
Eur. Phys. J. C (2023) 83:229
https://doi.org/10.1140/epjc/s10052-023-11343-y

Regular Article - Theoretical Physics

Relativistic resistive magneto-hydrodynamics code for high-energy
heavy-ion collisions

Kouki Nakamura1,2,a , Takahiro Miyoshi2, Chiho Nonaka1,2,3,4, Hiroyuki R. Takahashi5

1 Department of Physics, Nagoya University, Nagoya 464-8602, Japan
2 Department of Physics, Hiroshima University, Higashihiroshima 739-8526, Japan
3 Kobayashi Maskawa Institute, Nagoya University, Nagoya 464-8602, Japan
4 International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima 739-8511, Japan
5 Department of Natural Sciences, Faculty of Arts and Sciences, Komazawa University, Tokyo 154-8525, Japan

Received: 7 November 2022 / Accepted: 18 February 2023 / Published online: 20 March 2023
© The Author(s) 2023

Abstract We construct a relativistic resistive magneto-
hydrodynamic (RRMHD) numerical simulation code for
high-energy heavy-ion collisions as a first designed code
in the Milne coordinates. We split the system of differen-
tial equations into two parts, a non-stiff and a stiff part. For
the non-stiff part, we evaluate the numerical flux using HLL
approximated Riemann solver and execute the time integra-
tion by the second-order of Runge–Kutta algorithm. For the
stiff part, which appears in Ampere’s law, we integrate the
equations using semi-analytic solutions of the electric field.
We employ the generalized Lagrange multiplier method to
ensure the divergence-free constraint for the magnetic field
and Gauss’s law. We confirm that our code reproduces well
the results of standard RRMHD tests in the Cartesian coor-
dinates. In the Milne coordinates, the code with high con-
ductivity is validated against relativistic ideal MHD tests.
We also verify the semi-analytic solutions of the accelerat-
ing longitudinal expansion of relativistic resistive magneto-
hydrodynamics in high-energy heavy-ion collisions in com-
parison with our numerical result. Our numerical code repro-
duces these solutions.

1 Introduction

Relativistic hydrodynamics has been widely used for descrip-
tion of collective dynamics in various phenomena from
nuclear physics to astrophysics. The high-energy heavy-ion
collision experiment is one of the active fields of application
of relativistic hydrodynamics.

a e-mail: knakamura@hken.phys.nagoya-u.ac.jp (corresponding
author)

At Relativistic Heavy Ion Collider (RHIC), production of
the strongly interacting quark–gluon plasma (QGP) was suc-
ceeded, which was achieved by measurement of key observ-
ables and theoretical interpretation to them [1–4]. In par-
ticular, at that time, the strong elliptic flow was success-
fully explained by hydrodynamic models. Along with other
phenomenological analyses, this fact reached the conclusion
that the QGP created at RHIC is not weakly interacting gas
but strongly interacting plasma. The analysis of high-energy
heavy-ion collisions based on the relativistic viscous hydro-
dynamics shed light on not only understanding dynamics
of space-time evolution after collisions, but also QGP bulk
properties such as temperature dependence of shear and bulk
viscosities and a diffusion constant. Usually, the QGP bulk
properties are discussed in comparison between experimental
data and hydrodynamic model calculation. Intensive compu-
tation of Bayesian analysis is also performed for extracting
detailed information of thermodynamic properties of QCD
[5,6].

During the relativistic collision of positively charged
heavy nuclei, the highest intense electromagnetic fields in
our universe are produced, e.g. |eB| ∼ 1015 T [7]. The high-
energy heavy-ion collision is possible to address the property
of interaction between deconfined strongly interacting mat-
ter and electromagnetic fields. The effect of electrical con-
ductivity of the medium on the evolution of electromagnetic
fields has been discussed with the semi-analytic solutions
of electromagnetic fields in Refs. [8,9]. The contribution of
electromagnetic fields to the charge-dependent anisotropic
flow has been estimated from the semi-analytic solution of
simplified relativistic hydrodynamic equations with electro-
magnetic fields in Refs. [10–12]. Furthermore, relativistic
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hydrodynamic simulation with background electromagnetic
fields has been investigated [13,14].

The fully realistic analysis of high-energy heavy-ion
collisions would require one to solve Maxwell equations
together with relativistic hydrodynamic equations. It is called
a full relativistic magneto-hydrodynamic (RMHD) frame-
work, which describes the dynamics of the plasma coupled
with electromagnetic fields. Such an analysis with infinite
electrical conductivity, relativistic ideal MHD, has been car-
ried out [15,16]. In the relativistic ideal MHD, the elec-
tric field measured in the fluid comoving frame vanishes.
In order to consider the charge distribution of hadrons in
high-energy heavy-ion collisions, the simulation based on
the RMHD framework with finite electrical conductivity is
needed. Therefore, we construct a model for high-energy
heavy-ion collisions based on relativistic resistive magneto-
hydrodynamics (RRMHD).

The RRMHD simulation has been performed in astro-
physical situations such as black hole accretion disks, jets,
and neutron star magnetospheres. The dissipation associated
with Ohmic conduction current affects the topology of the
magnetic field and liberates the magnetic energy, which is
known as magnetic reconnection discussed in astrophysical
applications [17–22].

In astrophysical community, there are two known diffi-
culties for constructing the RRMHD code. First one is that
a time step size �t becomes too much short for calcula-
tion of highly conducting medium with explicit time inte-
gration. Then it is time consuming to follow a long time
evolution of dynamics. Several numerical schemes are pro-
posed to solve this problem such as adopting a semi-analytic
solution [23] and an implicit-explicit (IMEX) Runge–Kutta
algorithm [24,25]. Then, the time step size is determined
by the advection time of the fluid or the wave rather than
the diffusion time. Another difficulty is found in keeping
the constraints of the Maxwell equations, e.g., Gauss’s law
and the divergence-free constraint. Ampere’s law and Fara-
day’s law describe the time evolution of electric and mag-
netic fields, respectively. These equations ensure that con-
straints hold if they are satisfied at the initial state. These
conditions are, however, not preserved numerically in a not
well-designed scheme for multi-dimensional problems. The
violation of the constraints leads to the growth of spurious
oscillation and the simulation is unexpectedly terminated. In
the framework of RRMHD, the generalized Lagrange mul-
tiplier (GLM) method is proposed to guarantee these condi-
tions [23,26]. In this scheme, the numerical errors relating to
the violation of the constraints are advected and dissipated.
The GLM scheme is commonly used also in MHD [27] and
RMHD [28] and shows the robustness of the numerical code.
As another solution of this problem, a constrained transport
(CT) method [29–33] is also developed. This approach takes
the magnetic field as a staggered representation whereby the

different components are situated on the cell surface which
is normal to the corresponding components.

In this paper, we construct a RRMHD code by adopting the
semi-analytic method for time integration and GLM method
for preserving the conditions in the Milne coordinates for
the purpose of understanding high-energy heavy-ion colli-
sions. These methods are well-known in the astrophysical
community, but we adopted them in the Milne coordinates
to understand the high-energy heavy-ion collisions for the
first time. We check the correctness and robustness of our
code by performing several numerical tests which are com-
mon test problems for relativistic ideal MHD and RRMHD.
We also propose the test problem of longitudinal expan-
sion with an acceleration of relativistic resistive magneto-
hydrodynamics. The semi-analytic solution of this problem
is shown by mimicking the electromagnetic configuration
and fluid velocity in high-energy heavy-ion collisions [34].
We apply this solution as a test problem of RRMHD in the
Milne coordinates.

