-
ground EoM in the autonomous system form in Sect. 3 and
apply the dynamical system approach, which gives a robust
description of the cosmic history based on the existence of
critical points and their stability. In Sect. 4, we obtain not only
the critical fixed points of the system but also consider the
stability of the universe at each point. We solve the dynam-
ical equations for a broader time scale to better understand
how the aforementioned GB contributions evolve, especially
at the late time, and provide our numerical result with their
implications. A summary of our results in this paper and a
conclusion are given in Sect. 5.

2 The setup and equations of motion

In this work, we consider the action in D-dimensional space-
time as follow,
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S =
∫

dDx
√−g

[ 1

2κ2 R − 1

2
gμν∂μφ∂νφ − V (φ)

− α

2
ξ(φ)G

]
+ Sm,r, (1)

where R, α, V (φ), ξ(φ) are Ricci scalar, a coupling constant,
potential function and the coupling function of scalar field
respectively.

G ≡ R2 − 4RμνR
μν + Rμνρσ R

μνρσ ,

is GB term, Sm,r represents the standard matter and radi-
ation components, κ2 = 8πG, and G is Newtonian con-
stant. From this action, after obtaining the EoM, we re-scale
α → α/(D−4) and then take the limit D → 4. The problem
arises when we introduce ξ(φ) couples to GB term since the
expected finite terms from ξ(φ) which appear in the EoM
contain no factor of (D − 4). As a result, 1/(D − 4) from
the scaling α will diverge. We propose the redefining the
coupling function

ξ(φ) → ξ (D−4)(φ),

first and then take the limit D → 4. Therefore, denominator
1/(D − 4) will be canceled out with the overall factor (D −
4) coming from the redefined coupling function. From the
least-action principle, the field equations after scaling α and
redefining ξ(φ) are

Rμν − 1

2
gμνR = κ2

(
T (φ)

μν + T (m,r)
μν + T (GB)

μν

)
, (2)

�φ − Vφ − α

2(D − 4)
(D − 4)ξ (D−5)ξφG = 0, (3)

where � ≡ ∇μ∇μ, Vφ = dV/dφ, ξφ = dξ/dφ, and T (φ)
μν ,

T (m,r)
μν , T (GB)

μν are stress-energy-momentum tensor of scalar
field, GB term and matter term respectively, which we find

T (φ)
μν = ∂μφ∂νφ − 1

2
gμν

(
gρσ ∂ρφ∂σ φ + 2V

)
, (4)

T (m,r)
μν = (ρ + P)UμUν + Pgμν, (5)

T (GB)
μν = α

(D − 4)

{
ξ (D−4)

(
−4Rμ

αRνα + 2RRμν

− 4Rαβ Rμανβ + 2Rμ
αβγ Rναβγ − 1

2
gμνG

)

+ (D − 4)(D − 5)ξ2
φξ (D−6)

[
gμν

(
2R∇αφ∇αφ

− 4Rαβ∇αφ∇βφ
)

− 4Rμν∇αφ∇αφ

+ 4Rμανβ∇αφ∇βφ + 4Rνα∇αφ∇μφ

+ 4Rμα∇αφ∇νφ − 2R∇μφ∇νφ

]
+ (D − 4)ξ (D−5)

×
[
ξφ

(
−4Rμν�φ + 2Rμανβ∇β∇αφ + 2Rμβνα∇β∇αφ

+ gμν

(
2R�φ − 4Rαβ∇β∇αφ

)
+ 4Rνα∇μ∇αφ

+ 4Rμα∇ν∇αφ − 2R∇ν∇μφ
)

+ ξφφ

×
(
−4Rμν∇αφ∇αφ + 4Rμανβ∇αφ∇βφ

+ gμν

(
2R∇αφ∇αφ − 4Rαβ∇α∇βφ

)

