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Abstract Detecting the structure of spacetime with quan-
tum technologies has always been one of the frontier topics of
relativistic quantum information. Here, we analytically study
the generation and redistribution of Gaussian entanglement
of the scalar fields in an expanding spacetime. We consider a
two-mode squeezed state via a Gaussian amplification chan-
nel that corresponds to the time-evolution of the state from
the asymptotic past to the asymptotic future. Therefore, the
dynamical entanglement of the Gaussian state in an expand-
ing universe encodes historical information about the under-
lying spacetime structure, suggesting a promising application
in observational cosmology. We find that quantum entangle-
ment is more sensitive to the expansion rate than the expan-
sion volume. According to the analysis of quantum entan-
glement, choosing the particles with the smaller momentum
and the optimal mass is a better way to extract information
about the expanding universe. These results can guide the
simulation of the expanding universe in quantum systems.

1 Introduction

Quantum entanglement, predicted by Schrödinger in 1935,
plays an important role in quantum information theory. It is
considered to be a resource for quantum information tasks,
such as computational task, quantum teleportation, quan-
tum communication, quantum control, and quantum simula-
tions [1–4]. Recently, the influence of gravitational effects on
quantum entanglement has received considerable attention.
Therefore, many efforts have been expended on the study
of quantum entanglement of the field modes in a noniner-
tial frame, in the black hole, and in de Sitter space [5–37].
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Besides, many papers have studied the influences of different
spacetime on quantum entanglement and explored the prop-
erties of spacetime using quantum entanglement. It is clear
that these investigations not only contribute to understanding
the key questions about quantum information and exploring
the structure of spacetime, but also play a central role in the
study of the information paradox of the black hole and the
entanglement entropy [38–41].

In this work, we study the redistribution of bipartite entan-
glement for continuous variables of the scalar fields in the
background of an expanding universe. We initially consider
a two-mode squeezed Gaussian state shared by Alice and
Bob in the asymptotic past. A vacuum state in the asymp-
totic past evolves into a thermal state through the expansion
of the universe in the asymptotic future [42–45]. In a quan-
tum information scenario, such a process of the expansion of
the universe can be described as a Gaussian channel acting
on a two-mode squeezed Gaussian state. There are two rea-
sons why I choose the two-mode squeezed Gaussian state:
firstly, it is a typical continuous variable entangled state,
which approximates to an arbitrarily good extent the EPR
pair; secondly, the state can be produced in the laboratory
and exploited for any current realization of quantum infor-
mation with continuous variables [46,47]. In the standard
cosmology model, the dynamical quantum entanglement for
continuous variables acts as witnesses in the history of the
universe from the era of big-bang nucleosynthesis to the era
of large-scale structure formation and can encode historical
information about the underlying spacetime structure, which
suggests a promising application in observational cosmol-
ogy. Thus, studying the behavior of quantum entanglement
is crucial to understanding the history of our universe and its
fate.

A two-mode squeezed Gaussian state in the asymptotic
past becomes a four-mode Gaussian state in the asymptotic
future. Therefore, we evaluate not only the initial bipartite
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entanglement as influenced by the expansion of the universe,
but also, remarkably, the multipartite entanglement, which
arises from two bosonic modes and two antibosonic modes.
The result shows that the bipartite entanglement initially pre-
pared in the asymptotic past is exactly redistributed into four-
partite correlations in the asymptotic future, as a consequence
of the monogamy constraints on quantum entanglement dis-
tribution. On the other hand, we understand the properties of
the expanding spacetime through quantum entanglement for
continuous variables. Our results may guide the cosmological
observations and the simulation of the expanding spacetime
in quantum systems [48–50].

The paper is organized as follows. In Sect. 2, we briefly
introduce the measures of bipartite entanglement for continu-
ous variables and the Coffman–Kundu–Wootters inequality.
In Sect. 3, we discuss how the expansion of the universe is
described by a Gaussian channel. In Sect. 4, we study the
redistribution of the two-mode Gaussian entanglement and
the generated 1 → 3 entanglement under the influence of
the expansion of the underlying spacetime. The last section
is devoted to a brief conclusion.