This paper is organized as follows. In Sect. 2, we briefly
review the formulation of RRMHD. We explain the numeri-
cal algorithm of the RRMHD systems in our simulation code
in Sect. 3. We show numerical benchmark tests as a verifica-
tion of our RRMHD simulation code in Sect. 4. A summary
is given at the end in Sect. 5. Unless otherwise specified, we
use natural units h̄ = c = ε0 = μ0 = 1, where ε0 and μ0

are the electric permittivity and the magnetic permeability in
vacuum, respectively. Throughout the paper, the components
of the four tensors are indicated with Greek indices, whereas
three vectors are denoted as boldface symbols.

2 Relativistic resistive magneto-hydrodynamics

The conservation laws for the number density current Nμ and
for the total energy–momentum tensor of the plasma Tμν in
the dynamics of the whole system are written by,

∇μN
μ = 0, (1)

∇μT
μν = 0, (2)

where ∇μ is the covariant derivative. The electromagnetic
fields follow Maxwell equations,

∇μF
μν = −J ν, (3)

∇μ
�Fμν = 0, (4)

where Fμν is a Faraday tensor and �Fμν = 1
2εμνρσ Fρσ is its

dual tensor, with εμνρσ = (−g)−1/2[μνρσ ], g = det(gμν)

and [μνρσ ] is a completely anti-symmetric tensor. Here
gμν is a metric tensor. If the magnetization and polariza-
tion effects are ignored, the energy–momentum tensor of the
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electromagnetic fields is written by,

Tμν
f = FμλFν

λ − 1

4
gμνFλκFλκ , (5)

and this tensor follows ∇μT
μν
f = JμFμν , from Maxwell

equations. The total energy–momentum tensor is the sum of
the contribution of matter and electromagnetic fields Tμν =
Tμν
m + Tμν

f . The conservation law of the total system shown
by Eq. (2) gives,

∇μT
μν
m = −JμF

μν. (6)

For the ideal fluid, the energy–momentum tensor and the
charged current of fluids are written by,

Nμ = ρuμ, (7)

Tμν
m = (e + p)uμuν + pgμν, (8)

where uμ (uμuμ = −1) is a single fluid four-velocity, ρ

is the number density, e = Tμν
m uμuν is energy density and

p = 1
3�μνT

μν
m is pressure of the fluid. We have introduced

the projection tensor �μν = gμν +uμuν . The Faraday tensor
and its dual tensor can be rewritten as,

Fμν = uμeν − uνeμ + εμνλκbλuκ , (9)
�Fμν = uμbν − uνbμ − εμνλκbλuκ , (10)

where,

eμ = Fμνuν, (eμuμ = 0), (11)

bμ = �Fμνuν, (bμuμ = 0), (12)

are the electric and magnetic fields measured in the comoving
frame of the fluid. We introduce the electric field Ei and the
magnetic field Bi , which are related to eμ and bμ by

eμ = (γ vk E
k, γ Ei + γ εi jkv j Bk), (13)

bμ = (γ vk B
k, γ Bi − γ εi jkv j Ek), (14)

where γ is the Lorentz factor of the fluid and vi is the fluid
three-velocity. The projections of ∇μT

μν
m = −JμFμν along

the perpendicular and parallel directions with respect to uμ

are given by,

(e + p)Duα + (∇α + uαD)p = Fαλ Jλ − uαeλ Jλ, (15)

De + (e + p)� = eλ Jλ, (16)

where D = uμ∇μ and � = ∇μuμ. Equations (15) and
(16) correspond to the equation of motion and energy equa-
tion, respectively. They are auxiliary equations that are not
solved in our numerical code. However, they are useful for
the discussion of Bjorken flow in resistive medium, shown
in Sects. 4.6 and 4.7.

Since the system of equations Eqs. (1)–(4) is closed by
Ohm’s law, we adopt the simplest form of it shown in
Ref. [35]. In the covariant form, Ohm’s law is written by,

Jμ = σ Fμνuν + quμ, (17)

where σ is electrical conductivity and q = −Jμuμ is electric
charge density of the fluid in the comoving frame. Maxwell
equations lead to the charge conservation law,

∇μ J
μ = 0. (18)

When we take the ideal limit (σ → ∞) of Ohm’s law,
Eq. (17) is reduced to,

eμ = 0. (19)

3 Numerical procedure

We now represent governing equations of the RRMHD in
a suitable form for numerical calculation. Also, we show
a numerical scheme to solve RRMHD equations which are
appropriate for studying high-energy heavy-ion collisions.

3.1 Metric

We split the space-time into 3 + 1 components by space-
like hypersurface defined as the iso-surfaces of a scalar time
function t and assume a metric of the form,

ds2 = −dtdt + gi j dx
i dx j . (20)

Since we consider only the Cartesian and the Milne coor-
dinates in this paper, the metric tensor is diagonal. We will
use the Cartesian coordinates (t, x, y, z) in Sects. 4.1, 4.2,
4.3, 4.4 and 4.5.1. The Milne coordinates (τ, x, y, ηs) will
be adopted in Sects. 4.5.2, 4.6 and 4.7, where τ := √

t2 − z2

is the longitudinal proper-time and ηs := 1
2 ln t+z

t−z is the space
rapidity. We note that in the Cartesian coordinates, the three
metric gi j = diag{1, 1, 1}, with

√−g = 1, whereas in the
Milne coordinates, gi j = diag{1, 1, τ 2}, with

√−g = τ . In
both coordinates, ∂ j gik = 0 ( j = 1, 2, 3), source terms of
space-components in conservation equations vanish. How-
ever, in the Milne coordinates, where g33 = τ 2, the source
terms for the energy conservation equation contain a non-
zero term proportional to 1

2∂0g33 = τ .

3.2 Constraint equations

Maxwell equations contain two constraint equations,

∂i (
√−gEi ) = √−gq, (21)

∂i (
√−gBi ) = 0. (22)

Though Maxwell equations ensure that these constraints are
satisfied at all time steps, a simple integration of Maxwell
equations in numerical simulation does not preserve these
conditions because of numerical error. The accumulation of
numerical errors leads to unphysical oscillation and numeri-
cal simulation crashes in the end for multi-dimensional prob-
lems. For this reason, a number of numerical techniques
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for avoiding this problem are investigated. In this model,
we adopt the GLM method to guarantee these conditions
[23,26,28]. The main idea is that one introduces two vari-
ables, ψ and φ as the deviation from constraints. One man-
ages a system of equations to decay or carry the deviation ψ

and φ out of the computation domain by relatively high-speed
waves.

For the GLM method, we extend the Eqs. (3) and (4) to,

∇ν(F
μν + gμνψ) = −κnμψ + Jμ, (23)

∇ν(
�Fμν + gμνφ) = −κnμφ, (24)

where ψ and φ are new variables and κ is a positive con-
stant. In the Cartesian coordinates, we obtain the telegraph
equations for ∇ · E − q and ∇ · B,

∂2
t (∇ · E − q) + κ∂t (∇ · E − q) − ∂i∂

i (∇ · E − q) = 0,

(25)

∂2
t (∇ · B) + κ∂t (∇ · B) − ∂i∂

i (∇ · B) = 0. (26)

Consequently, ∇ · E − q and ∇ · B propagate at the speed
of light and decay exponentially over a timescale 1/κ . In
the form of the metric Eq. (20), a time-like normal vector
is reduced to nμ = (−1, 0). The modified divergence-free
equation of B and the Faraday’s law become,

∂t (
√−gφ) + ∂i (

√−gBi ) = −√−gκφ, (27)

∂t (
√−gB j ) + ∂i [√−g(εi jk Ek + gi jφ)] = 0. (28)

Also, the modified Gauss’s law and Ampere’s law are
obtained as,

∂t (
√−gψ) + [∂i (√−gEi ) − √−gq] = −√−gκψ,

(29)

∂t (
√−gE j ) − ∂i [√−g(εi jk Bk + gi jψ)] = −√−gJ j .