+ 4Rνα∇αφ∇μφ + 4Rμα∇αφ∇νφ − 2R∇μφ∇νφ
)]}

,

(6)

where Uμ = (1, 0, 0, 0) is four-velocity and ρ, P are
the energy density and pressure in perfect fluid respec-
tively. The homogeneous and isotropic universe spatially flat
k = 0 of Friedmann-Robertson-Walker (FRW) metric in D-
dimensions is given

ds2 = −dt2 + a2(t)(dχ2
1 + dχ2

2 + dχ2
3 + · · · + dχ2

D−1),

(7)

where a(t) is a scale factor. Notice that the above line ele-
ment is a D-dimensional product space. By solving the field
equations with flat FRW metric in arbitrary dimensions we
can write the EoM in general dimensions for the components
t t , i i , and scalar field equation as the following

(D − 2)(D − 1)

2κ2 H2 = 1

2
φ̇2 + V + ρm + ρr

+ 2α(D − 3)(D − 2)(D − 1)ξ̇ ξ (D−5)H3

+ 1

2
α(D − 3)(D − 2)(D − 1)ξ (D−4)H4, (8)

−
[
(D − 3)(D − 2)

2κ2 H2 + (D − 2)

κ2

ä

a

]

= 1

2
φ̇2 − V + pr − 4α(D − 3)(D − 2)ξ̇ ξ (D−5)H

ä

a

− 2α(D − 3)(D − 2)ξ (D−4)H2 ä

a
− 2α(D − 3)(D − 2)H2

×
[
(D − 5)ξ̇2ξ (D−6) + ξ̈ ξ (D−5)

]

− 2α(D − 4)(D − 3)(D − 2)ξ̇ ξ (D−5)H3

− 1

2
α(D − 3)(D − 2)(D − 5)ξ (D−4)H4, (9)

0 = φ̈ + Vφ + (D − 1)φ̇H

+ 2α(D − 3)(D − 2)(D − 1)ξφξ (D−5)H2 ä

a

+ α

2
(D − 4)(D − 3)(D − 2)(D − 1)ξφξ (D−5)H4,

(10)

where Vφ = dV/dφ, H ≡ ȧ/a, denote the derivative of
potential with respect to scalar field and Hubble’s param-
eter respectively. A dot mean derivative with respect to the
cosmic time, ρm and ρr are the energy density of matter corre-
sponding to pressure pm = 0 and radiation corresponding to
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pr = ρr/3 respectively. Then, determining the limit D → 4
for the Eqs. (8)–(10), we derive the explicit dynamical equa-
tions in 4-dimensions as

3H2

κ2 =
(
ρm + ρr + 1

2
φ̇2 + V + 12α

ξ̇

ξ
H3 + 3αH4

)
,

(11)

2Ḣ + 3H2

κ2 =−
[
ρr

3
+ φ̇2

2
−V −8α

ξ̇

ξ
H(Ḣ+H2) − 3αH4

− 4αH2 Ḣ − 4α

(
− ξ̇2

ξ2 + ξ̈

ξ

)
H2

]
, (12)

φ̈ + Vφ + 3φ̇H + 12α
ξφ

ξ
H2

(
Ḣ + H2

)
= 0, (13)

where ξφ = dξ/dφ, ξφφ = d2ξ/dφ2 and ξ̇ = ξφφ̇ and in
(11), the quartic term in Hubble parameter is the term that
appears in [66], but our equations add the cubic terms in
Hubble parameter and terms associated with ξ(φ) due to the
regularization of the non-minimal coupling function to the
GB term. These additional terms might give explanations of
the history of the universe from the early to the late-time
universe. The continuity equation of radiation density is

ρ̇r + 4Hρr = 0. (14)

By using the redefinition of some quantities, we can rewrite
Eqs. (11) and (12) as

3H2 = κ2 (
ρm + ρr + ρφ

)
, (15)

2Ḣ + 3H2 = −κ2
(

1

3
ρr + pφ

)
, (16)

where the energy density and the pressure of the scalar field
is defined as

ρφ = 1

2
φ̇2 + V + 12α

ξ̇

ξ
H3 + 3αH4, (17)

pφ = φ̇2

2
− V − 8α

ξ̇

ξ
H(Ḣ + H2) − 3αH4 − 4αH2 Ḣ

− 4α

(
− ξ̇2

ξ2 + ξ̈

ξ

)
H2. (18)

The components of ρφ and pφ satisfy the conservation equa-
tion and the Eq. (13) can also be rewritten as

