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Abstract We present an analytical study of light curves
of slowly rotating radio pulsars with emphasis on the chro-
matic effects derived from the presence of a plasma environ-
ment; analyzing the effects of the compactness, the metric
model, and the electronic plasma density profile. After doing
a numerical integration of the trajectories and luminosity
curves of pulsars for different spherically symmetric metrics
representing the exterior region of the pulsar, we generalize
the approximate Beloborodov formula in order to include
plasma corrections, obtaining simple analytical expressions
for the trajectories and the observed flux and significantly
simplifying the calculation of the pulse profiles by a drastic
reduction of their computational cost. We study the errors
committed by our approximation, comparing the numerical
and analytical procedures. We also show how to use the new
formalism to model the flux coming from different emission
caps, not necessarily circular or antipodal and including the
case of ring-shaped hot spots. Finally, we extend the classifi-
cation introduced by Beloborodov to the case of two distin-
guishable, non-antipodal, finite size emission caps, showing
the respective classification maps and some of the character-
istic pulse profiles.

1 Introduction

Neutron stars represent one of the most relativistic stellar
objects accessible to observation [1,2]. Due to the extreme
conditions to which they are subjected, most of their prop-
erties remain uncertain, making the determination of their
equation of state an open problem in nuclear astrophysics
[3–5]. However, this difficulty can be overcome by observing
the neutron stars themselves and the phenomena associated
with them, such as their luminosity or their lensing power.
At the same time, neutron stars are one of the best natural
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candidates to probe physics in extreme environments and test
the theory of General Relativity in the strong field regime [6].
Indeed, the discoveries of neutron stars of around two solar
masses [7], as well as the observation of gravitational waves
resulting from mergers of binary systems [8], impose severe
constraints on the equation of state of these objects, in the
high-density regime. More recently, the mass and radius of
neutron stars have been estimated by fitting the rotating hot
spot patterns using data of Neutron Star Interior Composition
Explorer (NICER) and X-ray Multi-Mirror (XMM-Newton)
X-ray observations [9–11].

Most of the neutron stars emit highly collimated jets of
electromagnetic radiation [12] coming from highly local-
ized “hot spots” that emit significant quantities of observ-
able radiation. Neutron stars exhibiting these “emission caps”
are called pulsars, and because of its rotation, they produce
observable luminosity curves, similar to a lighthouse.

These pulsar pulse profiles encode information about the
physical properties of the emission caps, such as their size,
geometry, temperature distribution and spectra, as well as
containing information about the geometry of the spacetime
itself around the star [13–21].

The observation of these periodic electromagnetic pulses
offers another way to investigate the properties of these
extremely compact objects. Due to their strong gravitational
field, the radiation in the vicinity of neutron stars experiments
a strong deflection, generating a gravitational lensing effect,
whose magnitude is intimately related to the mass and radius
of the star, so that their observation allows in principle to infer
these parameters, or at least to constrain their values, provid-
ing information about the stellar structure that facilitates the
determination of the equation of state [22,23].

The problem of modeling pulse profiles has been exten-
sively studied in the literature. Studies have been done con-
sidering the Doppler effect, aberration; time delay [24] and
fast rotation or stellar oblongation [25–28]. In particular, In
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[13] it was studied gravitational lensing properties in slowly
rotating neutron stars described by the Schwarzschild met-
ric, consisting of one or two antipodal, uniform, circular
polar caps on the surface that emit photons to the observer
at infinity. In general, the treatment of photon propagation
in a spherically symmetric and stationary spacetime leads to
elliptic-type integrals or even more complicated expressions
that need to be solved by numerical evaluation. The imple-
mentation of numerical methods is often unavoidable when
considering a continuous surface temperature distribution,
anisotropic emission or an arbitrary shape of the emission
regions. While these models may be able to describe the
pulse profile of stars of any compactness, it requires a com-
plicated and computationally expensive numerical treatment.
In this context, Beloborodov found in [29] a simple analytical
expression for the deflection angle in a Schwarzschild metric
background, that replaces the elliptic integral, approximat-
ing with high accuracy the pulse profiles of point emission
caps, assuming that the compactness of the star is not too big.
In turn, Turolla and Nobili [30] generalized this analysis to
extended, uniform, and circular caps, giving simple analyti-
cal expressions that closely approximates the total observed
flux. The Beloborodov formula not only has been used to
study pulse profiles of NS under different situations [31–
37] but also to study polarimetric images of accretion disks
around black holes [38–40].

It is to be expected that neutron stars are immersed in a
dense, plasma-rich magnetospheres [12,41]. In the visible
spectrum, the modification in photon trajectories and pulse
profiles due to the presence of plasma are negligible, so gen-
erally gravitational lensing theory deals with the propagation
of light rays in vacuum, where the trajectories and deflection
angles are independent of the photon frequency, and thus
the effects are achromatic. However, the effects of the opti-
cal medium cannot be safely neglected in the radio frequency
range, where the refraction index of the plasma causes strong
frequency-dependent modifications of the usual gravitational
lensing behavior. In this range, photon propagation becomes
frequency dependent, giving rise to chromatic phenomena.
These effects have been studied in the context of black holes
and its shadows [42–47], in weak fields under the weak and
strong lensing regime [48–57], in studies of microlensing
[58], and on its effects on the fast radio burst [59,60] to cite
some examples. The influence of plasma in light propagation
and associated light curves produced by radio pulsars have
been numerically studied in the past by [61–64] assuming a
Schwarzschild model for the exterior of the metric and a cold
non-magnetized plasma (see also [65] where a Minkowski
metric is assumed, but the magnetic field influence is taken
into account). From the observational point of view, in [66]
the pulsar emission regions were resolved and amplified by
plasma lensing effect in an eclipse binary. Similar results
have been carried out by other pulsars [67,68].

In this work, using numerical evaluations and introduc-
ing an analytical approach that generalize the Beloborodov’s
formula, we study the gravitational lensing phenomena in
slowly rotating radio pulsars taking into account the disper-
sive effect of the pulsar’s magnetosphere on the propaga-
tion of light rays. We will make use of alternative metrics to
Schwarzschild to describe the exterior region in order to ana-
lyze the difference in their influence on the luminosity curves.
More precisely, we will focus on the Schwarzschild (Sch) and
the so called Reissner–Nordström like metrics consisting in
solutions from alternatives gravitational theories which are
functionally similar to the RN metric but with a parameter
Q unrelated to the electrical charge; for example associated
to tidal charges in brane theories [69], associated to param-
eters of the theory, as in Horndeski theories [70] or being
proportional to the gravitational mass of the star in Modified
Gravity [71]. The particular choice of these metrics is only
to demonstrate the differences that appear in the properties
of compact objects in the strong field regime and that can
potentially be observed. We will consider circular, homoge-
neous and isotropic emission caps (either thermal emission
hot spots or electromagnetic emission poles) of finite size,
in highly compact slowly rotating radio pulsars, so we will
not take into account Doppler effect, aberration, time delay,
fast rotation or stellar oblongation. As in [61–64] the neutron
star will be embedded in a pressureless and non-magnetized
plasma environment, whose electron density will be given by
a power law inversely proportional to the radial coordinate
r , resulting in a chromatic analysis of the problem.1

This paper is organized as follows. In Sect. 2 we introduce
the family of metrics that we will consider in the rest of the
work. In Sect. 3 we study numerically the photon trajectories
considering the different metric models and plasma density
and distribution, emphasizing the chromatic effects derived
from the presence of the plasma environment, whose inter-
action with the light will depend on its wavelength. In Sect.
4 we discuss the luminosity curve resulting from a single cir-
cular, homogeneous and isotropic emission cap on the stellar
surface and how this is affected by the spacetime model, the
distribution and density of the plasma, the angles between the
cap and the pulsar rotation axis and between the rotation axis
and the observer or the compactness and charge of the star.
This analysis will be extended to the case of two identical
and antipodal caps. In Sect. 5, motivated by Beloborodov’s
approximate analytical model, we modify the well known
analytical formula in order to introduce corrections that take
into account plasma environments, including now analyti-

1 A strong magnetic field in a plasma environment can affect the prop-
agation of light rays by behaving as a birefringent dispersive medium,
affect their polarization through Faraday rotation, or interfere through
phenomena such as pair creation. However, in this work we will not
consider this type of effects, which should be taken into account in a
more detailed model.
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cal expressions to describe uniform and circular extended
caps immersed in a plasma environment. Then we apply the
new formalism to the different metric models used above,
obtaining for each of them simple analytical expressions for
the photon trajectories (5.1) and the observed flux (5.2) that
considerably simplify the calculation of the pulse profiles,
drastically reducing their computational cost. We will com-
pare the numerical results with the analytical approximations,
studying the relative errors committed by the approach and
its dependence on different magnitudes of interest accord-
ing to the characteristics of the problem. Once the validity
ranges of our model have been established, in Sect. 6 we
will show how to use the resulting approximations to easily
model more realistic, non-antipodal, homogeneous or circu-
lar emission caps. In particular, we will focus on the case of
ring-shaped caps. Under this new formalism it will be pos-
sible to examine in detail the effects of the shape and size
of individual hot spots, without any great loss of accuracy or
generality, thus facilitating the study and understanding of
these objects. In Sect. 7 we expand the classification system
introduced by Beloborodov for the case of two non-antipodal,
distinguishable caps, which can be also applied even in the
case that the influence of plasma on the propagation of light
rays can be neglected. Finally, in Appendix (A) (see supple-
mentary material) we include some plots obtained for differ-
ent plasma distributions in order to show how sensible are
the photon trajectories and pulse profiles to the behavior of
the electron density profiles, expanding the results of Sects.
3–5.

2 Metric

Let us use normalized fundamental units, c = 1, G = 1 and
h̄ = 1, being c the speed of light in vacuum, G the universal
gravitational constant and h̄ Planck’s constant, and the metric
signature (−,+,+,+). For the exterior region of the star, we
employ simple metric models, consisting of asymptotically
flat and static spacetimes with spherical symmetry. These
assumptions allow us to express the metric as follows2

ds2 = −A(r)dt2 + B(r)dr2 + C(r)d�2, (2.1)

where the functions A(r), B(r) and C(r) depend only on
the radial coordinate r , satisfying also the asymptotically flat
conditions, i.e.,

lim
r→∞ A(r) = 1,

2 Even when it is always possible to choose a suitable coordinate system
for which the spacetime is characterized by only two metric functions
A and B, in what follows we will prefer the form (2.1) because it
allows to write general expressions that remain valid for a vast family
of coordinate systems.