2 Quantifying entanglement for continuous variables
by the Rényi-2 entropy

The set of Gaussian states by the definition is the set of
states with quasi-probability distributions and Gaussian char-
acteristic functions in the quantum phase space. The prop-
erties of the Gaussian state are entirely determined by the
first and second statistical moments of the quadrature oper-
ators. As the first moments can be arbitrarily adjusted by
the local unitary operations, which keep all information-
ally relevant properties (such as entropy or any measure
of correlations) invariant, we can adjust them to be zero.
Therefore, the second moments for describing Gaussian state
become the unique elements. Based on our research, we
initially consider a two-mode Gaussian state ρAB shared
by Alice and Bob. We define a vector of quadrature oper-
ators as R̂ = (X̂1, P̂1, . . . , X̂n, P̂n)T, which satisfies the
canonical commutation relations [R̂k, R̂l ] = i�kl , with
the symplectic matrix � = ( 0 1

−1 0

)⊕n
[51–53]. The ele-

ments of a covariance matrix (CM) σAB can be defined as
σi j = Tr

[{R̂i , R̂ j }+ ρAB
]
. The CM σAB of the Gaussian

state can be put into a block form

σAB =
( A C
CT B

)
. (1)

For a physical Gaussian state, its CM σAB must satisfy the
uncertainty relation

σAB + i� ≥ 0. (2)

Rényi-α entropies consist of a powerful family of additive
entropies, which can provide a measure of quantum informa-
tion. Rényi-α entropies are defined as [54,55]

Sα(ρ) = 1

1 − α
ln tr(ρα). (3)

In the limit α → 1, it reduces to the von Neumann entropy.
For the case α = 2, the special Rényi-2 entropy can be cal-
culated very easily

S2(ρ) = − ln tr(ρ2) = 1

2
ln(det σ), (4)

where σ is the CM of the Gaussian state with density matrix
ρ. For arbitrary Gaussian states, Rényi-α entropies fulfill the
strong subadditivity inequality. This allows us to define rel-
evant Gaussian measures of information and entanglement
quantities under a unified approach.

For a N -mode bipartite Gaussian state with CM σAB in
Eq. (1), the Rényi-2 quantum entanglement E(σAB), quan-
tifying the quantum entanglement between Alice and Bob,
can be defined as [56]

E(σAB) = inf
γAB

1

2
ln(det γA). (5)

For a pure Gaussian state, the minimum is saturated byσAB =
γAB , so that E(σAB) = 1

2 ln(det γA), where γA is the reduced
CM for Alice. For a mixed state, the minimization is over
pure N-mode Gaussian states with CM γAB which satisfies
0 < γAB ≤ σAB and det γAB = 1. [For two real symmetric
matrices M and N, M ≥ N means that the matrix M − N
has all non-negative eigenvalues.] For a special class of two-
mode Gaussian states, the closed formulae E can be obtained
by the same procedure of entanglement of formation [57].

In multipartite systems, quantifying entanglement is gen-
erally very involved. Unlike classical correlations, quantum
entanglement is monogamous, which means that it cannot
be freely shared among multiple subsystems of a compos-
ite system. So far, this fundamental constraint on quantum
entanglement sharing has been mathematically demonstrated
not only for arbitrary systems of qubits within the discrete-
variable scenario but also for a special case of two qubits and
an infinite-dimensional system and for all N-mode Gaussian
states within the continuous variables scenario. In the gen-
eral case of a quantum state distributed among N parties, the
monogamy constraint can be presented in the form of the
Coffman–Kundu–Wootters inequality [56]

ESi |(S1...Si−1Si+1...SN ) ≥
N∑

j �=i

ESi |S j , (6)
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where the multipartite system has N subsystems Sk(k =
1, . . . , N ), each owned by a corresponding party, and E is
a proper quantification of bipartite entanglement. The left-
hand side of inequality (6), ESi |(S1...Si−1Si+1...SN ), can quan-
tify the bipartite entanglement between a probe subsystem
Si and the remaining N − 1 subsystems. The right-hand side
of inequality (6),

∑N
j �=i ESi |S j , can quantify the total bipar-

tite entanglements between subsystem Si and each one of the
other subsystems S j �=i in the reduced states. The nonnega-
tive difference between these two quantum entanglements,
which is minimized over all choices of the probe subsystem,
is known as the residual multipartite entanglement. It quan-
tifies the quantum entanglements not encoded in pairwise
form, so it includes all manifestations of genuine N-partite
entanglement.

3 The expansion of the universe described by Gaussian
channel

Let us start with a 1 + 1 dimensional Robertson–Walker
expanding universe with the metric ds2 = dt2 −[a(t)]2dx2,
wherea(t) is the scale factor. With the conformal time η relat-
ing to the cosmological time t by η = ∫ t

0
dτ
a(τ )

, the metric of
the Robertson–Walker expanding universe can be rewritten
as [42–45]

ds2 = [a(η)]2(dη2 − dx2). (7)

Here, the conformal scale factor takes the form

[a(η)]2 = 1 + ε(1 + tanh(ση)), (8)

where the parameters ε and σ characterize the volume and
the rapidity of the expansion, respectively. It is obvious that
the spacetime is flat in the distant past and the far future
corresponding to the metric ds2 = dη2 − dx2 when η →
−∞ and the metric ds2 = (1 + 2ε)(dη2 − dx2) when η →
+∞, respectively. Therefore, the timelike Killing vector and
the particle content of the field are defined in these two limits.