ρ̇φ + 3H(1 + wφ)ρφ = 0, (19)

where the equation of state (EoS) for the scalar field can be
defined as wφ ≡ pφ/ρφ , and the effective EoS can also be
defined as

weff ≡ −1 − 2Ḣ

3H2 . (20)

3 Dynamical system approach

To understand the cosmological dynamics of this system, we
apply the dynamical system approach studied in [87–91].
First, we define the dimensionless variables in order to con-
veniently investigate the dimensionless dynamical equations.
Then, we find the fixed points of the autonomous system
equations and analyze the stability. From that, we work fur-
ther on the time evolution of cosmological parameters. We
can rewrite (11) as

1 =κ2ρm

3H2 + κ2ρr

3H2 + κ2φ̇2

6H2 + κ2V

3H2 + 4ακ2ξ̇H

ξ
+ ακ2H2,

(21)

and define the dimensionless variables as

x = κφ̇√
6H

, y = κ
√
V√

3H
, αGB = √

ακH,

μ = −
√

6ξφ

κξ
, λ = − Vφ√

6κV
, ε = − Ḣ

H2 . (22)

From (22), the Friedmann equation (11) can be written as

1 = Ωm + Ωr + Ωφ, (23)

Ωm = κ2ρm

3H2 , (24)

Ωr = κ2ρr

3H2 , (25)

Ωφ = x2 + y2 + α2
GB − 4xα2

GBμ. (26)

We also introduce the variable N = lna and dN = Hdt so
that by taking the derivative of these with respect to N , we
derive the following system of equations

dx

dN
= κφ̈√

6H2
− κφ̇ Ḣ√

6H3
= x(ε − δ), (27)

dy

dN
= κVφφ̇

2
√

3
√
V H2

− κ
√
V Ḣ√

3H3
= y(ε − 3xλ), (28)

dαGB

dN
=

√
ακ Ḣ

H
= −αGBε, (29)

dΩr

dN
= −2κ2ρr Ḣ

3H4 + κ2ρ̇r

3H3 = −4Ωr + 2Ωrε, (30)

dμ

dN
=

√
6ξ2

φφ̇

κξ2H
−

√
6ξφφφ̇

κξH
= xμ2(1 − Δ), (31)

dλ

dN
= V 2

φ φ̇√
6κV 2H

− Vφφφ̇√
6κV H

= 6xλ2(1 − Γ ), (32)
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where

Γ ≡VφφV

V 2
φ

, Δ ≡ ξφφξ

ξ2
φ

,

δ ≡ − φ̈

φ̇H
= 3 − 3y2λ

x
− 2α2

GBμ

x
+ 2α2

GBμε

x
. (33)

The autonomous system equations can also be written as

dx

dN
= −3x + 3y2λ + 2α2

GBμ − 2α2
GBμε + xε, (34)

dy

dN
= −3xyλ + yε, (35)

dαGB

dN
= −αGBε, (36)

dΩr

dN
= −4Ωr + 2Ωrε, (37)

dμ

dN
= xμ2(1 − Δ), (38)

dλ

dN
= 6xλ2(1 − Γ ) , (39)

where it is worth noting that these equations are invariant
under y → −y. From second Friedmann’s equation (12),
we derive

ε ≡ − Ḣ

H2 = 1

2 + 4α2
GB(−1 + 2xμ + 2α2

GBμ2)

[
3 − 3α2

GB

− 4xα2
GBμ + 8α4

GBμ2 + 3y2(−1 + 4λα2
GBμ) + 3x2

+ 4x2α2
GBμ2(1 − Δ) + Ωr

]
. (40)

Eq. (40) diverges for

x ≡ xdiv = −1 + 2α2
GB − 4α4

GBμ2

4α2
GBμ

, (41)

which is unphysical. To avoid from this unphysical diver-
gence the denominator must not be zero, i.e., x �= xdiv. From
Eqs. (17), (18) and (20), we derive the EoS parameters for
both the scalar field and the effective as

wφ =
{(

−3y2 + 12y2α2
GBλμ

)
+ x2

[
3 + 4α2

GBμ2(1 − Δ)
]