(30)

The conservation law of electric charge is written by,

∂t (
√−gq) + ∂i (

√−gJ i ) = 0. (31)

3.3 Basic equations

Let us rewrite the equations of motion Eqs. (1), (2), (23),
(24) and (31) in a conservative form which is appropriate for
numerical integration,

∂0
(√−g U

) + ∂i

(√−g Fi
)

= √−g (Se + Ss), (32)

whereU, Fi , Se and Ss are the sets of conservative variables,
fluxes, source terms which are explicitly solved, and source
terms of the stiff part, respectively. These variables contain
the following components,

U =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

D
� j

ε

B j

E j

q
ψ

φ

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

, Fi =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

Dvi

T i
j

�i

ε j ik Ek + gi jψ
− ε j ik Bk + gi jφ

J i

Ei

Bi

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

,

Se =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

0
1
2T

ik∂ j gik
− 1

2T
ik∂0gik
0

− qvi

0
0
0

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

, Ss =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

0
0
0
0

− J ic
0

− κψ

− κφ

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

, (33)

where the number density D, the total momentum �i , the
stress tensor Ti j , the total energy density ε and the conduction
electric current J ic are given by,

D = γρ, (34)

�i = (e + p)γ 2vi + εi jk E
j Bk, (35)

Ti j = (e + p)γ 2viv j + (p + pem)gi j − Ei E j − Bi B j ,

(36)

ε = (e + p)γ 2 − p + pem, (37)

J ic = σei , (38)

where the electromagnetic energy density pem is defined as
pem = 1

2 (E2 + B2). We adopt the operator splitting method
for time integration. Then Eq. (32) can be divided into two
equations as,

∂0
(√−g U

) + ∂i

(√−g Fi
)

= √−gSe, (39)

∂0
(√−g U

) = Ss . (40)

Equation (39) can be integrated in time with an explicit man-
ner, while Eq. (40) becomes stiff for large σ and κ . The
one-dimensional discretization of Eq. (39) can be written by,

Un+1
i = Un

i − �t

�x
( f i+1/2 − f i−1/2) + Se�t, (41)

where �x is the grid spacing and f is the numerical flux.
The subscript i denotes the grid point, x = i�x , and the
superscript n shows the number of time steps, t = n�t .

We need to reconstruct the primitive variables on the cell
surface from those of the cell center to evaluate the numerical
flux. We adopt the second-order accurate scheme for this
reconstruction [36] given by,

Pn
i±1/2=Pn

i ± δPn
i /2, (42)
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δPn
i =

⎧
⎨

⎩

sign(δP i+1/2) min(|δP i+1/2

|/2, 2|δP i+1|, 2|δP i |) if sign(δP i+1)sign(δP i ) > 0,

0 otherwise,

(43)

where δP i+1/2 = P i+1 − P i−1, δP i+1 = P i+1 − P i , and
δP i = P i − P i−1. Then the numerical flux is computed by
using the Harten–Lax–van Leer (HLL) method [37] given
by,

f i±1/2

= λ+FL
i±1/2−λ−FR

i±1/2+λ+λ−(UR
i±1/2−UL

i±1/2)

λ+ − λ− ,

(44)

whereλ+ andλ− represent the maximum and minimum wave
speeds of the system, respectively. We evaluate them by the
speed of light for simplicity. The superscript L (R) denotes
that the variables are calculated from the primitive variables
reconstructed by these at grid on the left (right) side. Then,
we numerically integrate Eq. (39) using numerical fluxes.

3.4 Stiff part

In this subsection, we show how to solve the stiff part Eq. (40)
based on Ref. [23], which contains Ampere’s law and equa-
tions of φ and ψ . For Ampere’s law, we split the stiff relax-
ation equation Eq. (40) into the perpendicular and the parallel
directions with respect to vi by the operator splitting method
and we redefine E

′i = √−gEi and B
′i = √−gBi to,

∂0(E
′i‖ ) = −σγ [E ′i‖ − (E

′kvk)v
i ], (45)

∂0(E
′i⊥) = −σγ (E

′i⊥ + εi jkv j B
′
k), (46)

where E
′i⊥ and E

′i‖ are the perpendicular and the parallel direc-

tions of the electric field with respect to vi . Here, vi and γ are
assumed to be a constant during a small time step �t . The
solutions of the initial value problem for these relaxation
equations are given by,

E
′i‖ = E

′i
0‖ exp −σγ t, (47)

E
′i⊥ = E∗i⊥ + (E

′i
0⊥ − E∗i⊥ ) exp(−σ t/γ ), (48)

where E∗i⊥ = −εi jkv j B
′
k and suffix 0 represents the initial

value of E
′i .

For ψ and φ, we can integrate Eq. (40) as

ψ ′ = ψ ′
0 exp(−κt), (49)

φ′ = φ′
0 exp(−κt), (50)

where ψ ′ = √−gψ and φ′ = √−gφ, and the suffix 0
represents the initial value of ψ ′ and φ′.

In this scheme, the fluid velocity and Lorentz factor are
assumed to be constant within the time step �t . Thus our
numerical scheme reduces to a first-order accuracy in time.

The formal solution of Ampere’s law should be adopted in a
small time step because the velocity and Lorentz factor are
not the constant during �t . Hence, the numerical accuracy
worsens if the velocity drastically changes with time. We
note that the higher order accuracy scheme is proposed by
the previous studies, e.g., Ref. [25].

3.5 Primitive recovery

In our numerical code, we need to reconstruct primitive
variables {ρ, p, vi } from evolved conservative variables
{D, ε,�i } in order to calculate the numerical flux at each
time step. To reconstruct the primitive variables, we intro-
duce new variables,

ε′ = ε − pem, (51)

�′
i = �i − εi jk E

j Bk, (52)

where ε′ and �′ are the energy density and the momentum
of fluid, respectively. The set of the variables {D, ε′,�′

i } is
the relativistic ideal fluid conservative variables. Therefore,
we adopt the ordinary primitive reconstruction method of
relativistic hydrodynamic simulation for these variables [38].
We obtain a one-dimensional equation about the gas pressure,

f (p) := [e(p, ρ) + p]γ 2(p) − ε′ − p = 0, (53)

where,

1

γ 2(p)
= 1 − �′i�′

i

(ε′ + p)2 , ρ = D/γ (p). (54)

The p and ρ dependence of e is determined by an equation
of state (EoS). This equation is numerically solved by the
Newton–Raphson algorithm. The other primitive variables
are reconstructed as,

vi = �′i

ε′ + p
, (55)

γ = 1
√

1 − vivi
, (56)

ρ = D/γ, (57)

e = (ε′ + p)/γ 2 − p. (58)

We consider the ideal gas EoS p = (� − 1)(e − mρ)

with the mass of conserved species m = 1 in this paper. We
note that we take the non-zero ρ in Sects. 4.1, 4.2, 4.3, 4.4,
and 4.5.1. In Sects. 4.5.2, 4.6, and 4.7, we set ρ = 0.