Table 1 Family of metrics around compact objects with a gravitating
mass M and a charge q∗, in static, spherically symmetric and asymp-
totically flat spacetimes

Metric A(r) B(r) C(r) Restriction

Sch 1 − 2M
r

1
A(r) r2

RN-like 1 − 2M
r + q∗

r2
1

A(r) r2 q∗ ≤ M2

lim
r→∞ B(r) = 1,

lim
r→∞

C(r)

r2 = 1. (2.2)

The simplest metric in GR describing a static, spherically
symmetric and asymptotically flat spacetime with a gravi-
tating M mass is the Schwarzschild (Sch) metric. This solu-
tion is a useful approximation for describing slowly rotating
astronomical objects.

A generalization of the Schwarzschild metric, that
describes a spherically symmetric metric of a massive body
with non-zero net electrical charge Q is the Reissner–
Nordström (RN) metric, which is a solution of the Einstein–
Maxwell equations [72,73].

As mentioned in the introduction there exist solutions of
alternative gravity’s theories which are functionally similar
to the RN but with a charge parameter q∗ unrelated to the
electrical charge (see Table 1). In particular, in Brane world
(BW) theories, a negative q∗ is theoretically preferred [74].
Studies of NS in braneworld theory can be found in [75]
(where it is shown that a uniform density star can be matched
to a RN-like solution for the exterior of the star, see also
the discussion in [76]) and observational constraints on the
value of q∗ in NS are presented. For a study of the plasma
magnetosphere around NS in BW theories we refer to [77].

Given the similarities between the models for alternative
theories when q∗ �= 0, when q∗ < 0 we will refer to them
as RN-like metrics, associating the parameter Q2 = −q∗,
while when q∗ > 0 we will refer to them as RN metrics,
associating the parameter Q2 = q∗, so that both models turn
out structurally identical and can be described by a single
parameter q∗.

Even though in the metrics used in this workC(r) = r2, in
the following, we prefer to keep the coefficient C(r) in order
to obtain general expressions that hold valid for alternative
metrics to those used here.

3 Ray tracing

The stellar surface will be placed at the radial coordinate
r = R, the region r < R will be totally opaque since it
corresponds to the stellar interior. The light emission will
originate from this surface, with an intensity I dependent on
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Fig. 1 A photon’s trajectory, with impact parameter b, from the stellar
surface at R to the observer at rO . The deflection angle β is calculated
as θ − δ

the angle δ between the normal direction to the stellar surface
and the photon emission direction (see Fig. 1). The observer
will be considered static at r = rO with rO → ∞. We will
employ Greek indices to denote spacetime coordinates, while
we will reserve Latin indices for spatial coordinates only.

In this section we will follow the work presented in
[61], recovering his results for the Schwarzschild metric and
extending its application to the different spacetimes men-
tioned in Table 1. Consider a spacetime of the form given
by Eq. (2.1) where the metric functions A, B and C depend
parametrically on the mass M and charge q∗ of the pulsar.
In the geometrical optic limit, photon trajectories within a
plasma medium are described by the Hamiltonian [78],

H(xα, pα) = 1

2
[gαβ pα pβ − (n2 − 1)(pαV

α)2], (3.1)

being

n2 = 1 + pα pα

(pβV β)2 (3.2)

the refractive index of a general dispersive medium not nec-
essarily coming from a plasma, while pα is the linear photon
4-momentum, and V α the plasma 4-velocity. The light rays
are obtained as solutions to the equations of motion

dxα

dλ
= ∂H

∂pα

,

dpα

dλ
= − ∂H

∂xα
,

H(xα, pα) = 0.

(3.3)

We will assume a spherically symmetric plasma distri-
bution around the pulsar. When light passes through it, the
plasma will act as a dispersive medium, with a refractive
index n = n(xα, ω) which will depend on the frequency
ω = −pαV α of the photon. Assuming that the plasma is a
static medium such that V t = √−gtt and V i = 0, it follows
that

pt
√−gtt = −pt

√−gtt = −ω(xi ), (3.4)

so that the Hamiltonian does not depend on t or φ, so pt
and pφ are conserved. We set the timelike component of
the momentum as the asymptotic frequency of the photon as
measured by an asymptotic observer at rest

pt = −ω∞. (3.5)

From Eqs. (3.4) and (3.5) we can find the relation for the
effective redshift,

ω(r) = ω∞
A(r)1/2 , (3.6)

where ω(r) is the frequency of light measured by a static
observer at the radial coordinate r .

In the rest of this work, we will assume a non-magnetized
pressureless plasma with the index of refraction taking the
form

n2 = 1 − ω2
e (r)

ω2(r)
, (3.7)

where

ω2
e = e2

ε0me
N (r), (3.8)

being ωe(r) the plasma frequency [79], e and me the electron
charge and mass respectively, ε0 the vacuum permittivity and
N (r) the number electron density of the plasma.3 Together
with Eqs. (3.1) and (3.7), the above expression allows us to
obtain the dispersion relation for photons,

H(xα, pα) = 1

2
[gαβ pα pβ + ω2

e ]. (3.9)

Given the spherical symmetry of the problem, we can
always choose a referential such that pφ = 0, correspond-
ing to planar meridian trajectories (φ=constant).4 For these
trajectories, it follows that pθ is also a constant of motion.

To construct the ray tracing, i.e., the spatial trajectory of
photons, we can get rid of the parameter λ of Eq. (3.3) as
follows,

dθ

dr
= dθ

dλ

[
dr

dλ

]−1

= pθ

pr

B(r)

C(r)
. (3.10)

At the same time, from Eqs. (3.9) and (3.3) it can be
deduced that

pr = ±
√

B

A
p2
t − B

C
p2
θ − Bω2

e (3.11)

3 In Sect. 4.2 we will consider a modification of this expression, which
takes into account the relativistic motion of electron-positron pairs
around the magnetic fields lines, producing an effective plasma fre-
quency several order of magnitude less than the frequency given by
(3.8).
4 The reason to orientate the reference frame in this way instead of the
standard orientation where equatorial orbits are analyzed, is because
of, as observed by [30], it allows explicit analytical integrations in the
Beloborodov approximation as discussed in Sect. 5.
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Here the positive solution corresponds to the case where both
r and θ are increasing, while the negative solution otherwise.
We now introduce the impact parameter b and the asymptotic
group velocity n0 to express the constant pθ , which can be
written as

pθ = ω∞n0b. (3.12)

The group velocity usually tends asymptotically to 1, except
in cases where one has a constant, or non-zero, plasma dis-
tribution around the observer, in which case we have

n2
0 = 1 − ω2

e (rO)

ω2(rO)
, (3.13)

with rO is the radial coordinate of the observer.
Thus, the trajectory equation becomes [50]

dθ

dr
= 1

C

[
1

AB

(
n2

n2
0

1

b2 − A

C

)]−1/2

. (3.14)

This equation allows us to describe the photon trajectory
in a meridian plane in the general case of strong deflection,
which is appropriate for orbits near the surface of the star. The
refractive index of the plasma in this expression introduces
the frequency dependence of the orbits. In order to facilitate
the numerical integration, we introduce the variable u = 1/r ,
for which it turns out that

dθ

du
= 1

u2C

[
1

AB

(
n2

n2
0

1

b2 − A

C

)]−1/2

, (3.15)

where both the metric elements and the refractive index n,
must be written in terms of u. We now would like to make use
of Eq. (3.15) to study the outgoing ray tracing of a neutron
star with a cold, nonmagnetic plasma atmosphere modeled
by (3.7), where the photons move with φ = const .

For this, we will place the observer on the θ = 0 axis
of the coordinate system, at a large distance from the star,
at r = rO → ∞, such that the line of sight connecting the
center of the star with the observer corresponds to the impact
parameter b = 0. We are interested in describing rays that
leave the surface of the star at uR = 1/R, θR = θ(R) and
reach the observer at uO = 0, θO = 0. The angle θ(R) of the
photon at the instant it leaves the pulsar can be calculated as

θ(R) =
∫ uR

0

1

u2C

[
1

AB

(
n2

n2
0

1

b2 − A

C

)]−1/2

du. (3.16)

Now, if the neutron star is sufficiently compact, it is pos-
sible that the value of θ given by Eq. (3.16) may be larger
than π , so this angle will not be exactly the photon’s colati-
tude coordinate at the moment of leaving the stellar surface,
but rather the angle from the observer’s position vector to
the photon’s position vector measured counterclockwise, as
shown in Fig. 1. From now on, when we refer to the θ angle

of the photon we will mean the angle we have just defined,
while we will use the symbol 
 to talk about its colatitude.

At this point it only remains for us to find an expression for
the impact parameter of the rays whose trajectory connects
the surface of the star with the observer. For this, we define
δ as the angle between the radial and angular components of
the photon momentum. At the surface of the star r = R, δ

is the angle at which the ray is emitted with respect to the
normal.

Under these assumptions, it is possible to express the
impact parameter b in terms of δ as follows

b = n(R)

n0

√
C(R)

A(R)
sin(δ), (3.17)

where we see that the maximum impact parameter bmax

occurs for δ = π/2. Thus, photons coming from the stellar
surface will arrive at the observer with an impact parame-
ter less than or equal to bmax . The presence of the refractive
index in Eq.(3.17) predicts that the apparent size of the pulsar
for a distant observer vanishes when n(R) → 0.

From these expressions we can obtain the maximum angle
θmax (bmax )of the stellar surface that is visible to the observer.
Thus, the observer has access to all points on the surface
with 
 ≤ θmax (bmax ), corresponding to b ≤ bmax , while the
points with 
 ≥ θmax (bmax ) will form an invisible region. As
in the case of light propagation without plasma, the resulting
fraction δ f of the visible stellar surface is given by δ f =
(1 − cos[θmax (bmax )])/2 (cf. [17], Eq. 26).