− 4xα2
GBμ(4 + Ωr) + α2

GB

[
3 + 2Ωr − 4α2

GBμ2(1 + Ωr)
]}

× 1

3(x2 + y2 + α2
GB − 4xα2

GBμ)(1 + 4α4
GBμ2 − 2α2

GB + 4xα2
GBμ)

, (42)

weff ≡ −1 − 2Ḣ

3H2 = −1 + 2ε

3
. (43)

4 The stability of fixed points and numerical results

In this section, we investigate the stability of the autonomo-
us system described by Eqs. (34)–(39) for the potential V (φ)

and the coupling function ξ(φ) are given as

V (φ) = V0e
−√

6κλφ, and ξ(φ) = ξ0e
−κμφ/

√
6, (44)

where λ and μ are arbitrary constants. It is straightfor-
ward to show that Δ = 1 and Γ = 1 by substituting
Eq. (44) into Eq. (33). Thus, the autonomous system equa-
tions Eqs. (34)–(37) are sufficient for further study. We first
obtain fixed points and, then, check the stability of the sys-
tem at those fixed points through the linear stability theory,
which is based on analyzing the eigenvalues of the Jaco-
bian matrix for the autonomous system equations. In partic-
ular, a sign of the real part of the eigenvalues of the Jaco-
bian matrix plays an important role in determining the sys-
tem’s stability. If the real parts of all the eigenvalues are
negative, it implies that the fixed point is stable or attrac-
tors. In contrast, the real parts of all the eigenvalues with
a positive sign indicate that the fixed point is unstable or
repellers. The fixed point is identified as a saddle point
if some of the eigenvalues are negative while others are
positive.

We list all fixed points of our system in Table 1 and
present their eigenvalues, as well as stability analyses of each
fixed point, in Table 2. In Table 1, all the fixed points are
arranged into two groups: (i.) the GR fixed points, includ-
ing from A±

1 to A±
6 , where αGB = 0 and (ii.) the GB

fixed points, from A±
7 to A±

10, where αGB �= 0. Since the
stability of the GR fixed points is well investigated in the
literature [88,91], we focus on understanding the stability
of the GB fixed points in this work. In Fig. 1, we plot
the phase portraits of the autonomous system in the “x–
y” plane. We only present the positive “y”-axis because the
background equations are symmetric under the change of
y → −y. These symmetric properties of the EoM imply that
the A±

7 and A±
8 fixed points in Table 1 are basically the same

points.
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Table 1 The fixed points and cosmological parameters of the system Eqs. (34)–(37) with Δ = 1 and Γ = 1

Points x y αGB Ωr Ωm Ωφ Existence ωeff=ωφ

A±
1

1
2λ

± 1
2λ

0 0 1 − 1
2λ2

1
2λ2 λ2 > 1/2 0

A±
2

2
3λ

±
√

2
3λ

0 1 − 2
3λ2 0 2

3λ2 λ2 > 2/3 1/3

A±
3 ±1 0 0 0 0 1 ∀λ 1

A4 0 0 0 0 1 0 ∀λ 0

A5 0 0 0 1 0 0 ∀λ 1/3

A±
6 λ ±√

1 − λ2 0 0 0 1 λ2 < 1 −1 + 2λ2

A±
7 0 −

√
2μ

2μ−3λ
±

√
3λ

3λ−2μ
0 0 1 (μ ≥ 0, λ < 0) or (μ ≤ 0, λ > 0) −1

A±
8 0

√
2μ

2μ−3λ
±

√
3λ

3λ−2μ
0 0 1 (μ ≥ 0, λ < 0) or (μ ≤ 0, λ > 0) −1

A±
9

3−
√

9−80μ2

20μ
0 ±

√
6

3+
√

9−80μ2
0 0 1 − 3

4
√

5
≤ μ ≤ 3

4
√

5
, μ �= 0 −1

A±
10

3+
√

9−80μ2

20μ
0 ±

√
9+3

√
9−80μ2

40μ2 0 0 1 − 3
4
√

5
≤ μ ≤ 3

4
√

5
, μ �= 0 −1

Table 2 The eigenvalues and the stability analyses of fixed points the system Eqs. (34)–(37)