3.6 Numerical algorithm

Our numerical simulation code is based on finite differ-
ence schemes. The advection equation Eq. (39) including the
source term Se is solved by explicit time integration with the
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second-order TVD Runge–Kutta algorithm [39]. The prim-
itive variables are interpolated from the cell center to the
cell surface by using the second-order accurate scheme rep-
resented by Eqs. (42) and (43) [36]. The numerical flux is
calculated by the HLL flux shown in Eq. (44) [37]. The stiff
part Eq. (40) is integrated by the analytic solutions explained
in Sect. 3.4. We adopt the GLM method to guarantee these
conditions [23,26,28] as the divergence cleaning. The primi-
tive recovery is executed by solving Eq. (53) by the Newton–
Raphson algorithm explained in Sect. 3.5 [38]. We summa-
rize our numerical algorithm as follows:

– the values of the primitive variables are reconstructed
from the cell center to the cell surface by using the
second-order accurate scheme [36] shown in Eqs. (42)
and (43).

– conservative variables U and fluxes F on the cell surface
in Eq. (32) are computed.

– the Riemann problem for the numerical flux at cell sur-
faces is solved by using the HLL flux [37] described by
Eq. (44).

– Equation (39) is explicitly integrated by using the numer-
ical flux.

– the stiff equation Eq. (40) is integrated by using the ana-
lytic solutions given by Eqs. (47) and (48).

– the new primitive variables are recovered from the
evolved conservative variables by solving Eqs. (53)–(58).

4 Test problems

In this section, numerical tests are performed for the veri-
fication of our numerical simulation code. We will use the
Cartesian coordinates (t, x, y, z) in Sects. 4.1, 4.2, 4.3, 4.4
and 4.5.1. The Milne coordinates (τ, x, y, ηs) will be adopted
in Sects. 4.5.2, 4.6 and 4.7. We take the CFL constant as
CCFL = 0.1 for all test problems. In all tests, φ and ψ are
initialized as zero at all computational grids. The artificial
constant κ for two constraints is determined by the relation
α := �hκ/ch where �h = min(�x,�y,�z) and the max-
imum speed of system ch = 1. We set κ = 5.5 in all multi-
dimensional tests [23], which keeps α ≤ 1.

4.1 Shock tube test problem

In order to test the shock-capturing properties of our numeri-
cal simulation code, we consider the simple MHD version of
the Brio–Wu test in Ref. [25]. The initial left and right states
are given by,

(ρL , pL , (By)L) = (1.0, 1.0, 1.0) for x < 0.5, (59)

Fig. 1 We display the magnetic field By at t = 0.4 in the Brio–Wu
type shock tube test problem

(ρR, pR, (By)R) = (0.125, 0.1,−1.0) for x ≥ 0.5,

(60)

and all the other variables are initially set to 0.
Figure 1 shows the results at t = 0.4 for σ =

0, 10, 102, 103, and 104. The simulation box is bounded
by x ∈ [0, 1.0] and the number of grid points is 400. For
σ = 104, the left going rarefaction and right going shock
wave, and a tangential discontinuity between them appear.
Our numerical solution with σ = 104 reproduces the solu-
tion of relativistic ideal MHD simulations [40]. In addition,
the solutions with low conductivity are similar to the results
of the other RRMHD numerical simulations [25,41]. Espe-
cially the electromagnetic field does not interact with gas for
σ = 0, so that the electromagnetic waves propagate with
speed of light. The wave fronts should be located at 0.1 and
0.9 for left and right going waves, respectively. Our results
are consistent with these analytic solutions, although wave
fronts slightly have a smooth profile due to the numerical
diffusion.

4.2 Large amplitude circularly polarized Alfvén wave

We perform a test for the propagation of a large amplitude cir-
cularly polarized Alfv́en waves along a uniform background
magnetic field B0. The analytical solution of relativistic ideal
MHD is proposed in Ref. [42], which is given by,

(By, Bz) = ηAB
0(cos[k(x−vAt)], sin[k(x−vAt)]), (61)

(vy, vz) = −vA

B0
(By, Bz), (62)

where Bx = B0, vx = 0, k = 2π is the wave number, and
ηA is the amplitude of the wave. The square of the special
relativistic Alfv́en wave’s speed v2

A is given by,

v2
A = 2B2

0

h+B2
0 (1+η2

A)

⎡

⎣1+
√√√
√1−

(
2ηAB2

0

h + B2
0 (1+η2

A)

)⎤

⎦

−1

,

(63)

123



Eur. Phys. J. C (2023) 83 :229 Page 7 of 17 229

Fig. 2 The magnetic field component By at t = 2 is shown in the large
amplitude circularly polarized Alfv́en waves. The blue solid, red long
dashed-dotted and red dashed lines represent results with σ = 106 and
N = {100, 200, 400}, respectively. The black dotted line stands for the
analytical solution

where h = (e + p)/ρ is the specific enthalpy. We set the
initial parameters as ρ = p = ηA = 1, and B0 = 1.1547.
We use an ideal gas EoS, p = (� − 1)(e − mρ) with � = 2
in this test. From these parameters, the Alfv́en wave’s speed
is estimated to vA = 1/2.

4.2.1 One-dimensional propagation

For one-dimensional propagation, the computational domain
is x ∈ [−0.5, 0.5]. We use a periodic boundary condition.
Since the solution given by Eqs. (61) and (62) is obtained
by solving special relativistic ideal MHD equations, we take
a sufficiently large conductivity σ = 106 in this test prob-
lem. Figure 2 shows our results at t = 2.0 (one Alfv́en wave
crossing time) for the three different numbers of grid points
N = {100, 200, 400} with the analytical solution, in the case
of σ = 106. The blue solid, red long dashed-dotted, and
red dashed lines represent results with N = {100, 200, 400},
respectively. The black dotted line stands for the analytical
solution. The results with high conductivity σ mean that our
simulation code can handle the ideal MHD limit. Also, there
is no dependence of the number of grid points, which sug-
gests that even 100 grid points are enough for the description
of the analytical solution.

For this problem, we cannot achieve full second-order
accuracy. Figure 3 shows the L1(u,�x−1) norm errors of
the tangential magnetic field By as a function of the inverse
of grid-cell size �x−1,

L1(u,�x−1) :=
N∑

i

|u(xi ; N ) − uEXACT(xi )|�x, (64)

where uEXACT(xi ) is an exact solution at x = xi . The behav-
ior of L1 norm shows that our numerical simulation is nearly
1.6-order convergence. The main reason for it is that we
execute the second-order Runge–Kutta algorithm with many

Fig. 3 The L1 norm errors as a function of the inverse of grid-cell size
are shown in the large amplitude circularly polarized Alfv́en waves. The
two black dashed lines represent the (−1) and (−2) analytical slopes

operator splittings. It makes the time accuracy of our scheme
worsen [41]. This is the most difficulty to solve in RRMHD
since this is the limit of large electrical conductivity.

4.2.2 Two-dimensional propagation

We consider the two-dimensional propagation of large ampli-
tude circularly polarized Alfv́en waves to confirm the numer-
ical convergence in the multi-dimensional test. The initial
vector field such as velocity and the magnetic field is rotated
in the x − y plane from one-dimensional propagation. The
wave vector k = (kx , ky, kz) in the three-dimensional Carte-
sian coordinates is determined by the rotation angle α,

tan α = ky
kx

, (65)

where kz is set to be zero since we consider two-dimensional
propagation. Then, the vector A is rotated to Aα → Rγα Aα ,
where

Rγα =
⎛

⎝
cos α − sin α 0
sin α cos α 0

0 0 1

⎞

⎠ . (66)

We set kx = 2π and the computational domain x ∈
[−0.5, 0.5] × y ∈ [−0.5/ tan α, 0.5/ tan α]. The rotation
angle is set to be α = tan−1 2. The number of grid points
in y-direction is taken to be Ny = Nx/2 where Nx is the
number of grid points in x-direction. We take the periodic
boundary condition in each direction. The artificial constant
κ for the GLM method is chosen to be κ = 5.5 in each case.