A real scalar field 
(x, η) in the Robertson–Walker
expanding spacetime obeys the Klein–Gordon equation

(� + m2)
 = 0, (9)

where � = 1√|g|∂μ

√|g|gμν∂ν . Having solved the Klein–
Gordon equation at the limits of η → ±∞, we obtain a set
of modes uin in the distant past (“in” region) and a set of
modes uout in the far future (“out” region). Using the inner
product, the Bogoliubov transformations between the modes
uin
k and uout

k take the form

uin
k (x, η) = αku

out
k (x, η) + βku

out∗−k (x, η), (10)

where the Bogoliubov coefficients are given by

αk =
√

ωout

ωin

�([1 − (iωin/σ)])�(−iωout/σ)

�([1 − (iω+/σ)])�(−iω+/σ)
, (11)

βk =
√

ωout

ωin

�([1 − (iωin/σ)])�(iωout/σ)

�([1 + (iω−/σ)])�(iω−/σ)
, (12)

with� being the gamma function,ωin = √
k2 + m2, ωout =√

k2 + m2(1 + 2ε), ω± = 1
2 (ωout ± ωin). Through sim-

ple calculation, the Bogoliubov coefficients satisfy |αk |2 −
|βk |2 = 1. For convenience, we define θ2

k = |βk
αk

|2 =
sinh2(π

ω−
σ

)

sinh2(π
ω+
σ

)
and easily obtain

|αk |2 = 1

1 − θ2
k

, |βk |2 = θ2
k

1 − θ2
k

, (13)

where |βk |2 equals the average number of particles created
at “out” mode k. Hence, θ2

k → 0 means that the average
number of particles of the mode k is vanishing, and θ2

k → 1
means that the average number of particles of the mode k
approaches infinity.

The annihilation and creation operators satisfy

bin,k = α∗
k bout,k − β∗

k b
†
out,−k, (14)

b†
in,k = αkb

†
out,k − βkbout,−k, (15)

where bin,k and b†
in,k are the bosonic annihilation and creation

operators acting on the states in the asymptotic past, bout,k

and b†
out,k are the bosonic annihilation and creation operators

acting on the states in the asymptotic future, and bout,−k and
b†

out,−k are the antibosonic annihilation and creation opera-
tors, respectively. We use bin,k |0k〉in = 0 to find the relation
between the “in” vacuum state and the “out” vacuum state.
If substituting bin,k with Eq. (14), we obtain

(α∗
k bout,k − β∗

k b
†
out,−k)|0k〉in = 0. (16)

According to the normalization condition, the “in” vacuum
state can be expressed in the asymptotic future as

|0k〉in =
∞∑

n=0

An|nk〉out|n−k〉out, (17)

where An =
√

1 − θ2
k (

β∗
k

α∗
k
)n , nk denotes the boson number,

and n−k denotes the antiboson number. This means that an
initial vacuum state |0k〉in evolves into a two-mode squeezed
state in the asymptotic future. By rotating the squeezing angle
and giving up the phase angle, we obtain [58–61]

|0k〉in =
√

1 − θ2
k

∞∑

n=0

θnk |nk〉out|n−k〉out = Uk |0k〉|0−k〉,

(18)
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where Uk = exp[rk(b†
out,kb

†
out,−k − bout,kbout,−k)] is a two-

mode squeezing operator. The squeezing parameter rk is
defined as cosh(rk) = |αk |. It is worth emphasizing that
the squeezing operator Uk is a Gaussian operation, which
preserves the Gaussianity from the input states. Therefore,
Eq. (18) shows that the expansion of a Robertson–Walker
spacetime can be described by a Gaussian (a bosonic ampli-
fication) channel. In the phase space, the two-mode squeezing
operator Uk corresponds to the symplectic transformation

Sk = 1
√

1 − θ2
k

(
I2 θk Z2

θk Z2 I2

)
, (19)

where I2 denotes the unity matrix in 2 × 2 space, and Z2

denotes the third Pauli matrix.