The expressions shown up to this point are valid for a
generic plasma distribution, with a refractive index n =
n(xα, ω) that depends on both photon frequency and posi-
tion. For the case where ωe 	 ω, n → 1, thus recovering the
case of pure gravity. The propagation of a photon through this
medium requires that ωe(r) < ω(r) at every point along the
trajectory. The necessary condition for the rays to propagate
from the star’s surface to infinity then results

ωe(r)
√
A(r) < ω∞ (3.18)

for all r ≥ R.
Numerical ray tracing requires a specific plasma distri-

bution. Following [61], we choose some number density
profiles that contain as particular case the Goldreich-Julian
density [41]. Normally, the pulsar magnetosphere contains
plasma with densities that are sustained by Goldreich-Julian
currents, transferring charge carriers from the neutron star
surface to the magnetosphere. Therefore, these currents pro-
vide a lower limit for the concentration of charge in a stan-
dard magnetosphere. Using the plasma frequency presented
in Eq. (3.8), let us consider a radial power law

N (r) = N0

rh
, (3.19)
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with h ≥ 0. In order to simplify the numerical integration and
to get rid of the largest number of trivial constants, we now
introduce the parameter ε, defined as the ratio between the
plasma frequency and the photon frequency over the stellar
surface,

ε = ωe(R)

ω(R)
, (3.20)

so that the index of refraction can be simply rewritten as

n2(r) = 1 − A(r)

A(R)

(
R

r

)h

ε2, (3.21)

while the propagation condition is now expressed as

ε2 <
A(R)

A(r)

( r

R

)h
(3.22)

for all r ≥ R. For the metric models and plasma distributions
that we will use in this paper, the above condition can be
reduced to

ε2 < 1 (3.23)

in the cases where the plasma density decays to zero faster
than A(r) grows as r goes from R to ∞, or to

ε2 < A(R) (3.24)

when we consider a constant plasma density that does not
vanish around the observer.

Coming back to Eq. (3.17), if we assume a vanishing
electronic density at the neighborhood of the asymptotic
observer, it follows that independently of the plasma profile
model under consideration, the maximum impact parameter
bmax is expressed in terms of ε as

bmax = (1 − ε2)
1/2

√
C(R)

A(R)
. (3.25)

Hence, varying the observation frequency (and therefore the
value of ε for a given system), we obtain information of the
value of the metric quotient A(R)/C(R) at the surface of
the star. Of course, bmax is not a direct observable, how-
ever, due to the relation between bmax and θmax we can infer
that observation of pulse profiles of a given NS at differ-
ent radiofrequencies codifies information on the geometric
properties of the spacetime at the neighborhood of the star.

3.1 Summary

We already have all the necessary tools to perform ray tracing
from a highly compact and relativistic object immersed in a
pressureless non-magnetized plasma medium to an observer
located at infinity. Below, for the reader’s convenience, we
list the steps to be followed to carry out the ray tracing.

1. Select a metric. Some examples are shown in the Table
1.

2. Set the parameters star radius R (R > 2M), charge q∗
(Table 1), frequency ratio ε (0 ≤ ε < 1) and plasma
distribution h (h ≥0).

3. Calculate the asymptotic group velocity n0 (at infinity)
from Eq. (3.13) and check that ε satisfies the pertinent
propagation condition.

4. Obtain the maximum impact parameter bmax from
Eq. (3.17) and choose an impact parameter b in the range
0 < b < bmax .

5. Calculate the angle θ(b) from which the ray will leave
the stellar surface according to Eq. (3.16).

6. Starting from the initial position (uR, θR) = (1/R,

θ(R, b)), numerically integrate the ray path from Eq.
(3.15).

3.2 Results

The ray orbits obtained for the Schwarzschild, RN and RN
like metrics are shown in Figs. 2 and 3 below. A highly rel-
ativistic star with radius R/rS = 1.60, with rS = 2M the
Schwarzschild radius, was considered. The traced rays count
with positive impact parameters in the range from 0 to bmax ,
whose values correspond to integer multiples of bmax/5. The
absolute value of the charge in each figure is |q∗| = 0.25M2.

We chose this value since it allows us to distinguish the
different trajectories obtained for each metric model. In turn,
each figure corresponds to a particular plasma distribution,
and compares the results obtained for different ε ratios of
frequencies.

For this, we wrote a code in Fortran 90 that uses the
Runge–Kutta 4th order method to solve the differential Eq.
(3.15) and a Gaussian quadrature rule to integrate Eq. (3.16).

We will start considering the plasma profile suggested in
[61], where h = 3 was used as it considers the Goldreich-
Julian density and its dependence on the polar magnetic field
strength. Thus, the index of refraction is expressed in the
whole space as

n2
3(r) = 1 − A(r)

A(R)

(
R

r

)3

ε2. (3.26)

The results obtained for this distribution of plasma are shown
in Fig. 2.

Moreover, we shall consider a homogeneous plasma dis-
tribution with constant density, so that the refractive index is
expressed as

n2
0(r) = 1 − A(r)

A(R)
ε2. (3.27)

As it is well known, there is a correspondence between the
dynamics of light rays of frequency ω in a homogeneous,
non-magnetized, pressureless plasma, with frequency ωe,
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Fig. 2 Ray tracing. R = 3.2M , |q∗| = 0.25M2, h = 3. The dotted line
corresponds to Schwarzschild without plasma, green to Schwarzschild,
blue to q∗ > 0 and red to q∗ < 0. As the ratio ε = ωe(R)/ω(R)

increases, both the apparent size of the star bmax and the maximum
angle of visibility θmax decrease. We see that bmax and θmax increases
for q∗ < 0 and decreases for q∗ > 0, with Schwarzschild metric in
between

and the timelike geodesic motion of test massive particles of
mass μ and energy E∞ measured by an asymptotic observer
in the same gravitational field [80]. In particular, given the
transformation ωe → μ and ω∞ → E∞ it is possible to use
the same Hamiltonian to describe both phenomena. Thus, a
constant plasma density is a model of great interest, where
photons behave as if they have an effective inertial mass.
In fact, it has been suggested in the literature [81,82] that
neutrinos from magnetosphere caps in the PeV regime could
be detected by various neutrino detectors such as the Ice-
Cube. Their dynamics can then be equivalently studied from
the study of photons in a homogeneous plasma. The plots
obtained for this distribution are shown in Fig. 3. In addi-
tion, in order to see how sensible are the photon orbits to the
behavior of the electron density profiles, two others plasma
densities are shown in the Appendix A, one of them of the
form of Eq. (3.19), with h = 2 and another one with an expo-
nential decay profile given by n2

e(r) = 1 − A(r)
A(R)

eR−rε2.

Fig. 3 Same as in Fig. 2 but for h = 0. As the ratio ε = ωe(R)/ω(R)

increases, both the apparent size of the star bmax and the maximum
visibility angle θmax diverge. Note there is not plot at ε = 0.9, because
it does not satisfy the propagation condition (3.24). In addition, for
q∗ < 0, as the value of ε increases so does the radius of the photon
sphere, eventually exceeding the stellar radius, so that trajectories with
b ≤ bmax do not reach the observer. That is why we do not show the
q∗ < 0 example in the bottom panel

In general, as in [61], we observe that plasma concentra-
tions produce a divergent lensing effect that competes with
the convergent effect of gravitational lensing. Thus, while the
gravitational potential tries to deflect the light rays towards
the star, increasing the values of θmax and bmax , the diffrac-
tion produced by the plasma deflects the rays in the opposite
direction, moving them away from the star and reducing the
aforementioned values. This produces the photon trajectories
to have a S shape, where the convergent effect of the gravi-
tational lens dominates in the vicinity of the surface, being
overcome by the divergence of the plasma lens as we move
away from it. These effects become more pronounced as the
plasma density increases (or alternatively the observation fre-
quency decreases), i.e., for ε → 1 the trajectories converge
more and more at y = 0 axis in Fig. 2, that is, θmax → 0 and
bmax → 0, so that the star is no longer visible.

From these plots, and those shown in Appendix A we
can see that the divergent lensing effects produced by the
plasma distribution are magnified as the plasma concentra-
tion decay rate increases (i.e. higher h or exponential decay).
Thus, the plasma profile with a decay given by a power law
exhibits marked divergent lensing properties, while a homo-
geneous plasma distribution does not produce any divergent
effect. This is in accordance with the basic notions of optics
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in refractive media, which indicate that the greater the vari-
ation of the refractive index at an interface, the greater its
deflection power.

A curious result happens when considering a homoge-
neous plasma distribution. As we already said, the divergent
lensing effect of the plasma is completely cancelled out in
this profile. In Fig. 3 it is clear that both the impact parame-
ter and the visible surface of the star increase at larger val-
ues of ε. If we analyze Eqs. (3.13) and (3.17), we see that
this is because, given a constant plasma density, n0 → 0 as
ε → √

A(R) < 1, and the impact parameter b diverges as
1/n0. However, as we will shown in Eq. (4.10), the observed
light intensity goes to zero as n2

0. We add that, the quotient
ε = 0.90 does not satisfy the propagation conditions for this
profile, so it was not plotted.

We note that for h > 0 increasing the charge q∗ of the
star tends to decrease both the observable surface area by
reducing the value of θmax , and the apparent size of the star
by reducing the value of bmax . The opposite effect results
for decreasing q∗. For the particular case of the RN metric
(q∗ > 0) similar conclusions were observed by [15,18].

4 Pulse profile

Consider a radio pulsar with bright polar regions of emis-
sion on its surface that will produce periodic pulses in the
luminosity curve. The observed flux F will be given by the
integral of the intensity times the solid angle measured by
the observer on his celestial sphere. In the case that the same
emission region produces multiple images, all of them must
be considered when integrating the flux. While this approach
is slightly idealized, it allows a first approximation to describe
qualitatively the effects associated with the various param-
eters of the star, its emission caps, the plasma environment
and the spacetime itself.

The geometry of this model is detailed in [13] for the
gravity pure situation. Again, in this section we will follow
the work [61], reproducing its results for the Schwarzschild
metric and expanding the procedure to other spacetimes.

The surface of the star, at r = R, is described by the angu-
lar spherical coordinates 
 and φ that we used above. In gen-
eral, we will use θ instead of 
. We will place the observer
on the positive semi-axis z (
 = 0), at r = rO → ∞,
defining its coordinate system with respect to a plane per-
pendicular to the line of sight (the “detector”). The detector
surface registers the flux received from the object (the image)
over the angles of its celestial sphere θ ′ and φ′. Since the star
is spherically symmetric, the trajectories will remain in the
same meridian plane, so we can assume φ = φ′.