Figure 4 shows the z-component of magnetic field at t =
2.2 and y = 0. The green long dashed-dotted, red dashed,
and black solid lines represent results with σ = 102 and
Nx = {100, 200, 400}, respectively. In the low conductivity
case, there is no analytical solution. To see the convergence
rate, we compare the reference case (Nx = 400) with the
other low-resolution cases. We calculate the convergence rate
using the equation,
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Fig. 4 The magnetic field component Bz at t = 2.2 and y = 0 is shown
in the two-dimensional propagation of large amplitude circularly polar-
ized Alfv́en waves. The green long dashed-dotted, red dashed, and black
solid lines represent results with σ = 102 and Nx = {100, 200, 400},
respectively

ERROR(Bz) = 1

Nx Ny

∑

x,y

|Bz(Nx = 400) − Bz(Nx )| .

(67)

We confirm that the convergence rate is achieved with 1.3-
order convergence. This convergence rate is the same as
that of the one-dimensional propagation test with N =
{100, 200, 400}.

4.3 Self-similar current sheet

Next, we consider the evolution of the self-similar current
sheet proposed in Refs. [23,25]. In this test problem, we
assume that the magnetic pressure is much smaller than the
pressure of fluid. The magnetic field has only a tangential
component B = (0, B(x, t), 0) and B(x, t) changes the sign
across the current sheet. The initial pressure of background
fluid is set to be uniform, p = const . We take the high con-
ductivity σ , so that the diffusion timescale is much longer
than the light crossing timescale. In this assumption, the evo-
lution equation of the magnetic field is reduced to,

∂t B − 1

σ
∂2
x B = 0. (68)

The analytic solution of this equation is given by,

B(x, t) = B0erf

⎛

⎝1

2

√
σ x2

t

⎞

⎠ , (69)

where erf is the error function. We set the initial condition at
t = 1 with p = 50, ρ = 1, E = v = 0, and σ = 100. The
computational domain is x ∈ [−1.5, 1.5], and the number of
grid points is N = 200. Figure 5 shows the numerical result
at t = 9. The black long dashed-dotted line represents the
initial profile of By at t = 1. The blue solid and red dotted

Fig. 5 The magnetic field component By at t = 9 in the self-similar
current sheet test, with the initial condition at t = 1

lines stand for the numerical result of By and the analytical
solution at t = 9, respectively. This indicates that the result of
our simulation code is consistent with the analytical solution
and captures the diffusion of the magnetic field.

4.4 Cylindrical explosion

The symmetric explosions are useful standard tests for MHD
codes even though there are no exact solutions because of the
existence of the shock waves in all possible angles [23]. This
problem including a strong multidimensional shock wave is
useful to check the robustness of the code. We take the same
condition as that in Ref. [23]. The computational domain is
x ∈ [−6.0, 6.0] × y ∈ [−6.0, 6.0] in the two-dimensional
Cartesian coordinates. The number of grid points is 200×200
with the uniform grid. The initial cylinder radius is taken to
r = 1 centered at the origin, where r = √

x2 + y2. The
pressure and number density of fluid are set to p = 1 and ρ =
0.01 for r ≤ 0.8 and exponentially decrease with increasing
radius for 0.8 ≤ r < 1.0. The fluid in the exterior of the
initial cylinder has p = ρ = 0.001 for r ≥ 1.0. We take the
uniform magnetic field, B = (0.1, 0.0, 0.0), and the velocity
v = 0 at the initial state. The plasma resistivity and decay
constant for variables ψ and φ are set to be σ = 55 and
κ = 5.5. This calculation with σ = 55 is the case of the
highest possible value of σ before our code crashes. This
reason is that the spatial resolution �h = 0.06 is slightly
larger than τσ = 0.018.

Figures 6 and 7 show the two dimensional profiles of p
and Bx at t = 4, respectively. We can see that strong shock
waves are formed and the initial uniform magnetic fields are
deformed due to the cylindrical explosion. Such a deforma-
tion of the magnetic field may lead to the violation of con-
straints ∇ · B = 0 and ∇ · E = q. If these constraints are
violated, the calculation would crash due to the growth of
unphysical spurious oscillation. We can avoid these prob-
lems by adopting the GLM method. Figure 8 represents the
two dimensional profile of Lorentz factor γ at t = 4. The
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Fig. 6 The pressure of the fluid at t = 4 is shown in the 2D cylindrical
explosion problem

Fig. 7 The magnetic field component Bx at t = 4 is shown in the 2D
cylindrical explosion problem

Fig. 8 The Lorentz factor γ at t = 4 is shown in the 2D cylindrical
explosion problem

profile of γ is not isotropic at this time since the magnetic
force decelerates gas in y-direction. Figure 9 stands for the
two-dimensional profile of the 103 × φ at t = 4. The mag-
nitude of φ is very small, |φ| ∼ 10−3. The front of φ moves
to the outside of the computational domain faster than the
expansion of fluids does. We have confirmed that the ψ is
zero within a round error in all computational domains.

Fig. 9 The scalar potential φ at t = 4 is shown in the 2D cylindrical
explosion problem

The results show the robustness of our code in multi-
dimensional problems. We also note that our results are con-
sistent with those of other groups (e.g., Ref. [23]). We get the
same results on x−z and y−z planes.

4.5 Rotor test

The rotor test is important for a calibration of resistive as well
as ideal MHD numerical multidimensional codes [43,44].
We perform the resistive rotor test both in the Cartesian and
in the Milne coordinates.

4.5.1 Cartesian coordinates

The Cartesian computational domain is x ∈ [−0.5, 0.5] ×
y ∈ [−0.5, 0.5] with 300 equidistant grid points in each
direction. Inside r ≤ 0.1 centered at the origin, the fluid
rotates with constant angular velocity � = 8.5 with uniform
number density ρ = 10 at the initial state. Outside this region
(r ≥ 0.1), the medium is static and uniform (ρ = 1). Both
the pressure (p = 1) and the magnetic field B = (1.0, 0, 0)

are uniform in the whole region. The initial electric field is
given by the ideal condition, −v× B. The adiabatic index is
� = 4/3.

Figures 10 and 11 show snapshots of the gas pressure p
and the electric field component Ez at t = 0.3 with elec-
trical conductivity σ = 106. These results agree with those
of other simulation codes [43–45]. Again, the GLM method
does work in our code, so that the growth of unphysical oscil-
lation suppresses. The same results are reproduced by taking
x−z and y−z planes.