4 The effect of the expanding universe on Gaussian
entanglement

In this paper, we initially consider a pure two-mode squeezed
Gaussian state shared by Alice and Bob in the distant past. It
has covariance matrix [60]

σ in
AB =

(
cosh(2s)I2 sinh(2s)Z2

sinh(2s)Z2 cosh(2s)I2

)
, (20)

where s is the squeezing parameter. If Alice and Bob undergo
the expanding universe associating to the symplectic trans-
formation in Eq. (19), the initial two-mode squeezed state
σ in
AB becomes a four-mode Gaussian state in the asymptotic

future. In other words, the initial two-mode squeezed state
in the asymptotic past is transformed, via the expansion of a
Robertson–Walker spacetime, to a four-mode Gaussian state
in the asymptotic future. Therefore, a complete description of
the quantum system involves four modes: the bosonic mode
A described by Alice; the bosonic mode B described by
Bob; the antibosonic mode Ā described by anti-Alice; the
antibosonic mode B̄ described by anti-Bob. The covariance
matrix describing the complete system thus becomes [60]

σ out
AB ĀB̄

= [
SA, Ā ⊕ SB,B̄

][
σ in
AB ⊕ I ĀB̄

][
SA, Ā ⊕ SB,B̄

] T, (21)

where SA, Ā and SB,B̄ given by Eq. (19) are the phase space
representation of the two-mode squeezing operation, and I Ā B̄
denotes the 4 × 4 identity matrix.

4.1 Bipartite Gaussian entanglement

Because Alice and Bob cannot detect the antibosonic modes,
we should take the trace over the modes Ā and B̄. By per-
forming this operation on Eq. (21), we obtain the reduced
state between the modes A and B

σ out
AB = 1

1 − θ2
k

( [cosh(2s) + θ2
k ]I2 sinh(2s)Z2

sinh(2s)Z2 [cosh(2s) + θ2
k ]I2

)
.

(22)

Employing Eq. (5), we can obtain an analytic expression of
Gaussian entanglement

E(σ out
AB) = ln

{
− cosh(2s)(θ4

k − θ2
k + 1) + θ2

k [sinh(2s)(θ2
k − 1) + 1]

(θ2
k − 1)(cosh(s) + sinh(s))[cosh(s)(θ2

k + 1) + sinh(s)(θ2
k − 1)]

}
. (23)

From Eq. (23), we can see that quantum entanglement
E(σ out

AB) depends not only on the squeezing parameter s, but
also on the volume ε and the rapidity σ of the expanding
universe, meaning that quantum entanglement encodes his-
torical information about the cosmological parameters.

In Fig. 1a, we plot the Gaussian entanglement E(σ out
AB)

between Alice and Bob as a function of the expansion rate σ

for different momentums k. Figure 1b shows how the mass m
influences the Gaussian entanglement E(σ out

AB) for different
expansion volumes ε. From Fig. 1a, we can see that quantum
entanglementE(σ out

AB) is a monotonically decreasing function
of the expansion rate σ and a monotonically increasing func-
tion of the momentum k. We find that as the expansion rate σ

increases, quantum entanglement decreases to an asymptotic
value dependent on the momentum k. At the limit of k → ∞,
we obtain

lim
k→∞ θk = 0, lim

k→∞ E(σ out
AB) = ln[cosh(2s)],

where ln[cosh(2s)] is the initial entanglement in Eq. (20).
Therefore, we cannot extract any information about the
spacetime at the limit of k → ∞. Figure 1b shows that quan-
tum entanglement E(σ out

AB) decreases with the increase of the
expansion volume ε. We can also see that quantum entan-
glement between the modes A and B first decreases to the
minimum value and then increases to the initial value with
the growth of the mass m. Therefore, quantum entanglement
of the bosonic fields with the larger mass m is insensitive
to the expansion volume ε. This means that choosing the
bosons with the appropriate mass makes quantum entangle-
ment more sensitive to the cosmological parameters.

We calculate quantum entanglements in all possible bipar-
tite divisions of the four-mode quantum system to explore
the distribution of Gaussian entanglement in an expanding
spacetime. Firstly, tracing over the modes in A and B, we
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Fig. 1 a Quantum entanglement E(σ out
AB) between the modes A and B as a function of the expansion rate σ for different momentums k, with the

fixed values of m = ε = s = 1. b Quantum entanglement E(σ out
AB) as a function of the mass m for different expansion volumes ε, with the fixed

values of k = σ = s = 1

obtain the covariance matrix σ out
Ā B̄

between the modes Ā and

B̄

σ out
Ā B̄

= 1

1 − θ2
k

( [θ2
k cosh(2s) + 1]I2 θ2

k sinh(2s)Z2

θ2
k sinh(2s)Z2 [θ2

k cosh(2s) + 1]I2
)

.