Points Eigenvalues Stability

A±
1

{
− 3

2 ,−1,− 3
4

(
1 +

√
4
λ2 − 7

)
,− 3

4

(
1 −

√
4
λ2 − 7

)}
Stable for: 1/2 < λ2 ≤ 4/7,

Stable-focus for: λ2 > 4/7, saddle for: λ2 < 1/2

A±
2

{
−2,+1,− 1

2

(
1 +

√
32

3λ2 − 15
)

,− 1
2

(
1 −

√
32

3λ2 − 15
)}

Saddle

A±
3 {−3,+3,+2, 3 ± 3λ} Saddle

A4
{− 3

2 ,− 3
2 ,+ 3

2 ,−1
}

Saddle

A5 {−2,+2,−1,+1} Saddle

A±
6

{−3λ2, 3
(
λ2 − 1

)
, 6λ2 − 3, 6λ2 − 4

}
stable for: 0 < λ2 < 1/2; otherwise saddle

A±
7

{
−4,−3,− 3

2

(
1 −

√
1 + 32λ2μ2−48λ3μ

4μ2−λ2(9−36μ2)

)
,− 3

2

(
1 +

√
1 + 32λ2μ2−48λ3μ

4μ2−λ2(9−36μ2)

)}
Stable for: con1,

A±
8

{
−4,−3,− 3

2

(
1 −

√
1 + 32λ2μ2−48λ3μ

4μ2−λ2(9−36μ2)

)
,− 3

2

(
1 +

√
1 + 32λ2μ2−48λ3μ

4μ2−λ2(9−36μ2)

)}
Stable focus for: 3λ2

−8λ3+2
√

16λ6+17λ4+λ2 < μ < 3λ

2
√

1+9λ2 ,

Saddle for:

μ > 3
2

√
λ2

1+9λ2 if λ < 0 or μ < − 3
2

√
λ2

1+9λ2 if λ > 0.

A±
9

{
− 3λ

20μ

(
3 − √

9 − 80μ2
)

,−4,−3,−3
}

Stable for: con2; otherwise saddle.

A±
10

{
−4,−3,−3,− 3λ

20μ

(
3 + √

9 − 80μ2
)}

Stable for: con2; otherwise saddle

Table 2 shows that the system is stable at the A±
7,8 fixed

points if the following conditions are satisfied:

con1 =
⎧⎨
⎩

0 < μ ≤ 3λ2

−8λ3+2
√

16λ6+17λ4+λ2 for λ < 0
−3λ2

8λ3+2
√

16λ6+17λ4+λ2 ≤ μ < 0 for λ > 0
, (45)

and also at the A±
9 and A±

10 fixed points if the following
conditions are satisfied:

con2 =
{− 3

4
√

5
≤ μ < 0 for λ < 0

0 < μ ≤ 3
4
√

5
for λ > 0

. (46)

For obtaining Eq. (45), we take the existence conditions of the
A±

7,8 points into account, which implies the μ and λ param-
eters should have the opposite signs, see the existence col-
umn of A±

7,8 in Table 1. The stability conditions in Eqs. (45)
and (46) put constraints on the {λ,μ} values. For example,
from Eq. (45), one can calculate that the largest (smallest)
value for μ is μmax 
 0.2271 (μmin 
 −0.2271) when
λ 
 −0.3357 (λ 
 0.3357). In both the small and the large
|λ| limit, the range of μ shrinks and eventually approaches
to zero from both the negative and the positive sides. On the
other hand, from Eq. (46), we see that the range of μ is deter-
mined depending on the sign of λ, but not on the amplitude.
By taking these constraints on the numerical values of {λ,μ}
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into account, we plot the phase portraits of our dynamical
system in Fig. 1.

The blue points in the fig indicate the GB fixed points;
namely the A±

7,8, A±
9 , and A±

10 fixed points, and the numerical
values of {λ,μ} are given such a way that most trajectories,
including the red and green ones, are attracted to these stable
points. The gray shaded regions represent the region where
the EoS parameter ωeff = ωφ < −1/3 such that the acceler-
ated expansion of the universe is possible. The dashed lines
show the divergence lines given in Eq. (41).