4.5.2 Milne coordinates

The rotor test problem for the relativistic ideal MHD in the
Milne coordinates is proposed in Ref. [15]. The computa-
tional domain in the Milne coordinates is x ∈ [−0.5, 0.5] ×
y ∈ [−0.5, 0.5] with 400 equidistant grid points in each
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Fig. 10 The pressure of the fluid at t = 0.3 is displayed in the 2D
resistive rotor test in the Cartesian coordinates

Fig. 11 The electric field component Ez at t = 0.3 is shown in the 2D
resistive rotor test in the Cartesian coordinates

direction. We adopt the free boundary condition in both
directions. In this test, the EoS is assumed to be the ultra-
relativistic ideal gas EoS, p = e/3, and the number density
is set to ρ = 0 at all grid points. We set the initial coordinate
time to t = 1.0. Instead of imposing high density around the
origin, we set a high pressure region p = 5 inside r = 0.1.
The initial transverse velocity (vx , vy) is given by angular
speed � = 9.7. Outside this region, the pressure is p = 1.
The initial longitudinal velocity is set to vη = 0, which is
assumed to be longitudinal Bjorken expansion amount to
vz = z/t . The initial magnetic field is set to B = (2.0, 0, 0)

and the electric field is taken to be −v × B.
Figure 12a and b show the results of p and pem of our

simulation code at t = 1.4 with σ = 103, respectively. In the
Milne coordinates, we observe the decay of the pressure of
the fluid and magnetic pressure, which occurs in the whole
computational domain because of the longitudinal expansion
of the system. An asymmetric shaped compression wave by
the magnetic field is observed in our results because of the
higher initial pressure inside the radius r < 0.1 and the rota-
tion of the cylinder. Our result with σ = 103 has a similar
configuration of the result in ECHO-QGP simulation [15]. In
the high conductive case, our results capture the features of
relativistic ideal MHD. Figure 13a and b represent the results
of p and pem of our simulation code at t = 1.4 with σ = 10,
respectively. We can see that the anisotropy becomes weaker
for a lower conductivity. It indicates that the fluid is weakly
coupled with electromagnetic fields. The fluid vorticity does
not affect the dynamics of electromagnetic fields. These fea-
tures can be captured in our code.

Fig. 12 a The pressure of fluid
and b the energy density of the
electromagnetic fields at t = 1.4
are shown in the 2D resistive
rotor test in the Milne
coordinates in the case of
σ = 103

Fig. 13 a The pressure of fluid
and b the energy density of the
electromagnetic fields at t = 1.4
are shown in the 2D resistive
rotor test in the Milne
coordinates in the case of
σ = 10
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4.6 Magnetized Bjorken flow

This problem is an extension of the one-dimensional boost
invariant flow proposed by Bjorken [46] to the ideal MHD
[47]. We consider the relativistic boost invariant flow in z-
direction. In magnetized Bjorken flow, we consider that the
fluid follows the ultra-relativistic ideal gas EoS, p = e/3.
The pressure of fluid is assumed to be uniform in space.
The fluid velocity is given by vz = z/t , which is obtained
by assuming a longitudinal boost invariant expansion. The
corresponding four-velocity in the Cartesian coordinates is
given by uμ = (cosh ηs, 0, 0, sinh ηs). In the Milne coordi-
nates, the four-velocity becomes simply uμ = (1, 0, 0, 0).
The comoving derivative and the expansion rate become
D = ∂τ and � = 1/τ , respectively. The magnetic field
is given by bμ = (0, bx , by, 0). In this assumption, from the
energy conservation equation Eq. (2), one derives [47],

∂τ

(
e + b2

2

)
+ e + p + b2

τ
= 0, (70)

where b2 = bμbμ. From the energy equation Eq. (16), we
obtain,

∂τ e + e + p

τ
= 0, (71)

for the ideal MHD. The evolution equation of the magnetic
field is obtained as,

∂τb + b/τ = 0. (72)

The analytic solutions of these equations for the ultra-
relativistic ideal gas EoS, p = e/3, are given by,

e(τ ) = e0

(τ0

τ

)4/3
, (73)

b(τ ) = b0
τ0

τ
, (74)

where τ0 = 0.5 fm is initial time, e0 = 10 GeV/fm3 is
initial energy density, and b0 = 1.0 GeV1/2/fm3/2 is initial
magnetic field.

Figures 14 and 15 show the time evolution of energy den-
sity and magnetic field strength with σ = 106, respectively.
The solid curves show analytic solutions, while the dashed
curves denote the numerical results. These results are in good
agreement with the analytic solutions.

4.7 Accelerating longitudinal expansion

This test problem is presented in Ref. [34]. This is a resistive
extension of the magnetized Bjorken flow [47]. The deriva-
tion of the semi-analytic solutions is shown in Appendix A
in detail, but we here show the results. In this problem, we
do not suppose the boost invariant flow. We assume that the
fluid velocity is parallel to the longitudinal (z-) direction,
and the fluid is uniform on the transverse (x–y) plane. Let

Fig. 14 The energy density of the fluid is displayed as a function of τ

in the magnetized Bjorken flow

Fig. 15 The magnetic field strength as a function of τ is displayed in
the magnetized Bjorken flow

us parametrize the four-velocity in the Milne coordinates as
follows:

uμ =
(

cosh(Y − ηs), 0, 0,
1

τ
sinh(Y − ηs)

)

= γ̄

(
1, 0, 0,

1

τ
v̄

)
, (75)

where Y is the rapidity with γ̄ = cosh(Y − ηs) and v̄ =
tanh(Y − ηs).

The electric and magnetic four vectors are considered on
the transverse plane and orthogonal to each other,

eμ = (0, ex , 0, 0),

bμ = (0, 0, by, 0). (76)

In Ref. [34], electromagnetic fields are taken to be the fol-
lowing forms,

ex (τ, ηs) = −c(ηs)

τ
sinh(Y − ηs), (77)

by(τ, ηs) = c(ηs)

τ
cosh(Y − ηs). (78)
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Fig. 16 We display a the ratio of the energy density of the fluid to
the initial energy density and b the fluid velocity component uηs /uτ ,
respectively. The blue solid, red long dashed-dotted and black dashed
lines show the numerical results at t = 0.5, 1.0, and 3 fm, respectively.

The blue, red, and black dotted lines show the semi-analytic solutions
of the a Eqs. (A.17), (A.18), and b Eq. (81) divided by Eq. (80) at
t = 0.5, 1.0 and 3.0 fm, respectively

The solutions for the rapidity and electromagnetic fields are
given by,

Y = ηs + sinh−1
(

1

στ

∂ηs c(ηs)

c(ηs)

)
, (79)

uτ =
√

1 +
(

1

στ

∂ηs c(ηs)

c(ηs)

)2

, (80)

uηs = 1

στ 2

∂ηs c(ηs)

c(ηs)
, (81)

ex (τ, ηs) = 1

στ 2

∂c(ηs)

∂ηs
, (82)

by(τ, ηs) = c(ηs)

τ
×

√

1 +
(

1

στ

∂ηs c(ηs)

c(ηs)

)2

. (83)

Here c(ηs) is an arbitrary function. We suppose,

c(ηs) = c0 cosh(αηs), (84)

which is the same as that in Ref. [34]. Here α is an arbitrary
constant. The arbitrary constant c0 is taken to be 0.0018τ0,
which determines the initial magnetic field strength on the
laboratory frame in the Minkowski coordinates By

L(τ0, 0) =
0.0018 GeV2/e.

The energy density is determined by solving the following
equations,

∂τ e(τ, ηs) + 1 + κ

τ
A(τ, ηs)e(τ, ηs) = B(τ, ηs), (85)

∂ηs e(τ, ηs) + H(τ, ηs)e(τ, ηs) = G(τ, ηs), (86)

where,

A(τ, ηs) =
(

∂ηs Y (v̄ − κ) − (κ − 1)τ v̄∂τY

κ(v̄2 − 1)

)

(87)

B(τ, ηs) = σ(exby v̄ − κe2
x )

κγ̄ (v̄2 − 1)
,

(88)

H(τ, ηs) = 1

κ
((1+κ)(τ∂τY+v̄∂ηs Y ))−(1+κ)v̄A(τ, ηs),

(89)

G(τ, ηs) = (στ)exby
γ̄ κ

− τ v̄B(τ, ηs).