(24)

Secondly, taking the trace over the modes B and Ā, we get
the covariance matrix between Alice and anti-Bob

σ out
AB̄

= 1

1 − θ2
k

( [cosh(2s) + θ2
k ]I2 θk sinh(2s)I2

θk sinh(2s)I2 [θ2
k cosh(2s) + 1]I2

)
.

(25)

σ out
ĀB

= σ out
AB̄

can be directly obtained by a simple calcula-

tion. According to Eq. (5), we find E(σ out
Ā B̄

) = E(σ out
AB̄

) = 0,
meaning that the expansion of the universe cannot generate
quantum entanglement between anti-Alice and anti-Bob (or
Alice and anti-Bob).

Finally, we fix our eyes on quantum entanglement between
the modes A and Ā. Tracing over the modes B and B̄, we
obtain the covariance matrix σ out

AĀ
for Alice and anti-Alice

σ out
AĀ

= 1

1 − θ2
k

( [cosh(2s) + θ2
k ]I2 2θk cosh2(s)Z2

2θk cosh2(s)Z2 [θ2
k cosh(2s) + 1]I2

)
.

(26)

Using Eqs. (5) and (26), we obtain an analytic expression of
quantum entanglement between the modes A and Ā

E(σ out
AĀ

) = ln

{
1 + θ2

k

1 − θ2
k

}
. (27)

Unlike the Gaussian entanglement E(σ out
AB), the Gaussian

entanglement E(σ out
AĀ

) does not depend on the initial squeez-

ing parameter s. What we need to notice is that σ out
B B̄

is equal

to σ out
AĀ

.

In Fig. 2a, we plot the Gaussian entanglement E(σ out
AĀ

) as
functions of the expansion rate σ and the momentum k. Fig-
ure 2b shows how the mass m and the expansion volume
ε influence the Gaussian entanglement E(σ out

AĀ
). Figure 2a

shows that the Gaussian entanglement E(σ out
AĀ

) increases with
the expansion rate σ , which means that the expansion of the
universe can generate quantum entanglement between Alice
and anti-Alice. We find that the particles with the smaller
momentum k help the expansion of the universe to generate
greater quantum entanglement. From Fig. 2b, we can see that
quantum entanglement E(σ out

AĀ
) increases with the growth of

the expansion volume ε. When we choose the particles with
the suitable mass m, the expansion of the underlying space-
time has a more pronounced effect on quantum entanglement.
From Fig. 2, we can also see that quantum entanglement is
sensitive to the expansion rate but not to the expansion vol-
ume.

Combining Figs. 1 and 2, we come to three conclusions:
(i) with the increase of the expansion rate and the expansion
volume, the initial Gaussian entanglement between Alice and
Bob decreases, and at the same time, the Gaussian entangle-
ment between Alice and anti-Alice (or Bob and anti-Bob)
increases, which means that the expansion of the universe
redistributes the initial entanglement; (ii) quantum entangle-
ment is more sensitive to the expansion rate than the expan-
sion volume; (iii) the information about the expanding uni-
verse can be better extracted by choosing the particles with
the smaller momentum and the appropriate mass. Studying
the properties of quantum entanglement can help us to under-
stand the history of the expanding universe. Therefore, these
results can help us better simulate the expanding spacetime
and the production of cosmological particles with quantum
systems in a laboratory setting [48–50].
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Fig. 2 a Quantum entanglement E(σ out
AĀ

) between the mode A and the mode Ā as functions of the expansion rate σ and the momentum k for the

fixed values of m = ε = s = 1. b Quantum entanglement E(σ out
AĀ

) as functions of the mass m and the expansion volume ε for the fixed values of
k = σ = s = 1

4.2 Generation of a four-mode Gaussian entanglement

The four-mode Gaussian state σ out
AB ĀB̄

of Eq. (21) is entirely
inseparable, meaning that it contains genuine multipartite
Gaussian entanglement distributed among all the four parties
involved. Let us now compute the bipartite entanglements in
the 1 → 3 partitions of the Gaussian state σ out

AB ĀB̄
. Employing

Eq. (5), the 1 → 3 entanglements are found to be

E(σ out
A|B ĀB̄

) = ln

{
cosh(2s) + θ2

k

1 − θ2
k

}
, (28)

E(σ out
Ā|AB B̄

) = ln

{
cosh(2s) + θ2

k

1 − θ2
k

}
. (29)

For any nonzero value of s, σ and ε, each single party is in
an entangled Gaussian state with the block of the remaining
three parties, with respect to all possible global splitting of
the modes.