Fig. 4 Angular configuration between the observer L̂ , the rotation axis
of the star R̂ and the center of the emitting cap Ĉ , of angular half-aperture
θc

Hence, we can express the solid angle element in the
observer’s coordinate system as follows

d�′ = sin θ ′dθ ′dφ, (4.1)

where the angle θ ′ is assumed to be sufficiently small, so

d�′ = θ ′dθ ′dφ. (4.2)

This allows us to express the latitudinal angle θ ′ in terms of
the impact parameter b, where b ≈ rOθ ′, resulting in

d�′ = 1

r2
O

bdbdφ, (4.3)

where b is given by Eq. (3.17) and varies between 0 and
bmax for trajectories starting from the stellar surface. Thus,
employing the approximation b ≈ rOθ ′ and Eq. (3.16) we
can map each observed image point in (θ ′(b), φ′) to its loca-
tion on the surface of the star in (θ(b), φ), recalling that
φ = φ′. That is, we can map the observer’s two-dimensional
solid angle element onto the corresponding surface area ele-
ment on the star. To find the pulse profile in question, we
must find the flux of the emission region on the stellar sur-
face and calculate the projection of this area on the observer’s
sky (Fig. 4).

Let us consider for now a single polar emission cap, also
called hot spot, of circular shape and angular half-aperture
θc, whose position with respect to the center of the star is
indicated by the versor Ĉ , being centered at θ = θ0. We
further define the versor along the line of sight L̂ in the
outgoing direction from the pulsar to the observer, result-
ing in θ0 = cos−1 Ĉ · L̂ the angle between both versors. In
general, θ0 will be a time-dependent quantity since the star
rotates about an R̂ axis that need not coincide with the line
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of sight L̂ . The angle between the rotation axis R̂ and the
line of sight is defined as ξ = cos−1 R̂ · L̂ , while the angle
between the rotation axis and the center of the cap is given by
χ = cos−1 R̂ · Ĉ . Both ξ and χ are constants. These angles
are represented in Fig. 4.

To find the angular position of the cap θ0 as a function of
time t , we must express the phase of the pulsar γp(t) = �t ,
where � = 2π/P is the angular velocity, with P being the
rotation period of the star. Thus, the latitudinal orientation of
the cap can be expressed as

θ0(t) = cos−1 [
cos ξ cos χ − sin ξ sin χ cos γp(t)

]
, (4.4)

where it can be seen that γp(t) = 2nπ corresponds to the
maximum value of θ0(t). For a single cap, is conventionally
taken 0 ≤ ξ ≤ π/2, 0 ≤ χ ≤ π and 0 ≤ θ0 ≤ π .

In a spherical coordinate system fixed to the cap, whose
pole is given by the versor Ĉ , an arbitrary point on the edge
of the cap is expressed as (θc,�), while the same point is
expressed as (θ, φb) in the object coordinates, marking φb the
boundary of the cap in the parallel θ . Using the transforma-
tion between the Cartesian components of the two systems,
we arrive at the expression

φb(θ) = cos−1
(

cos θc − cos θ0 cos θ

sin θ0 sin θ

)
, (4.5)

where 2φb(θ) should be understood as the angular length of
the circle segment in the observer’s sky with the same impact
parameter b(θ), corresponding to the one-dimensional inter-
section between the θ parallel and the emitting cap on the
surface of the star. In this way, we can determine the bound-
aries of the cap at the observer’s coordinates along the θ

parallel for a given θ0 orientation and θc half-aperture. Over
such parallel, the cap extends in the range [−φb, φb], so we
will define the function h(θ, θc, θ0) = 2φb as the range of
values of φ that belong to the one-dimensional intersection
between the θ parallel and the emitting cap,

h(θ, θc, θ0) =

⎧
⎪⎨

⎪⎩

2π, � ≤ −1

2 arccos(�), −1 < � < +1

0, + 1 ≤ �

(4.6)

where � is the argument of the function cos−1 in Eq. (4.5)
(Fig. 5).

Actually, the definition of φb is more complicated than the
one described above, since it is not well defined for any θ0

orientation. This point is discussed in more detail in [13,18].
However, for the purpose of this paper, it is sufficient for us
with Eq. (4.6), which will allow us to simplify the solid angle
element.

Following to [61], we introduce the normalized impact
parameter x = b/M (M = 1). The solid angle segment
results

Fig. 5 The figure on the left shows the dependence of the observed
position of the cap θ0 on the phase of the pulsar �t . In the figure on the
right we see a graphical representation of the φ integral, φb, at a given
θ

d�′ = 1

r2
O

h(θ(x), θc, θ0)xdx, (4.7)

so that, to determine the observable flux of an emission cap,
only a one-dimensional integral over the impact parameter x
is required. In order to contemplate the occurrence of multiple
images, we must allow θ to take all values in the interval
[0, θmax ]. For convenience, we rewrite Eq. (3.16) in terms of
x as

θ =
∫ uR

0

1

u2C

[
1

AB

(
n2

n2
0

1

x2 − A

C

)]−1/2

du. (4.8)

The emitted intensity Iem of a bright spot on the stellar
surface at r = R in a dispersive medium is related to the
observed intensity Iobs of that spot by a detector at r = rO
by [83]

Iobs
ω(rO)3n(rO)2 = Iem

ω(R)3n(R)2 = constant. (4.9)

The observed intensity is then

Iobs =
(

A(R)

A(rO)

)3/2 (
n(rO)

n(R)

)2

Iem . (4.10)

We will now consider the possibility that the emitted inten-
sity of the polar cap depends on the emission angle δ with
respect to the stellar surface normal. Let us take for conve-
nience

Iem = r2
O
A(rO)3/2

C(R)

(
n(R)

n(rO)

)2

I0 fB(δ), (4.11)

where I0 is a parametric constant and fB describes the emis-
sion anisotropy. The factor r2

O has been included so that it
can be cancelled out when joining this expression with Eq.
(4.7), and has been divided by C(R) to normalize the flux by
the emission area of the star. In this way, the expression for
the observed flux can be rewritten as

Iobs = r2
O
A(R)3/2

C(R)
I0 fB(δ). (4.12)
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On the other hand, the emission angle at the surface is a
function of x since, as can be deduced from Eq. (3.17), it
turns out to be

δ = arcsin

(
x

xmax

)
, (4.13)

so that we can express the observed flux differential dF in
the detector’s solid angle differential d�′ as

dF = Iobsd�′ = A(R)3/2

C(R)
I0 fB[δ(x)]h[θ(x), θc, θ0]xdx .

(4.14)

To obtain the total observed flux F , it only remains to
integrate the previous expression in x , obtaining

F = A(R)3/2

C(R)
I0

∫ xmax

0
fB[δ(x)]h[θ(x), θc, θ0]xdx . (4.15)

This result, derived in [61] for the particular case of a
Schwarzschild metric, is similar to that obtained in [13].
However, the values of θ and xmax now depend on the fre-
quencies ω and ωe, thus introducing the effects produced by
the presence of plasma and its distribution.

The existence of a second antipodal cap identical to the
first simply requires the addition of a second component with
θ0,2 = π − θ0,1,

FT = F(θ0) + F(π − θ0) = F(θ0,1) + F(θ0,2), (4.16)

where FT is the total observed flux, and F is the flux produced
by each of the caps, given by Eq. (4.15).

4.1 Summary

For the reader’s convenience, we list below the steps to be
followed to obtain the pulse profile of a neutron star with
circular and uniform, single or antipodal emission caps.

1. Choose the metric elements A(r), B(r) and C(r).
2. Set R, q∗, ε and h, taking into account their respective

limitations.
3. Select the angles between the axis of rotation and the line

of sight ξ (0 ≤ ξ ≤ π/2), between the rotation axis and
the center of the cap χ (0 ≤ χ ≤ π ) and half-opening of
the cap θc (0 ≤ θc ≤ π ).

4. Choose a surface emission function fB[δ(x)].
5. Calculate the maximum impact parameter xmax [Eq.

(3.17)].
6. Discretize the values to be used for the phaseγp ∈ [0, 2π ]

and the impact parameter x ∈ [0, xmax ] and evaluate on
them θ0(t) by Eq. (4.4), θ(x) by Eq. (4.8) and h(θ, θc, θ0)

by Eq. (4.6).
7. For eachγp , integrate the observed flux F using Eq. (4.15).

8. Repeat the procedure sweeping values of γp between 0
and π (the single-cap profile is symmetric with respect
to π ) to obtain the single-cap pulse profile.

9. In the case of presence of a second cap identical and
antipodal to the first one, add the flux of the latter accord-
ing to Eq. (4.16) by sweeping the values of γp between
0 and π/2 (the profile of the antipodal caps is symmetric
with respect to π/2). In this case, we take χ1 such that
0 ≤ χ ≤ π/2.

4.2 Results

We implemented in Fortran 90 a program that uses Simpson’s
rule to solve the integral in Eq. (4.15).

To obtain the luminosity curves we must plot the observed
flux F as a function of the star period γp, recalling the time
dependence of θ0. This procedure was performed for a vari-
ety of frequency ratios ε = ωe(R)/ω(R), charges q∗ and
radius ratios R/rS , with rS = 2M being the radius of the
event horizon for the Schwarzschild metric. The most com-
pact radius ratio used is such that it presents multiple images
of the surface, which is now completely visible. The plasma
density distributions used are the same as in the previous sec-
tion, resulting in the refractive indices given by Eqs. (3.26)
and (3.27). We consider polar caps with angular half-opening
θc = 5o, single or antipodal, assuming isotropic emission
( fB(δ) = 1). The specific value of I0 only affects the scale
of the pulse profile leaving its morphology unchanged, so
I0 = 1 was taken.

First, a single cap was considered in an orthogonal con-
figuration (χ = ξ = π/2). The results are shown in Figs. 6
and 7.

Highly relativistic stars with radii R/2M = 1.675 and 2
were considered. The values |q∗| = (0.25M)2 and (0.75M)2

were taken. In turn, each figure corresponds to a particular
plasma distribution, and compares the results obtained for
different frequency ratios, with values ε = 0.00, 0.30, 0.60,
0.90 and 0.99.