(90)

Here, we take the ideal gas EoS, p = κe and κ = 1/3.
We numerically solve these differential equations on a grid
of points on the (τ, ηs) plane. First, we give the arbitrary
function c(ηs), which is assumed to have a form given in
Eq. (84). Then the rapidity, four-velocity, and electromag-
netic fields are obtained from Eqs. (79)–(83). The function
A(τ, ηs), B(τ, ηs), H(τ, ηs), and G(τ, ηs) are determined
from Eqs. (87)–(90). We solve Eq. (85) as an ordinary dif-
ferential equation (ODE) to find out the τ -dependence of the
function e, keeping constant as the variable ηs . Then, we
solve Eq. (86) with the solution of Eq. (85) in each τ as an
initial condition of the ODE. The energy density is obtained
as numerical solutions of two ODEs with the initial value of
the e(τ0, 0) = e0.

Here, we perform the RRMHD simulation using the
numerical solution of the above ODEs as the initial con-
dition. Since the resistive effect is prominent with small α

[34], we take the initial energy density e0 = 1.0 GeV/fm3,
α = 0.1, and the electrical conductivity σ = 0.023 fm−1.
The number of grid points in the computational domain
ηs ∈ [−3.0, 3.0] is N = 200. We adopt free boundary
conditions at ηs = ±3.0. The waves are, however, some-
times reflected at the boundaries and they affect the numerical
results. To avoid this, we take the boundaries far away from
the central region ηs ∈ [−1.0, 1.0] and stop the calculation
before the reflected waves reach the central region.

Figures 16 and 17 show the results of our simulation code
in comparison with the semi-analytic solution. Our results
are in good agreement with the semi-analytic solutions. In
Fig. 16a, the energy density decays and expands to the lon-
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Fig. 17 We display a the magnetic field component by and b the elec-
tric field component measured in the comoving frame ex , respectively.
The blue solid, red long dashed-dotted and black dashed lines show the

numerical results at t = 0.5, 1.0, and 3 fm, respectively. The blue, red,
and black dotted lines show the semi-analytic solutions of the a Eq. (83)
and b Eq. (82) at t = 0.5, 1.0 and 3.0 fm, respectively

gitudinal direction by the resistive effects. In Fig. 16b, the
fluid velocity in the Milne coordinates has a finite value in
the forward and backward rapidity regions and it decays with
time. This feature comes from the resistive effect described
in Eq. (81). Our results reproduce this behavior of the fluid.
In Fig. 17a, the magnetic field component in the comoving
frame by as a function of ηs is represented. The magnetic
field decays with time by the longitudinal expansion similar
to the magnetic Bjorken flow in Sect. 4.6. However, the mag-
netic field has a non-uniform profile in the ηs direction by
the acceleration induced from the resistive effect, which is
different from the magnetic Bjorken flow. Figure 17b shows
the electric field component measured in the coming frame
ex as a function of ηs . The electric field has a positive value
in the backward rapidity region and it decreases with rapid-
ity. The electric field changes its sign at ηs = 0. This feature
describes that the electric field is produced by the two collid-
ing nuclei in high-energy heavy-ion collisions. Our results
capture these features and its diffusion which is consistent
with the semi-analytic solutions.

Figure 18 represents the electrical conductivity depen-
dence of uηs/uτ at τ = 1 fm. The blue, red, and black dot-
ted lines show the semi-analytic solutions given Eqs. (80)
and (81) in the cases of σ = 0.023, 0.033 and 0.043 fm−1,
respectively. All our numerical results are in good agreement
with the semi-analytic solutions. The magnitude of uηs/uτ

in forward and backward rapidity regions decreases with
increasing σ . This means that the case of higher conductivity
is close to the magnetized Bjorken flow explained in Sect. 4.6.
In fact, if we take the limit of infinite electrical conductivity,
Eq. (81) becomes zero, which is consistent with magnetized
Bjorken flow.

Figure 19 shows the electrical conductivity dependence of
ex at τ = 1 fm. The blue, red, and black dotted lines show
the semi-analytic solutions of the Eq. (82) in the cases of
σ = 0.023, 0.033 and 0.043 fm−1, respectively. The electri-
cal conductivity dependence of ex in our results is in good

Fig. 18 The electrical conductivity dependence of the fluid velocity
component vη at τ = 1.0 fm. The blue solid, red long dashed-dotted
and black dashed lines show the numerical results in the cases of σ =
0.023, 0.033 and 0.043 fm−1 fm, respectively. The blue, red, and black
dotted lines show the semi-analytic solutions given by Eqs. (80) and
(81) in the cases of σ = 0.023, 0.033 and 0.043 fm−1, respectively

Fig. 19 The electrical conductivity dependence of the electric field
component measured in the comoving frame ex at τ = 1.0 fm. The blue
solid, red long dashed-dotted and black dashed lines show the numerical
results in the cases of σ = 0.023, 0.033 and 0.043 fm−1, respectively.
The blue, red, and black dotted lines show the semi-analytic solutions
of the Eq. (82) in the cases of σ = 0.023, 0.033 and 0.043 fm−1,
respectively
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agreement with the semi-analytic solutions of Eq. (82). The
magnitude of the electric field in forward and backward rapid-
ity regions decreases with σ . This is consistent with the ideal
limit of RRMHD. In the relativistic ideal MHD, the elec-
tric field measured in the comoving frame of fluid vanishes.
Our numerical results capture this feature of ideal limit of
RRMHD.

5 Summary and discussion

We constructed a new RRMHD simulation code in the Milne
coordinates which is suitable for study on high-energy heavy-
ion collisions. We split the system of RRMHD equations into
two parts, a non-stiff and a stiff part. The primitive variables
are interpolated from the cell center to the cell surface by
using the second-order accurate scheme [36]. For the non-
stiff part, we evaluated the numerical flux using the HLL
approximated Riemann solver and explicitly integrated the
equations in time by the second-order of Runge–Kutta algo-
rithm [39]. For the stiff part appeared in Ampere’s law, we
executed time integration using semi-analytic solutions to
avoid unexpected small time steps. Though Maxwell equa-
tions ensure that the divergence-free constraints are satis-
fied at all times, in numerical simulation, the integration of
Maxwell equations in a not well-designed scheme does not
preserve these conditions because of the numerical error. In
order to avoid this problem, we employed the generalized
Lagrange multiplier method to guarantee these conditions
[23,26,28].

We checked the correctness of our algorithm from the
comparison between numerical calculations and analytical
solutions or the other RMHD simulations such as Brio–Wu
type shock tubes, propagation of the large amplitude cir-
cularly polarized Alfv́en waves, self-similar current sheet,
cylindrical explosion, resistive rotor, and Bjorken flow.
In these test problems, our numerical solutions were in
good agreement with analytic solutions or results of the
other RRMHD simulations. Furthermore, we investigated
the accelerating longitudinal expansion of relativistic resis-
tive magneto-hydrodynamics in high-energy heavy-ion col-
lisions in comparison with semi-analytic solutions [34]. Our
numerical code reproduced these solutions. We conclude that
our numerical simulations capture the characteristic features
of dynamics in high-energy heavy-ion collisions.

We shall employ our RRMHD code to investigate experi-
mental data at RHIC and the LHC and understand the detailed
QGP bulk property such as electrical conductivity. As the first
application, we have demonstrated calculation of the directed
flow in RRMHD expansion in Au-Au and Cu-Au collision
systems at RHIC [48]. We found that electrical conductivity
prevents the growth of the directed flow in asymmetric sys-
tems. The Ohmic conduction current may affect the charge-

dependent flow of hadrons. Recently, the charge-dependent
directed flow of the heavy mesons and dileptons has been
proposed as a signature of the electromagnetic fields [49,50].
It can extract the initial electromagnetic fields and the QGP
bulk properties from experimental results.