In Fig. 3a and d, we plot the 1 → 3 bipartite entanglement
as a function of the expansion rate σ for different squeezing
parameters s. We find that the 1 → 3 bipartite entanglement
monotonically increases with the increase of the expansion
rate σ . In addition, as the squeezing parameter s increases,
the influence of the expansion rate σ on the generated entan-
glement E(σ out

Ā|AB B̄
) is more obvious.

The 1 → 3 bipartite entanglement is plotted in Fig. 3b
and e as a function of the expansion volume ε for different
momentums k. It is shown that the 1 → 3 bipartite entan-
glement increases with the increase of the expansion volume
ε. However, the influence of the expansion volume on the
1 → 3 entanglement is less than that of the expansion rate.
From Fig. 3b and e, we can see that, for a fixed expansion vol-
ume ε, the 1 → 3 entanglement decreases with the increase
of the momentum k.

Figure 3c and f show how the massm influences the 1 → 3
entanglement. From Fig. 3c, we find that quantum entangle-
ment E(σ out

A|B ĀB̄
) first increases from the initial entanglement

to the maximum and then reduces to the initial entangle-
ment. From Fig. 3f, we can see that quantum entanglement
E(σ out

Ā|AB B̄
) increases from zero to the maximum and then

reduces to zero. This implies that, for the bosons with the
larger mass m, the effect of the expansion of the universe on
the 1 → 3 entanglement is not apparent.

The residual multipartite entanglement from the monogamy
inequality in Eq. (6) is an entanglement monotone under
Gaussian local operations and classical communication for a
four-mode pure state σ out

AB ĀB̄
. The residual entanglement of

the Gaussian state σ out
AB ĀB̄

is defined as

Eres(σ out
AB ĀB̄

) = min

{
E(σ out

A|B ĀB̄
) − E(σ out

AB) − E(σ out
AĀ

) − E(σ out
AB̄

),

E(σ out
Ā|AB B̄

) − E(σ out
ĀA

) − E(σ out
ĀB

) − E(σ out
Ā B̄

)

}
. (30)

We verify that the second quantity can achieve the minimum.
Therefore, we obtain an analytic expression for the residual
entanglement Eres(σ out

AB ĀB̄
)

Eres(σ out
AB ĀB̄

) = ln

{
θ2
k cosh(2s) + 1

1 + θ2
k

}
. (31)

From Eq. (31), we find that the residual entanglement
Eres(σ out

AB ĀB̄
) is always greater than or equal to zero for

any parameters, which proves that the Coffman–Kundu–
Wootters inequality in Eq. (6) is still correct in an expanding
spacetime. In addition, it precisely quantifies the multipar-
tite quantum correlations that cannot be stored in the bipartite
form.

In Fig. 4a, we plot the residual entanglement Eres(σ out
AB ĀB̄

)

as functions of the expansion rate σ and the momentum k.
Figure 4b shows how the mass m and the expansion volume
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Fig. 3 1 → 3 entanglement a and d as a function of the expansion rate σ for different squeezing parameters s. 1 → 3 entanglement b and e as a
function of the expansion volume ε for different momentums k. 1 → 3 entanglement c and f as a function of the mass m. The other parameters are
set to 1

ε influence the residual entanglement Eres(σ out
AB ĀB̄

). From
Fig. 4, we can see that the residual entanglement monoton-
ically increases with the increase of the expansion rate and
the expansion volume. This indicates that the expansion of
the universe can generate the residual entanglement. We can
also see that the residual entanglement is more influenced by
the expansion rate than the expansion volume. In addition,
the residual entanglement is more sensitive to the cosmologi-
cal parameters when we choose the particles with the smaller
momentum and the suitable mass in an expanding spacetime.

5 Conclusions

We have studied the redistribution of quantum entanglement
for continuous variables in an expanding spacetime. We con-

sider four modes: the bosonic mode A observed by Alice; the
bosonic mode B observed by Bob; the antibosonic mode Ā
observed by anti-Alice; the antibosonic mode B̄ observed
by anti-Bob. We get a phase space description for a quan-
tum state evolution under the influence of the expansion
of a Robertson–Walker spacetime. When the quantum state
evolves from the asymptotic past to the asymptotic future,
the dynamical entanglement contains historical information
concerning the expanding spacetime. We find that quantum
entanglement is more sensitive to the expansion rate than the
expansion volume. We show the redistribution of the initial
entanglement: quantum entanglement between the modes A
and B decreases with the growth of the expansion rate and the
expansion volume; at the same time, quantum entanglement
between the modes A and Ā (or B and B̄) can be generated
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Fig. 4 a The residual entanglement Eres(σ out
AB ĀB̄