The first thing to note is that, for extremely compact
stars and under certain conditions, the observed flux is much
higher when the emitting cap is located at the back of the star
(�t = π ) than when it is located at the front (�t = 0). This
highly counterintuitive phenomenon is due to the fact that,
because the star is so compact, a spot at its back produces
multiple images. Thus, when the cap is in this position, its
image forms a ring, not too thick but with a large angular
aperture, which occupies a bigger part of the observer’s sky.
As the cap enters into the multiple imaging zone (i.e., for
sufficiently large θ0), the luminosity is boosted resulting in
the observed pulse profiles. In general, this effect increases
with the compactness of the star, canceling out for stars of
larger radius whose surface is no longer fully visible, so they
do not form multiple images. We also see that the greater the
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Fig. 6 Pulse profile for single caps. h = 3, ξ = χ = π/2. The purple,
blue, green, red, and brown lines correspond to ε = 0.00, 0.30, 0.60,
0.90 and 0.99 respectively. Solid lines correspond to q∗ > 0 while
dashed lines correspond to q∗ < 0. In the left column we see the
characteristic peak due to the cap in opposition generating multiple
images. If the star is not compact enough, the flux goes to zero when
the cap leaves the zone of visibility. In the top row, for small values of
q∗ the curves obtained for q∗ > 0 and q∗ < 0 are almost identical. In
the bottom row, we see that for q∗ < 0 the initial flux is smaller than
for q∗ > 0 but decays more slowly

Fig. 7 Same configuration as in Fig. 6 but for h = 0. We see that, for a
constant plasma density, low frequencies do not satisfy the propagation
conditions in the vicinity of the star

radius of the star, the greater its relative luminosity at �t = 0.
This is because, being less compact, the trajectories of the
light rays are less disturbed by the gravitational field, so they
are not so strongly deflected and more of them manage to
reach the observer. At the same time, increasing the radius
decreases the portion of the period during which the cap is
visible.

Fig. 8 Pulse profile for antipodal caps. h = 3, ξ = χ = π/2. Purple,
blue, green, red and brown lines correspond to ε = 0.00, 0.30, 0.60, 0.90
and 0.99 respectively. Solid lines correspond to q∗ > 0 while dashed
lines correspond to q∗ < 0. In the left column we see the characteristic
peak due to the cap in opposition generating multiple images. When no
cap produces multiple images or is out of the zone of visibility, the flux
remains almost constant. In the top row, we see that for small values of
|q∗| the curves obtained for q∗ > 0 and q∗ < 0 are almost identical. In
the bottom row, we see that the light curves associated to q∗ < 0 differ
from those in q∗ > 0, as observed in Fig. 6

As already discussed in [15] for the RN case, we see that,
as increasing q∗, the fraction of the period during which the
cap is visible or, alternatively, the magnitude of the peak
when multiple images occur decrease, while it increases as
decreasing q∗. This agrees with the results obtained in the
previous section, where we saw that increasing q∗ decreases
the observable surface of the star (period in which it is observ-
able) and vice versa. At the same time, we see that the greater
the value of ε the smaller the observed flux and the faster it
decays to zero. Again, this is in agreement with what was
observed in the previous section, where increasing the plasma
density (or decreasing the observation frequency) reduced
both the apparent size of the star and its observable surface.
On the other hand, we note that the flux at �t = 0 is higher
for q∗ > 0, while as �t increases, decreases more rapidly
than for q∗ < 0, which presents a higher peak at �t = π but
decaying to zero later. These differences are accentuated by
increasing |q∗|.

Contrary to what happens when considering plasma den-
sities that decay asymptotically, for constant distribution, we
see from Fig. 7 that higher ε result in higher flux. However,
this is a mathematical artefact due to the normalization cho-
sen for the emitted flux in Eq. (4.11), where Iem was set to
be inversely proportional to n2

0, and therefore divergent for ε

large enough. Indeed, from Eq. (4.10) we can see that, for a
physically realistic finite value of Iem , Iobs should vanish as
ε grows. In addition, we see that for large enough frequency
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Fig. 9 Same configuration as in Fig. 8 but for h = 0. We see that, for a
constant plasma density, low frequencies do not satisfy the propagation
conditions in the vicinity of the star

ratios that do not satisfy the propagation condition do not
produce an observable pulse profile.

Let us repeat the previous procedure by adding an antipo-
dal emission cap identical to the first one to study its impact
on the pulse profile morphology. We keep the orthogonal
configuration of the angles (χ = ξ = π/2) and the same
values for R, ε and q∗ and plasma profiles. The results are
shown in Figs. 8 and 9.

We see that now, given the antipodal cap, the increase in
brightness due to the lensing effect also occurs at �t = 0,
resulting in a flux peak at the initial instant, which will be
more pronounced the higher the compactness of the star. In
addition, we note that at later times, when none of the caps
are either producing multiple images or hidden in the star’s
non-visibility zone, the resulting flux remains largely con-
stant despite the change in the position of the caps. If the
star is not compact enough to produce multiple images, there
is a minimum with a small value in the flux when the two
behaviors are spliced, but the magnitude does not vary so
much from one regime to the other. On the other hand, when
the surface of the star is fully visible, there is no minimum
when switching from one behavior to the other, and the flux
intensity is much higher when multiple images are produced.
Beyond the addition of a second cap, the qualitative descrip-
tion of the results is otherwise identical to that for the single
caps.

Up to this point, these results are consistent with those
found in [13,18], considering the effects of compactness and
charge on the pulse profile.

Finally, we vary the angles χ and ξ to study the frequency-
dependent morphologies of the pulses for a variety of angles
between the line of sight and the rotation axis and between the
rotation axis and the position of the emitting cap. Employing

Fig. 10 Pulse profile for antipodal caps. h = 3, R/rh = 3. Purple,
blue, green, red and brown lines correspond to ε = 0.00, 0.30, 0.60,
0.90 and 0.99 respectively. Solid lines correspond to q∗ > 0 while
dashed lines to q∗ < 0. The rows, from top to bottom, correspond to
Beloborodov classes I, II, III and IV. Both the q∗ and ε modify the
morphology according to the metric. As q∗ increases, R decreases

the classification scheme proposed in [29], in Figs. 10 and 11
we show examples of each pulse class for antipodal configu-
rations. For this, we use R/rh = 3, with rh being the radius
of the event horizon, given by rS = 2M for the Sch metric,
while for RN -like metrics, we have

rh =
rS +

√
r2
S − 4q∗

2
. (4.17)

Note that both radius ratios, R/2M and R/rh , can be used
to define the compactness of the star, depending on whether
we want to express it in terms of its mass or the radius of its
event horizon. In this work, we will use both alternatives for
different purposes.

In the Beloborodov’s scheme, class I has a primary cap
that is always visible, while the antipodal is invisible at all
times. In class II, the primary cap is always visible and the
antipodal is only visible for part of the time. Class III are
generated when each of the caps can be visible or invis-
ible depending on the phase and class IV is when both
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Fig. 11 Same configuration as in Fig. 10 but for h = 0. We see that, for
a constant plasma density, low frequencies do not satisfy the propagation
conditions in the vicinity of the star

caps are visible at all times, producing a relatively constant
profile. The angular configurations (χ, ξ) = (π/9, π/6),
(π/6, π/3), (π/3, 4π/9) and (π/9, 4π/9) were used, cor-
responding respectively to the four classes just introduced
when ε = 0 andq∗ = 0. Note that, in order to represent all the
classes, the star must have a low compactness, thus contain-
ing a region of its surface out of reach of the observer, where
the caps are invisible. With this in mind, we use R/rh = 3.

Note that the considered stars do not have the same radius
for q∗ < 0 and q∗ > 0. It can be seen from Eq. (4.17) that
rh is smaller for q∗ > 0 than for q∗ < 0, so, by keeping the
R/rh ratio identical, the surface radius R in q∗ > 0 will be
smaller.

By observing all these results, it can be seen that both
the metric model, the plasma frequency and the charge have
influence on what will be the final classification of the pulse
profile. We note that class I profiles present sinusoidal like
oscillations around a positive mean value greater than the
oscillation amplitude. Classes II and III combine periods of
sinusoidal oscillations and periods of constant flux. Finally,
class IV profiles are almost constant, presenting slight defor-
mations near the extreme values of the phase.

5 Analytical approach

In a static gravitational field with spherical symmetry, the
exact deflection angle β = θ − δ is given by an elliptic or
similar integral, corresponding to Eq. (3.16), which gener-
ally has no analytical solution. The formalism employed in
the previous sections correctly describes the physics of light
rays in the vicinity of neutron stars of any size, where the
deflection angle β can become larger than π/2.

However, the integrals to be solved can be complicated and
require a high computational cost. Expressions such as Eq.
(4.8) or Eq. (4.15) may not represent a great challenge when
one has a single spherical cap that emits isotropically, but the
issue becomes more complicated when considering multiple
sources of irregular shapes emitting anisotropically, such as
the cases discussed in [13,16,18,30]. When working with a
more realistic model, solving the flux integral to obtain the
pulse profile can become a real inconvenience, and represent
several hours of computation.

In this section we will focus on finding analytical approx-
imations that allow us to generalize to plasma environment
situations expressions already known for the case of pure
gravity and thus simplifying the calculations of luminosity
curves and reduce their computational cost, without great loss
of accuracy or generality, facilitating a clear understanding
of the deflection effects.

Other analytical developments neglecting plasma modi-
fications to the orbits of light rays, (similar to the ones we
developed here) can be found in [17] for scalar-tensor theo-
ries of gravity, or in [15] for a generic range of metrics.

5.1 Trajectory equation

A simple formula that relates δ (the photon emission angle
with respect to the stellar surface normal) to θ (the angle
that gives the position on the stellar surface from which the
emission occurs, given by Eq. (3.16)), and which replaces
the elliptic or similar integral with high accuracy, is the so
called cosine relation introduced in [29]5,6

1 − cos δ = (1 − cos θ)A(R), (5.1)

being A the metric element −gtt , which must be evaluated
at the radial coordinate where the angles δ and θ are being

5 Beloborodov finds this relation for the particular Schwarzschild case,
with A(R) = 1−2M/R, however it is possible to verify that at least for
the metrics worked here the relation is generalizable with their respec-
tive A(R). Note also, that there are several analytical approaches in the
literature superior to the one found by Beloborodov, such as the one
shown in [15]. However, they all agree to first order with Eq. (5.1)
6 For R ≥ 2rS , this Eq. estimates the deflection angle β = θ − δ with
high accuracy, with a maximum relative error of order 3% for R = 3rS .
Standard pulsar models, on the other hand, predict R ≥ 2rS with a
typical R ≈ 3rS .
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measured, in this case R. Equation (5.1), however, is valid
for any point along the trajectory, being δ the angle between
the position vector of the ray and the tangent to its trajectory
at that point.