The right column of Fig. 2 shows the time evolution of
Ωi (z)(i = r,m, φ) and the EoS parameter of the scalar field
ωφ(z), as well as the effective EoS of the system ωeff(z),
while the left one shows the time evolution of the autonomous
variables, {x(z), y(z), αGB(z)}. In the fig, from top to down,
the numerical value of λ changes as λ = 0.1, 0.3, and 0.6
for the μ = 0.3. If we change the μ value within the range
given in Eqs. (45) and (46) for each given λ, there is no
noticeable change occurs because the μ value is too small to
make significant contributions. In other words, we find that
the cosmic phase transitions, as well as the time evolution of
the autonomous variables, are more sensitive to the λ value
than the μ value as long as the stability conditions of the GB
fixed points are concerned.

The initial conditions of the autonomous variables are
given in such a way that the universe experiences the right
Ωr → Ωm → Ωφ phase transitions. Thus, the effective EoS
parameter starts evolving from ωeff = 1/3 to some value
ωeff < −1/3, for allowing the late-time universe to experi-
ence the accelerated expansion. To replicate the viable cos-
mic history, the time evolution of {x, y, αGB} must depend
on fine-tuned initial conditions: y > αGB > x in our case.

We show that at the onset of the radiation-dominated
phase, the contribution of the GB term must be the second
largest after the potential energy contribution of the scalar
field, and its time evolution αGB(z) experiences a continu-
ous decrease over time. As a result, the present-day value of
αGB(z = 0) is negligible, and so are the effects of the GB
term. On contrary, the initial value of x , or the kinetic energy

contribution of the scalar field, starts off as the smallest in
the radiation-dominated phase, but its time evolution experi-
ences a drastic increment during the matter-dominated phase
after a short decrease towards the end of radiation dominated
era, and it eventually catches up with the potential energy
contributions, the y(z), in the present universe. Thus, from
Fig. 2, it is explicit that the potential energy contribution of
the scalar field plays the most dominant role throughout the
cosmic history of the universe, and its present-day value is
also the largest among the others. For the given μ, Fig. 2
also shows that the present-day value of the EoS parameter
increases as the λ value increases, and it eventually surpasses
“−1/3”, ending the scalar field-dominated phase. In our case,
the universe experiences the late-time acceleration, driven by
the scalar field coupled to the GB term, if λ < 0.746.

To put a further constraint on the potential parameter λ

in light of the observational bounds from CMB, BAO, SnIa,
and H0 data [92], we plot in the red-shift evolution of the
EoS ωφ(z) in Fig. 3. In the fig, the parameter space for λ

is represented by the different colors and we adopted the
Chevallier-Polarski-Linders (CPL) parameterization of the
EoS that reads [34],

ω(z) = ω0 + z

1 + z
ωa . (47)

The result confirms our observation of Fig. 2 that the smaller
values of λ are more preferred. For instance, the preferred
parameter space for λ is λ � 0.3166 to be consistent with
the observational data at the 1σ level at present. The range
is tighter being λ � 0.1 to be consistent with the data for
red-shift up to z = 1. Thus, now we can provide tighter con-
straints on the parameters of our model given in Eq. (44). In
order for the universe to be stable at the GB fixed points and
experience the late-time accelerated expansion, the parame-
ters {λ,μ} of our model must be within the following range:

For A±
7,8 : −0.2268 � μ < 0 when 0 < λ ≤ 0.3166 , (48)

For A±
9,10 : 0 < μ � 3

4
√

5
when 0 < λ ≤ 0.3166 . (49)

Fig. 1 Phase space portraits of the autonomous system on a x vs. y
plane. The acceleration of the universe is possible within the gray-
shaded region. The green and red lines are particular attractor trajec-

tories toward the fixed points A±
7,8, A±

9 , and A±
10 when their stability

conditions are satisfied. The dashed lines at x = xdiv indicate the diver-
gence of dynamical equations, see Eq. (41)

123



238 Page 8 of 10 Eur. Phys. J. C (2023) 83 :238

Fig. 2 Left: The red-shift evolution of the Ωi (z), where i = r,m, φ, the EoS parameter ωφ , and the effective EoS of the system ωeff. Right: The
red-shift evolution of the x, y, αGB. In both columns, the λ value increases from top to bottom; λ = 0.1, 0.3, and 0.6, respectively

5 Conclusions

In this work, we have extended regularized 4D EGB gravity
by introducing the non-minimal coupling function and the
regularization scheme introduced in [66]. Along this consid-
eration, a redefinition ξ(φ) → ξ (D−4)(φ) is required so that
EoM is well-defined. In the spatially flat space-time dimen-
sions of FRW metric, we can write the EoM in arbitrary
D-dimensions and then take the D → 4 limit. As a solu-
tion, we derived the extended version of EoM obtained in
[66] for non-trivial ξ(φ), which is often associated with the
cubic term in Hubble parameter and could be interesting in
a further study of the cosmic evolution and the observational
data constraint.