) as functions of the expansion rate σ and the momentum k for the fixed values of m = ε = s = 1.

b The residual entanglement Eres(σ out
AB ĀB̄

) as functions of the mass m and the expansion volume ε for the fixed values of k = σ = s = 1

by the expansion of the underlying spacetime. This means
that the loss of quantum entanglement can be interpreted as
a redistribution of the initial entanglement into multipartite
quantum correlations. We also find that the 1 → 3 entan-
glement increases with the expansion rate and the expansion
volume. The residual entanglement is always greater than
or equal to zero, which directly proves that the Coffman–
Kundu–Wootters inequality is true in an expanding space-
time. According to the analysis of quantum entanglement,
choosing the particles with the smaller momentum and the
optimal mass is a better way to extract information about
the expanding universe. These results can guide the simula-
tion of the expanding universe in different quantum systems
[48–50].

Acknowledgements This work is supported by the National Natu-
ral Science Foundation of China (Grant nos. 12205133, 1217050862,
11275064, 11975064 and 12075050), LJKQZ20222315 and 2021BSL013.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: I would like to
emphasize that all relevant physical and mathematical calculations are
explicitly presented in this paper.]

Declarations

Conflict of interest The authors declare no conflicts of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

References

1. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K.
Wootters, Phys. Rev. Lett. 70, 1895 (1993)

2. S.F. Huegla, M.B. Plenio, J.A. Vaccaro, Phys. Rev. A 65, 042316
(2002)

3. J.L. Dodd, M.A. Nielsen, M.J. Bremner, R.T. Thew, Phys. Rev. A
65, 040301 (2002)

4. The Physics of Quantum Information, ed. by D. Bouwmeester, A.
Ekert, A. Zeilinger (Springer, Berlin, 2000). ISBN: 978-3-642-
08607-6

5. I. Fuentes-Schuller, R.B. Mann, Phys. Rev. Lett. 95, 120404 (2005)
6. P.M. Alsing, I. Fuentes-Schuller, R.B. Mann, T.E. Tessier, Phys.

Rev. A 74, 032326 (2006)
7. D.E. Bruschi, J. Louko, E. Martín-Martínez, A. Dragan, I. Fuentes,

Phys. Rev. A 82, 042332 (2010)
8. D.E. Bruschi, A. Dragan, I. Fuentes, J. Louko, Phys. Rev. D 86,

025026 (2012)
9. Y. Li, Q. Mao, Y. Shi, Phys. Rev. A 99, 032340 (2019)

10. Q. Pan, J. Jing, Phys. Rev. D 78, 065015 (2008)
11. M.R. Hwang, D.K. Park, E. Jung, Phys. Rev. A 83, 012111 (2011)
12. J. Wang, J. Jing, Phys. Rev. A 83, 022314 (2011)
13. S.M. Wu, Y.T. Cai, W.J. Peng, H.S. Zeng, Eur. Phys. J. C 82, 412

(2022)
14. Y. Dai, Z. Shen, Y. Shi, Phys. Rev. D 94, 025012 (2016)
15. W.C. Qiang, G.H. Sun, Q. Dong, S.H. Dong, Phys. Rev. A 98,

022320 (2018)
16. S.M. Wu, H.S. Zeng, Eur. Phys. J. C 82, 4 (2022)
17. X. Liu, Z. Tian, J. Wang, J. Jing, Phys. Rev. D 97, 105030 (2018)
18. Z. Tian, S.Y. Chä, U.R. Fischer, Phys. Rev. A 97, 063611 (2018)
19. J. Wang, C. Wen, S. Chen, J. Jing, Phys. Lett. B 800, 135109 (2020)
20. S. Kanno, J.P. Shock, J. Soda, Phys. Rev. D 94, 125014 (2016)
21. A. Albrecht, S. Kanno, M. Sasaki, Phys. Rev. D 97, 083520 (2018)
22. S.M. Wu, H.S. Zeng, T. Liu, New J. Phys. 24, 073004 (2022)
23. A.J. Torres-Arenas, Q. Dong, G.H. Sun, W.C. Qiang, S.H. Dong,

Phys. Lett. B 789, 93 (2019)
24. S. Xu, X.K. Song, J.D. Shi, L. Ye, Phys. Rev. D 89, 065022 (2014)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2023) 83 :222 Page 9 of 9 222

25. A. Matsumura, Y. Nambu, Phys. Rev. D 98, 025004 (2018)
26. S.M. Wu, H.S. Zeng, Eur. Phys. J. C 82, 716 (2022)
27. Z. Tian, L. Wu, L. Zhang, J. Jing, J. Du, Phys. Rev. D 106, L061701