A limitation of Beloborodov’s approach is that it does not
take into account the presence of plasma. For this reason, we
have been forced to imitate its development, introducing now
a spherically symmetric plasma distribution according to Eq.
(3.21). The influence of the plasma has been retained up to
order ε2, obtaining a correction for the Beloborodov cosine
relation that can be expressed in general form as

(1 − cos δ)(1 − ε2Pq∗
h (r)) = (1 − cos θ)A(r), (5.2)

where Pq∗
h (r) is a plasma correction factor which depends

on the metric (through q∗ and M) and the power h in the
plasma density profile,

Pq∗
h (r) = 1

A(R)

(
R

r

)h [
h

h + 1
− h + 1

h + 2

rs
r

+ h + 2

h + 3

q∗

r2

]
.

(5.3)

Note that Eq. (5.2) tends to Eq. (5.1) in the low plasma density
limit or higher observational frequencies (ε → 0), so that
both descriptions coincide in pure gravity. It can be seen that
this factor vanishes (Pq∗

h (r) → 0) as we move far enough
away from the star (r → ∞), which corresponds to a plasma
density that decays asymptotically to zero. At the same time,
as q∗ goes to zero, Pq∗

h (r) tends to its Schwarzschild value

Pq∗=0
h (r) ≡ PSch

h (r) when q∗ → 0.
For the reader’s convenience, we list below the steps to be

followed for obtaining the plasma correction factors Pq∗
h .

1. Express dφ/du (Eq. (3.15)) in terms of
√

1 − cos2 δ.
2. Extend the results in Taylor’s series in terms of ε, keeping

up to order ε2.
3. Expand the above expression as a series around cos δ = 1

and express the result as a polynomial.
4. Integrate between u = 1/r and u = 0 (Eq. (3.16)),

obtaining an approximation for θ .
5. Evaluate cos θ and perform Taylor series around cos δ =

1, retaining only until first order terms.
6. Expand the result by Taylor as a power series of ε, retain-

ing up to second order terms.

Equation (5.2) then gives us the relationship between the
angles θ and δ for all r along the ray trajectory. On the other
hand, Eq. (3.17) allows us to express δ in terms of the impact
parameter b (or x) and the radius r . Therefore, by combining

both expressions, we obtain an equation that directly relates
θ to r for every point on the photon’s trajectory,

cos θa = 1 −
⎛

⎝1 −
√

1 − x2

(
n0

n(r)

)2 A(r)

C(r)

⎞

⎠ 1 − ε2Pq∗
h (r)

A(r)

(5.4)

where the subscript a indicates that it is an analytical approx-
imation. This is an approximate equation for the trajectory,
which will allow us to find the set of coordinates (r, θ) that
describes the photon trajectory. While we have previously
used Eqs. (3.16) and (3.17) to describe the parameters of the
photon at the instant it leaves the stellar surface, we should
clarify that these are also valid for the rest of its trajectory.
Thus, θ and θa correspond to the emission angle of the pho-
ton on the pulsar surface only when evaluated at r = R,
while otherwise they describe the angular coordinate of the
trajectory corresponding to that r . It can be seen that in [29]
the relation found is the inverse, i.e., Beloborodov finds an
expression for r as a function of θ . Since the plasma cor-
rections introduce new dependencies on r , and since these
are, along with the metric functions, dependent on the spe-
cific spacetime model being used, we find it convenient (and
much easier) to use Eq. (5.4).

It is now necessary to verify that the new expressions
generalize the approximation presented by Beloborodov,
improving it substantially when considering a plasma envi-
ronment.

With this purpose, we plot the θ and θa curves as a func-
tion of δ, comparing the results obtained by numerical inte-
gration and by the analytical approximation, in order to get
a general idea about the errors produced by our approxi-
mation. Since we want to know the “standard” errors intro-
duced by our model, we take R = 4M (cf. footnote (6)) and
q∗ = −(0.50M)2. On the other hand, since the development
of the analytical approximation assumes small ε, we only
take values up to ε = 0.5. The results are shown in Fig. 12.

It can be seen that the deviations of the analytical trajec-
tory are negligible when δ is small and that they increase
as δ becomes larger, so studying the error produced for the
marginal ray (δ = π/2 and bmax ) will be of great interest
for our analysis. Let us note that the analytical approxima-
tion tends to overestimate the value of θmax , resulting in a
larger visible area of the stellar surface. Such a defect will
have an impact on the pulse profiles, since a larger visible
area implies a larger lensing contribution. Particularly for the
constant plasma case (h = 0) there is a range of δ values for
which θ is underestimated by the analytical approximation.
However, we see that as we get closer to δ = π/2, θ becomes
overestimated, reaching in some cases the maximum value
allowed by the approach, θa = π .

Let’s now analyze the dependence of the error in θa
with ε for δ = π/2 and q∗ = −(0.50M)2, comparing
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Fig. 12 θ as a function of δ. q∗ = −(0.50M)2, R = 4M . The purple,
blue, green, red and brown lines correspond respectively to ε = 0.1,
0.2, 0.3, 0.4 and 0.5. Continuous lines were obtained numerically [Eq.
(4.8)] while dashed lines were obtained analytically from Eq. (5.2) (with
plasma correction). Errors are minimum for small δ and grow with it,
overestimating θmax

the results obtained with and without the plasma correction.
Also, we compare the errors in different R, to observe how the
approach improves as the compactness decreases. The error
curves obtained are shown in Fig. 13. From this figure we
can conclude that the analytical approximation introduced in
Eq. (5.2) describes more accurately the photon trajectory in
plasma environments than the cosine relation proposed by
Beloborodov (Eq. (5.1)). Except for some specific behaviors
obtained for h = 0, where anomalies generally occur, we see
that the accuracy improves by up to an order of magnitude
near ε = 0.5. For small ε values, as expected, both estimates
approach until they coincide at ε = 0. On the other hand, for
ε ≥ 0.5 the accuracy of our method is still superior, although
the error committed starts to become excessive.

We see that, for small ε, the error in θmax strongly depends
on the radius R, being considerably smaller for less compact
stars. It is remarkable that, for smaller radius stars (R ≤
4M), the error decreases with increasing ε until it reaches
its minimum value around ε ≈ 0.5, where it becomes very
similar to the error obtained for larger radius stars. For larger
ε, the error exhibits a weak dependence on R.

As always, the h = 0 case has its peculiarities. First, we
see that there are certain peaks where the error decays dras-
tically, which is explained by the fact that at those points
the plasma correction goes from underestimating to overes-
timating the value of θ , causing the error to decay more by
coincidence than by merit. We also see that the error stops
being computed for ε ≈ 0.75, which happens because for
larger values the propagation conditions expressed in Eq.
(3.24) are no longer satisfied. On the other hand, we see that
in the most compact stars the error is not computed for small

Fig. 13 Relative error in θmax (|θmax,a − θmax |/θmax ) as a function of
ε for r = R. q∗ = −(0.50M)2. The purple, blue, green, red and brown
lines correspond respectively to R = 3.5, 4, 5, 6 and 7. Continuous lines
were obtained from Eq. (5.2) (with plasma correction) while dashed
lines from Eq. (5.1) (without plasma correction)

Fig. 14 Relative error in θ (|θa − θ |/θ) as a function of the radius
r along the marginal trajectory [δ(R) = π/2]. q∗ = −(0.50M)2,
R = 4M . The purple, blue, green, red and brown lines correspond
respectively to ε = 0.1, 0.2, 0.3, 0.4 and 0.5. Continuous lines were
obtained from Eq. (5.2) (with plasma correction) while dashed lines
from Eq. (5.1) (without plasma correction). At all times plasma correc-
tions increase the accuracy of the approach

values of ε, which arises because the argument within cos−1

in Eq. (5.4) is greater than one.
Finally, we study how the error in θa changes as we

move along the trajectory. For this, we take again R = 4M ,
q∗ = −(0.50M)2 and δ(R) = π/2, comparing the results
obtained with and without consideration of plasma correc-
tions for different values of ε. These results are shown in
Fig. 14. Once again, we see that the error decreases signifi-
cantly when applying the plasma correction. Note also that
the accuracy increases progressively as r increases. This is
because, in a sense, we are sending the rays from the observer
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to the star.7 With this in mind, it is evident that the deviation
increases as r decreases since we accumulate errors due to
interaction with plasma. We also see that the error is smaller
for lower ε, which is based on the fact that plasma corrections
in the Beloborodov formula were performed by conserving
only terms of order ε2. These results are consistent with those
shown in [29].

5.2 Pulse profile

Making use of the analytical expressions introduced in the
previous subsection, we will now focus on finding an analyt-
ical expression for the observed flux, which was previously
calculated by numerical integration according to Eq. (4.15).
For this, we follow the paper of [30], introducing plasma cor-
rection and using the specific intensity as was presented in
Eq. 4. The procedure is also similar to the one found in [17].
With these considerations, we can express the flux differen-
tial as8

dF = I0
A1/2(R)

C(R)

n2(R)

n2
0

fB(δ) cos δ
d cos δ

d cos θ
dS, (5.5)

being I0 a constant proportional to the surface intensity emit-
ted by the cap, whose value can be taken as required. For
example, in [30] a Planckian emission at uniform T temper-
ature is considered, although other choices for I0 are equally
valid. The total observed flux is obtained by integrating the
above expression over the entire visible area of the emitting
cap, which we denote SV . We remark that this approximation
is valid only if I0 = const over the entire cap surface SV .
Thus, the flux results as follows

F = I0
A1/2(R)

C(R)

n2(R)

n2
0

∫

SV
fB(δ) cos δ

d cos δ

d cos θ
dS. (5.6)

This expression is consistent with those that can be found in
[15,17] for point caps.

Using the plasma corrected cosine relation (Eq. (5.2))
we can calculate d cos δ/d cos θ = A(R)/(1 − Pq∗

h (R)ε2).
Then, expressing cos δ in terms of θ , we arrive at the follow-
ing expression

7 To construct the analytical photon trajectory, we first calculate the
impact parameter from Eq. (3.17) by taking δ = π/2, being this the
same as the impact parameter of the numerical trajectory. In this way,
both trajectories coincide when reaching the detector at rO and separate
as they approach the pulsar.
8 This is the generalization of Eq. (3) of [30].