The highly intense electromagnetic fields induce novel
quantum phenomena such as the chiral magnetic effect
(CME) [51,52] and the chiral magnetic wave (CMW) [53].
The CME and CMW signals in experimental data have been
explored in iso-bar collisions, Zr-Zr and Ru-Ru collisions at
RHIC [54,55]. However, there are no striking evidences of
these phenomena in the iso-bar experiments. For analytical
studies, the initial condition of electromagnetic fields with
CME in high-energy heavy-ion collisions has been studied
[56,57], but the evolution of these fields has not been well
understood. The recent development of numerical simulation
for the chiral RMHD has been investigated [58]. The com-
prehensive studies using RRMHD would shed light on these
problems. This issue remains an important future work.
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Appendix A: Solution of accelerating longitudinal expan-
sion

We show details of the test problem in Sect. 4.7, which is
proposed in Ref. [34]. This is a resistive extension of the
magnetized Bjorken flow [47]. In this problem, we do not
assume the boost invariant flow. However, we suppose that
the fluid velocity keeps parallel to the longitudinal direction
while the transverse flow is neglected. All the fluid quantities
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are uniform in the transverse plane. Let us parametrize the
four-velocity in (1 + 1)D as follows:

uμ = γ (1, 0, 0, vz) = (cosh Y, 0, 0, sinh Y ), (A.1)

where Y is the rapidity and vz = tanh Y . In the Milne coor-
dinates, uμ is rewritten by,

uμ =
(

cosh(Y − ηs), 0, 0,
1

τ
sinh(Y − ηs)

)

= γ̄

(
1, 0, 0,

1

τ
v̄

)
, (A.2)

where γ̄ = cosh(Y − ηs) and v̄ = tanh(Y − ηs). Under this
parameterization, the comoving derivative and the expansion
rate are given by,

D = γ̄

(
∂τ + 1

τ
v̄∂ηs

)
, (A.3)

� = γ̄

(
v̄∂τY + 1

τ
∂ηs Y

)
. (A.4)

Then, Eq. (16) becomes,

(τ∂τ + v̄∂ηs )e + (e + p)(τ v̄∂τY + ∂ηs Y ) = γ̄ −1τeλ Jλ,

(A.5)

and Eq. (15) in the case of α = ηs gives,

(e + p)Duηs + (∇ηs + uηs D)p = Fηsλ Jλ − uηs (eλ Jλ).

(A.6)

Here, the derivative of u and p can be calculated as,

Duηs = 1

τ 2 γ̄ 2(τ∂τ + v̄∂ηs )Y, (A.7)

(∇ηs + uηs D)p = 1

τ 2 γ̄ 2(τ v̄∂τ + ∂ηs )p. (A.8)

By substituting Eqs. (A.7) and (A.8) into Eq. (A.6), we
obtain,

(e + p)(τ∂τ + v̄∂ηs )Y + (τ v̄∂τ + ∂ηs )p

= τ 2γ̄ −2[Fηsλ Jλ − uηs eλ Jλ]. (A.9)

The electric and magnetic four vectors are on the transverse
plane, and they are perpendicular to each other,

eμ = (0, ex , 0, 0),

bμ = (0, 0, by, 0). (A.10)

Then, Eqs. (A.5) and (A.9) are reduced to,

(τ∂τ + v̄∂η)e + (e + p)(τ v̄∂τY + ∂ηY ) = γ̄ −1τσe2
x ,

(A.11)

(e + p)(τ∂τ + v̄∂ηs )Y + (τ v̄∂τ + ∂ηs )p = γ̄ −1τσexby .

(A.12)

From the above assumption in Eqs. (A.2) and (A.10),
Maxwell equations are written by,

∂τ

[(
uτby + 1

τ
exuηs

)]
+ ∂ηs

[(
uηs by − 1

τ
exuτ

)]

+ 1

τ

[(
uτby + 1

τ
exuηs

)]
= 0, (A.13)

∂τ

[(
uτ ex + 1

τ
byuηs

)]
+ ∂ηs

[(
uηs ex − 1

τ
byuτ

)]

+ 1

τ

[(
uτ ex + 1

τ
byuηs

)]
= −σex . (A.14)

In Ref. [34], in order to solve these equations, we can take
the following Ansatz:

ex (τ, ηs) = −h(τ, ηs) sinh(Y − ηs), (A.15)

by(τ, ηs) = h(τ, ηs) cosh(Y − ηs). (A.16)

Under this Ansatz, Eqs. (A.13) and (A.14) give,

∂τh(τ, ηs) + h(τ, ηs)

τ
= 0, (A.17)

∂ηs h(τ, ηs) + στh(τ, ηs) sinh(ηs − Y ) = 0, (A.18)

and the solution of Eq. (A.17) is found,

h(τ, ηs) = c(ηs)

τ
, (A.19)

where c(ηs) is an arbitrary function. By substituting
Eq. (A.19) into Eq. (A.18), we obtain,

sinh(Y − ηs) = 1

στ

∂ηs c(ηs)

c(ηs)
, (A.20)

cosh(Y − ηs) =
√

1 +
(

1

στ

∂ηs c(ηs)

c(ηs)

)2

. (A.21)

Then, the fluid rapidity, four-velocity, and electromagnetic
fields can be written as,

Y = ηs + sinh−1
(

1

στ

∂ηs c(ηs)

c(ηs)

)
, (A.22)

uτ =
√

1 +
(

1

στ

∂ηs c(ηs)

c(ηs)

)2

, (A.23)

uηs = 1

στ 2

∂ηs c(ηs)

c(ηs)
, (A.24)

ex (τ, ηs) = 1

στ 2

∂c(ηs)

∂ηs
, (A.25)

by(τ, ηs) = c(ηs)

τ
×

√

1 +
(

1

στ

∂ηs c(ηs)

c(ηs)

)2

. (A.26)

Following to Ref. [34], we take the form of the arbitrary
function c(ηs) as,

c(ηs) = c0 cosh(αηs), (A.27)

with the arbitrary parameters α and c0.
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In Ref. [34], they split the conservation equation Eqs. (A.11)
and (A.12) into two ordinary differential equations (ODEs)
with a given initial condition e(τ0, 0) = e0. The combina-
tion of Eqs. (A.11) and (A.12) with ideal gas EoS p = κe
are obtained as,

∂τ e(τ, ηs) + 1 + κ

τ
A(τ, ηs)e(τ, ηs) = B(τ, ηs), (A.28)

∂ηs e(τ, ηs) + H(τ, ηs)e(τ, ηs) = G(τ, ηs), (A.29)

where κ = 1/3 and,

A(τ, ηs) =
(

∂ηs Y (v̄ − κ) − (κ − 1)τ v̄∂τY

κ(v̄2 − 1)

)
, (A.30)

B(τ, ηs) = σ(exby v̄ − κe2
x )

κγ̄ (v̄2 − 1)
, (A.31)

H(τ, ηs) = 1

κ
((1+κ)(τ∂τY+v̄∂ηs Y ))−(1+κ)v̄A(τ, ηs),

(A.32)

G(τ, ηs) = (στ)exby
γ̄ κ

− τ v̄B(τ, ηs). (A.33)

We numerically solve Eqs. (A.28) and (A.29) to obtain
the profile and evolution of energy density. First, we solve
Eq. (A.28) as an ODE to find out the τ -dependence of the
function e, keeping constant as the variable ηs . Then, we
solve Eq. (A.29) with the solution of Eq. (A.28) in each τ as
an initial condition of the ODE. As a result, we get numeri-
cally the profile of the energy density as the solution of the
ODEs.
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