To explore the cosmological dynamics from this exten-
sion, we applied the dynamical system approach and ana-
lyzed the stability of critical fixed points for given expo-
nential forms of the potential and the coupling function of
the scalar field in Eq. (44). We obtained ten fixed points, of
which A±

1 to A±
6 are called the GR fixed points and A±

7 to
A±

10 are called the GB fixed points because their existence
is due to the presence of non-minimal coupling function
ξ(φ) → ξ (D−4)(φ) and rescaling of the coupling constant
α → α/(D − 4), and they exist and stable under specific
conditions listed in Tables 1 and 2. The GB fixed points
correspond to the de-Sitter solution with the EoS parame-
ter ωeff = −1 = ωφ that admits the late-time accelerating
universe under the conditions in Eqs. (45) and (46). The phase
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Fig. 3 The red-shift evolution of the ωφ for different values of λ.
The background dark-gray and light-gray shaded regions represent the
observational bounds from the CMB, BAO, SnIa, and H0 data using
the CPL parameterization [92]. The colored regions show the different
parameter spaces of λ

space plots in Fig. 1 confirm the stable and accelerating solu-
tions.

We also present the cosmic history of the universe, Ωr →
Ωm → Ωφ , in Fig. 2 along with the time evolution of dynam-
ical variables; x , y, and αGB, associated with the kinetic and
potential energy contribution of the scalar field and the GB
contribution, respectively. Both kinetic and potential energies
of the scalar field play the most important role in the present
day, particularly the potential energy, while the effect of the
GB term is appreciated at the beginning of the radiation-
dominated epoch. However, the GB contribution decreases
in time, and, eventually, it does not play many roles in the
present universe.

The time evolution of the EoS parameter for different
values of λ, the potential parameter, is presented in Fig. 3
together with the upper bounds from the observational data.
The effective EoS starts evolving from ωeff = 1/3 to some
value ωeff < −1/3, which indicates the late-time universe
experiences accelerated expansion. If λ < 0.746, our model
explains the late-time accelerated expansion of the universe
driven by the scalar field coupled to the GB term and the EoS
satisfies the observational constraint by CMB, BAO, SnIa,
and H0 data if λ � 0.1 at 1σ C.L. In conclusion, our model
suggests that the universe can be stable at the GB fixed points
and experiences the late-time accelerated expansion when the
values of the model parameters {λ,μ} are in the range given
in Eqs. (48) and (49).

From the above discussion, that there is no missing cos-
mic history of the universe and the cosmological param-
eters are constrained by the observational data, we con-
clude that the contribution of GB term is evident, espe-
cially in the early radiation-dominated era. To reconstruct
more reliable self-consistent cosmic history, the current study
can be extended by the considerations of the cosmographic

approach, a model-independent approach to constrain cos-
mological evolution by observational data [93]. The authors
of Ref. [94] studied the role of the higher curvature terms
in F(R,G) theory adopting a cosmographic approach and
they showed that the theory addresses inflation, matter-
dominated, and dark energy regimes. Thus, it is imperative
for us to extend the current study in that direction and com-
pare our findings with that of Ref. [94]. The generic func-
tions of F(R,G) and their behavior are investigated in the
context of cosmic inflation in Ref. [95], where the presence
of the quartic, but not the cubic, term in H is obvious. On
the other hand, due to regularization of 4D EGB gravity with
the non-minimal coupling, we have both the cubic and quar-
tic terms of H in the dynamical equations. Therefore, it is
important to investigate how these additional terms behave
and how important their roles are during inflation. We leave
these works as the future extension of our study.
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