F = I0
A3/2(R)

C(R)

n2(R)

n2
0

1

1 − Pq∗
h (R)ε2

×
∫

SV
fB[δ(θ)]

[(

1 − A(R)

1 − Pq∗
h (R)ε2

)

+
(

A(R)

1 − Pq∗
h (R)ε2

)

cos θ

]

dS. (5.7)

The flux is then expressed as the sum of two contributions,
the first proportional to the surface area and the second to the
projected area of the visible part of the emitting region, both
modulated by the anisotropic emission function fB(δ). Let us
note that, for A(R) → 1 and ε → 0, this expression is analo-
gous to the Newtonian result, obtaining the projection of the
observed surface. The problem of calculating the flux, once
the geometry is fixed, is therefore reduced to determining SV
and evaluating the following integrals

Ip =
∫

SV
fB[δ(θ)] cos θ sin θdθdφ,

Is =
∫

SV
fB[δ(θ)] sin θdθdφ. (5.8)

Let us consider first a simple example, a uniform circu-
lar cap of half-opening θc centered at θ0. For simplicity, we
take θc ≤ π/2 and 0 ≤ θ0 ≤ π . The integral in φ in Eq.
(5.8), which yields the angular length of the linear intersec-
tion between the parallel given by θ and the emission cap, was
solved earlier, resulting in the function h(θ, θc, θ0) which is
expressed in Eq. (4.6) [30]. Thus, it only remains to find the
θmin and θmax limits of the interval of integration in θ for Eq.
(5.8).

To be visible to the observer, a point on the stellar surface
must satisfy the condition δ ≤ π/2. The extreme case occurs
when photons leave the star with a trajectory tangential to
its surface. These trajectories correspond to the maximum
observable angle of the star, θF (we change the notation to
avoid confusion with the upper limit of integration, which we
will introduce later), which can be obtained from Eq. (5.2)
by taking δ = π/2, resulting in

θF = cos−1

(

1 − 1 − Pq∗
h (R)ε2

A(R)

)

, (5.9)

from which the following propagation conditions can be
deduced

1 − 2A(R)

Pq∗
h (R)

≤ ε2 ≤ 1

Pq∗
h (R)

. (5.10)

Note that this restricts the compactness of the star to cases
where not every point on its surface is visible to the observer,
being the limiting case precisely θF = π . This is in agree-
ment with the limitations we have been imposing, since in
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the analytical development of the cosine relation rh/R is
assumed to be small.

Since any point on the surface of the star with θ > θF
will not be visible to the observer, and the cap extends from
θ0 − θc to θ0 + θc, it can be seen that the limits of integration
will be given by [30]

θmin = min[θF , max(0, θ0 − θc)],
θmax = min(θF , θ0 + θc). (5.11)

The integrals to be solved can now be expressed as

I1 = 2
∫

fB [δ(θ)] cos−1
(

cos θc − cos θ0 cos θ

sin θ0 sin θ

)
sin θ cos θdθ,

I2 = 2
∫

fB [δ(θ)] cos−1
(

cos θc − cos θ0 cos θ

sin θ0 sin θ

)
sin θdθ, (5.12)

being

Ip = I1(θmax ) − I1(θmin),

Is = I2(θmax ) − I2(θmin). (5.13)

For simplicity, from now on we will consider an isotropic
emission with fB(δ) = 1. When the cap is completely vis-
ible and its center is over the visual (θ0 = 0), we have
h(θ, θc, θ0) = 2π , so that the integrals are trivially solved,
resulting in

Ip = π(sin2 θmax − sin2 θmin) = π sin2 θc,

Is = 2π(cos θmin − cos θmax ) = 2π(1 − cos θc). (5.14)

In the case that θ0 �= 0, we must find the indefinite inte-
grals I1 and I2. This calculation is developed in the appendix
of [30] and gives the following results9

I1 = sin2 θ cos−1
[

cos θc − cos θ0 cos θ

sin θ0 sin θ

]

− sin2 θc cos θ0 sin−1
[

cos θ − cos θ0 cos θc

sin θ0 sin θc

]

− cos θc
√−[cos θ − cos(θ0 + θc)][cos θ − cos(θ0 − θc)],

I2 = −2 cos θ cos−1
[

cos θc − cos θ0 cos θ

sin θ0 sin θ

]

+2 cos θc sin−1
[

cos θ − cos θ0 cos θc

sin θ0 sin θc

]

+sign(θ0 + θc − π) sin−1 �1

+sign(θ0 − θc) sin−1 �2, (5.15)

being

�1 = (cos θ0 cos θc + 1) cos θ + sin2 θ0 − cos2 θc − cos θ0 cos θc

(1 + cos θ)| sin θ0 sin θc| ,

�2 = (cos θ0 cos θc − 1) cos θ + sin2 θ0 − cos2 θc + cos θ0 cos θc

(1 − cos θ)| sin θ0 sin θc| ,

(5.16)

9 In Eq. (5.15) two sign typo corresponding to Eq. (20) of [30] have
been corrected.

where the arbitrary constant has been taken zero. It can be
seen that, if the cap is completely visible, results in

Ip = π cos θ0 sin2 θc,

Is = 2π(1 − cos θc), (5.17)

which hugely simplifies the calculations. Thus, Eq. (5.15) is
only required when a part of the cap escapes the visible area,
in which case it must be evaluated in θF .

Introducing now the effective area

Aef f (θc, θ0) = C(R)

×
[(

1 − A(R)

1 − Pq∗
h (R)ε2

)

Is +
(

A(R)

1 − Pq∗
h (R)ε2

)

Ip

]

,

(5.18)

we can express the observed net flux as

F = I0
A3/2(R)

C(R)

n2(R)

n2
0

1

1 − Pq∗
h (R)ε2

Aef f (θc, θ0). (5.19)

For more than one emitting cap, and considering that each
one may have a different intensity, the total flux is obtained
by simply adding the contributions of each cap,

Ftot = A3/2(R)

C(R)

n2(R)

n2
0

1

1 − Pq∗
h (R)ε2

∑

i

I0,i Ae f f (θc,i , θ0,i ),

(5.20)

being able to approximate in this way non-spherical and non-
homogeneous caps, obtained by combination.

For the reader’s convenience, we list the steps to be fol-
lowed to obtain the analytical pulse profile of a neutron star.

1. Choose the metric elements A(r), B(r) and C(r).
2. Set the parameters R, q∗, ε and h, taking into account

their respective constraints.
3. Select the angle between the rotation axis and the line of

sight ξ (0 ≤ ξ ≤ π/2),
4. Set for each cap its intensity I0,i , the angle between the

axis of rotation and the center of the cap χi (0 ≤ χi ≤ π )
and its angular half-opening θc,i (0 ≤ θc,i ≤ π ).

5. Choose a surface emission function fB [δ(x)]. Note that if
fB[δ(x)] �= 1. the Eqs. (5.14), (5.15) and (5.17) must be
modified, and if the choice of fB leads to the integrals no
longer being analytic, this procedure is no longer valid.

6. Calculate the maximum visible angle on the surface of
the star θF from Eq. (5.9).

7. Discretize the values of the phase γp ∈ [0, 2π ] and eval-
uate on them θ0,i (t) for each cap by Eq. (4.4).

8. For each cap, calculate the limits θmin,i and θmax,i accord-
ing to Eq. (5.11).

9. Evaluate I1,i and I2,i on the limits θmin,i and θmax,i to
obtain the integrals Ip,i and Is,i as given in Eq. (5.13).
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10. Calculate the effective area of each cap Aef f,i from Eq.
(5.18).

11. Sum the contributions from each cap to obtain the total
flux Ftot at a given phase γp according to Eq. (5.20).

12. Repeat the procedure for each value of the phase γp ∈
[0, 2π ] to be evaluated.

We now show the pulse profiles obtained analytically
using the approach developed here and compare them with
the corresponding numerical result. For this, we will con-
sider pulsars of a typical size with R/rh = 3, charge
q∗ = −(0.75M)2 and ε ≤ 0.5, with two antipodal and
identical caps of angular half-aperture θc = π/36, in the
angular configurations (χ, ξ) = (π/9, π/6), (π/6, π/3),
(π/3, 4π/9) and (π/9, 4π/9) corresponding (when ε = 0
and q∗ = 0) to classes I, II, III and IV defined in [29] (these
and other new classes will be discussed in Sect. 7). This was
performed for the Schwarzschild and RN-like metric models
on the plasma distributions previously employed. The results
are shown in Figs. 15 and 16.

We see that the analytically obtained pulse profile signif-
icantly approximates the numerical results for frequencies
with ε ≤ 0.3, reaching a high accuracy for ε = 0.1, while
for frequency ratios higher than 0.3 the approximation loses
accuracy, although it is still qualitatively reasonable.

We note that the approximation tends to overestimate the
flux generated by a single cap, which corresponds to the peaks
observed in Figs. 15 and 16 at �t = 0, π and 2π , or the
profiles corresponding to (χ, ξ) = (π/9, π/6), in the top
row of each figure.

At the same time, this effect is magnified when both caps
are visible. This is due to the fact that the approximation
overestimates the maximum angle θF , resulting in a greater
lensing effect and generating an increase in the flux observed
for the caps close to “sunset”. In this regime, moreover, the
approximation presents a nearly constant profile, omitting
the subtle ups and downs that can be observed in the numeri-
cal flux. It is in the transition between these behaviors (which
is directly related to the location of θF ) where the model is
less accurate. Thus, we conclude that the accuracy increases
for plasma distributions with lower density and decreases as
we consider emission areas with higher θ , tending to overes-
timate the flux. The pulse profiles analytically obtained here
are consistent with those shown in [29] and are morphologi-
cally very similar to those in [15].

In summary, for class I profiles (top row of Figs. 15 and
16 remembering that at the moment we are using the classi-
fication system introduced in [29], which will be revised and
generalized in Sect. 7 we see that the approximation quali-
tatively respects the morphology of the curves. The class II
and III are in general accurate, apart from the already men-
tioned irregularities that occur mainly at the peaks and at the
confluence of the flux of both caps. On the other hand, the

Fig. 15 Analytical pulse profile for two identical, antipodal caps in
Schwarzschild metric, R/rh = 3, θc = 5o. Purple, blue, green, red and
brown lines correspond to ε = 0.1, 0.2, 0.3, 0.4 and 0.5 respectively.
Solid lines correspond to the numerical result, dashed lines to analytical.
The rows, from top to bottom, correspond to Beloborodov classes I, II,
III and IV. For h = 3, the flux is overestimated at maximums and
underestimates at minimums. For h = 0 is in general overestimated

class IV are the most irregular, given that as ε increases, they
degenerate into class II or III depending on the value of θF ,
which is different depending on the used method.

Regarding the plasma, we see that for h = 0 the approxi-
mation now tends to underestimate the flux.