(2022)
28. D. Wang, F. Ming, X.K. Song, L. Ye, J.L. Chen, Eur. Phys. J. C 80,

800 (2020)
29. S. Bhattacharya, H. Gaur, N. Joshi, Phys. Rev. D 102, 045017

(2020)
30. S.M. Wu, H.S. Zeng, H.M. Cao, Class. Quantum Gravity 38,

185007 (2021)
31. L.J. Li, F. Ming, X.K. Song, L. Ye, D. Wang, Eur. Phys. J. C 82,

726 (2022)
32. S. Bhattacharya, N. Joshi, Phys. Rev. D 105, 065007 (2022)
33. S.M. Wu, C.X. Wang, D.D. Liu, X.L. Huang, H.S. Zeng, J. High

Energy Phys. 02, 115 (2023)
34. D.E. Bruschi, I. Fuentes, J. Louko, Phys. Rev. D 85, 061701(R)

(2012)
35. N. Friis, D.E. Bruschi, J. Louko, I. Fuentes, Phys. Rev. D 85,

081701(R) (2012)
36. D.E. Bruschi, J. Louko, D. Faccio, I. Fuentes, New J. Phys. 15,

073052 (2013)
37. A. Dragan, J. Doukas, E. Martín-Martínez, D.E. Bruschi, Class.

Quantum Gravity 30, 235006 (2013)
38. D. Ahn, Y. Moon, R. Mann, I. Fuentes-Schuller, J. High Energy

Phys. 06, 062 (2008)
39. L. Bombelli, R.K. Koul, J. Lee, R.D. Sorkin, Phys. Rev. D 34, 373

(1986)
40. G.T. Horowitz, J. Maldacena, J. High Energy Phys. 02, 008 (2004)
41. S. Lloyd, Phys. Rev. Lett. 96, 061302 (2006)
42. J.L. Ball, I. Fuentes-Schuller, F.P. Schuller, Phys. Lett. A 359, 550

(2006)
43. E. Martín-Martínez, N.C. Menicucci, Class. Quantum Gravity 29,

224003 (2012)

44. X. Liu, J. Jing, J. Wang, Z. Tian, Quantum Inf. Process. 19, 26
(2020)

45. I. Fuentes, R.B. Mann, E. Martín-Martínez, S. Moradi, Phys. Rev.
D 82, 045030 (2010)

46. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)
47. S.L. Braunstein, P. van Loock, Rev. Mod. Phys. 77, 513 (2005)
48. J. Steinhauer et al., Nat. Commun. 13, 2890 (2022)
49. Z. Tian, J. Jing, A. Dragan, Phys. Rev. D 95, 125003 (2017)
50. C. Viermann et al., Nature 611, 260 (2022)
51. D. Buono, G. Nocerino, A. Porzio, S. Solimeno, Phys. Rev. A 86,

042308 (2012)
52. Q.Y. He, Q.H. Gong, M.D. Reid, Phys. Rev. Lett. 114, 060402

(2015)
53. G. Adesso, A. Serafini, F. Illuminati, Phys. Rev. A 70, 022318

(2004)
54. A. Rényi, On measures of information and entropy, in Proceed-

ings of the 4th Berkeley Symposium onMathematics, Statistics and
Probability, pp. 547–561 (1960)

55. M. Headrick, Phys. Rev. D 82, 126010 (2010)
56. G. Adesso, D. Girolami, A. Serafini, Phys. Rev. Lett. 109, 190502

(2012)
57. G. Adesso, S. Ragy, A.R. Lee, Open Syst. Inf. Dyn. 21, 1440001

(2014)
58. C.M. Caves, B.L. Schumaker, Phys. Rev. A 31, 3068 (1985)
59. B.L. Schumaker, C.M. Caves, Phys. Rev. A 31, 3093 (1985)
60. G. Adesso, I. Fuentes-Schuller, M. Ericsson, Phys. Rev. A 76,

062112 (2007)
61. G. Adesso, S. Ragy, D. Girolami, Class. Quantum Gravity 29,

224002 (2012)

123


	Quantum entanglement for continuous variables sharing in an expanding spacetime
	Abstract 
	1 Introduction
	2 Quantifying entanglement for continuous variables by the Rényi-2 entropy
	3 The expansion of the universe described by Gaussian channel
	4 The effect of the expanding universe on Gaussian entanglement
	4.1 Bipartite Gaussian entanglement
	4.2 Generation of a four-mode Gaussian entanglement

	5 Conclusions
	Acknowledgements
	References