This could be related to the fact that, in general, a con-
stant plasma distribution inverts the lensing effect from diver-
gent to convergent, thus reversing the previously mentioned
effects. In any case, the curves are extremely similar to the
numerical curves except for a vertical translation. On the
other hand, the power-law decay profiles with h = 3 per-
form reasonably well, given the already mentioned peculiar-
ities of peak accuracy and overestimation of the flux at the
confluence of the two caps.
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Fig. 16 Same parameters and color references as in Fig. 15 but for
RN-like metric, with q∗ = −(0.75M)2

6 Rings

It has been mentioned in the literature that emission regions
in neutron stars commonly have irregular shapes, some-
times resembling rings or crescent moons [84,85]. Solving
these cases numerically can be relatively complicated and
involve high computational cost, so the analytical approxima-
tions introduced in Sect. 5 represent a helpful alternative that
allows us to obtain the pulse profiles in a much shorter time
(about an order of magnitude, depending on the optimization
of the programs) with acceptable accuracy and without loss
of generality.

In the papers by Sotani et al., [15,16,86,87] analytical
approaches are also developed to deal with this type of cases,
with special emphasis on ring-shaped emission caps (for
more information or guidance on this topic, check the cited
papers), although the influence of a plasma environment is
completely neglected.

We will demonstrate the utility and power of our model
by using it in the resolution of pulse profiles generated by
ring-shaped caps. Suppose we have a pulsar with a single
ring-shaped emitting cap, whose outer edge has an angular

Fig. 17 Pulse profiles generated by ring-shaped cap emission. R =
4M , q∗ = −(0.75M)2, ε = 0.15, h = 3. The outer edge of the ring
has an angular half-aperture θe = 35o, while the purple, blue, green,
red and brown curves correspond to θi = 0o, 5o, 15o, 25o and 32.5o

respectively. The width of the ring hardly modifies the pulse profile

half-aperture θe while its inner edge has an angular half-
aperture θi . This can be easily obtained by calculating the flux
produced by a circular cap of half-aperture θe and subtracting
the flux produced by a circular cap of half-aperture θi , both
caps with the same position vector Ĉ ,

FRing = A3/2(R)

C(R)

n2(R)

n2
0

1

1 − Pq∗
h (R)ε2

I0

× [
Aef f (θe, θ0) − Aef f (θi , θ0)

]
, (6.1)

In Figs. 17 and 18 we show the pulse profiles generated
by single ring-shaped emission caps with θe = 35o and 70o

respectively, for different values of θi . For this, the parameters
R = 4M , q∗ = −(0.75M)2, ε = 0.15 and h = 3 (see Eq.
(3.21)) were used on the RN-like metrics, for the χ = ξ =
π/3 and χ = ξ = π/2 configurations. The fluxes obtained
were normalized according to their maximum value.

Although the magnitude of the brightness decreases
noticeably with increasing value of θi (this is not visible in the
plots given the normalization), the morphology of the profile
minimally differs from that of the circular cap, at least quali-
tatively. The resulting flux presents the sinusoidal profile that
we expect from a single cap.

By removing part of the cap (i.e., by increasing θi ) the
amplitude of the oscillation decreases, tending to flatten the
curve. This is because the contribution from the center of the
cap that we are subtracting has less weight the farther it is
from the line of sight, so the minimum value of the flux will
decrease less than the maximum value (this looks inverted in
graphs due to normalization, where Fmax remains constant
while Fmin increases).

On the other hand, we see that this effect on the morphol-
ogy is only noticeable in relatively large rings (θe ≈ 70o),
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Fig. 18 Pulse profiles generated by ring-shaped cap emission. R =
4M , q∗ = −(0.75M)2, ε = 0.15, h = 3. The outer edge of the ring has
an angular half-aperture θe = 70o, while the purple, blue, green, red and
brown curves correspond to θi = 0o, 10o, 30o, 50o and 65o respectively.
The width of the ring significantly modifies the pulse profile

while for small rings (θe ≈ 35o) we see nearly no differ-
ence between the different θi . This is because, as the ring
is small, it occupies an environment where the contributions
of each point to the flux are similar, so removing part of the
cap proportionally decreases the net flux without affecting
the profile morphology. By considering small rings we are
approaching the point cap approximation, so that what we
are doing could be compared to subtracting two point caps
of different intensity.

Moreover, we see that by changing the configuration
(ξ, χ) the behavior is as expected. For (ξ, χ) = (π/3, π/3),
the ring does not move too far away from the front of the star,
keeping the value of θ0 low, so the minimum flux is relatively
high. In contrast, for the configuration (ξ, χ) = (π/2, π/2)

the ring is opposite the observer at �t = π , so the observed
flux will be much lower, since much of it is located in the
invisible region of the star, or at too high θ values.

The analysis developed in this section is in full agree-
ment with that found in [87], where similar results were
obtained. We see that there is little difference between the
profiles obtained by these metrics.

We emphasize that this is only one of the possible appli-
cations of our analytical approach. With it, the calculation of
the pulse profile produced by caps of all kinds of irregular
shapes or with different surface temperatures can be simpli-
fied, making the study of the properties of these systems more
accessible and facilitating their understanding.

7 Classification

When considering two emitting caps which are no longer
identical and which are also not in an antipodal configura-

Table 2 New classification system for pulsars with two distinguishable
non-antipodal caps, compared to Beloborodov’s

Class Main c. vis. Secondary c. vis. Beloborodov

I Total Total IV

II Total Partial II

III Total Null I

IV Partial Total II

V Partial Partial III

VI Partial Null

VII Null Total I

VIII Null Partial

IX Null Null

tion, the Beloborodov system [29] is insufficient to classify
the different observable profiles. As the caps are distinguish-
able, the profile is no longer symmetric with respect to which
cap is which, so by inverting their positions we should add
a new class. On the other hand, by abandoning the antipo-
dal configuration we give rise to profiles where, for example,
neither of the caps is visible during the entire phase, or one
is visible only occasionally while the other is always invis-
ible. These phenomena can also be achieved by increasing
the plasma density, resulting in new profile classes. We have
then a total of nine profile classes for two distinguishable non-
antipodal caps, the four classes introduced by Beloborodov,
the inversions of his classes I and II, two classes with par-
tial and null visibility caps and a null profile class. For con-
venience, we organize this new classification according to
whether the caps have total (i.e., the cap is visible at all times
for the observer), partial (it is visible at some times and not
at others) or null visibility (it is not visible for the observer at
any time). This classification is explained in Table 2, where
the correspondence with Beloborodov’s classes is also indi-
cated.

Following, in Figs. 19, 20 and 21 are shown the location
maps of the classes in the ξ − χp plane, being χp the angle
between the rotation axis and the center of the primary cap,
for different values of �χ = χp − χs , being χs the angle
between the rotation axis and the secondary cap. We take
R = 6M , q∗ = −(0.5 M)2 and ε = 0.3 for Sch and RN-like
metrics, and also ε = 0 for Sch. The primary and secondary
caps have angular half-apertures θc,p = 3o and θc,s = 10o

respectively.
Analyzing the class location maps, we see that the different

classes are separated by straight lines marked in red on the
graphs, which correspond to the values of ξ and χp for which
one of the caps, at its farthest point from the line of sight
(i.e., at its maximum elongation at θ ), is partially in the zone
of visibility and partially in the zone of invisibility, being
in this way transition zones for caps from total to partial

123



Eur. Phys. J. C (2023) 83 :165 Page 21 of 29 165

Fig. 19 Class location maps on the ξ −χp plane. Schwazschild metric,
ε = 0.0

Fig. 20 Class location maps on the ξ−χp plane. Schwarzschild metric,
ε = 0.3

visibility, or from partial to null visibility. Thus, the thickness
of these lines corresponds to the angular size of the caps (this
issue is also discussed in [16,87], where extended caps are
considered). Moreover, the location of these eight red lines
that we see in each graph are given by the following equations

χp = ±θF ± ξ,

χp = ±θF ± ξ − �χ, (7.1)

Fig. 21 Class location maps on the ξ − χp plane. RN-like metric,
ε = 0.3, q∗ = −(0.50M)2

being the maps symmetric with respect to the straight lines
ξ = 0 and ξ = 180o, that is, Class(π + δ, χp) = Class(π −
δ, χp). On the other hand, we have that Class(ξ, π + δ) =
Class(π − ξ, δ). Given these symmetries, we see that in each
graph two slanted rectangles are formed, whose left vertex is
on the χp axis and whose upper left and lower right edges are
shorter than the lower left and upper right edges. The interior
of each rectangle represents the zone of partial visibility of
the corresponding cap. When we move diagonally across the
edges of greater extension, we move into the zone of total
visibility, while when we move across the edges of lesser
extension we reach the zone of null visibility. If we move
horizontally or vertically, crossing a vertex, we are again
inside a rectangle of partial visibility.

Given the differences between the numerical and analyti-
cal values of θF , there is a small difference in the location of
these lines which, in extreme cases, may result in the emer-
gence of classes that should not be there, or in their omis-
sion. However, the morphology of the class maps obtained
by the numerical and analytical methods are generally indis-
tinguishable.

To complete the discussion, in Fig. 22 we show some rep-
resentative pulse profiles for each classes introduced in Table
2.

However, when we look at Fig. 23, where pulse profiles
with caps in different configurations are included, we see that,
contrary to what happened in Beloborodov’s classification,
by allowing the caps to be not only not antipodal but also
not on the same meridian (i.e., �γp = γp,p − γp,s �= 0) we
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Fig. 22 Representative pulse profiles of each class

have that pulses of the same class present distinctly different
profiles in terms of their morphology.

To solve this problem, we have elaborated the following
subclassifications based on the scheme presented in Table 2,
taking into account only some of the most evident morpho-
logical differences between profiles of the same class.

Class I:

• a: The caps are in phase opposition, so that the decay in
brightness of one counteracts the increase in the other,
resulting in a constant profile.

• b: The caps are in phase conjunction or out of phase, so
that their luminosity is not counterbalanced, resulting in
a non-constant profile.

Class II and IV:

• a: The caps are out of phase, so that the profile has two
distinguishable peaks.

• b: The caps are out of phase, so that the profile has a
single peak and periods of constant flux.

• c: The caps are in conjunction, so that the profile presents
a single peak with two characteristic slopes.

Class V:

• a: The caps do not share a period of visibility, resulting
in two peaks separated by two periods of zero flux.

• b: The caps share a visibility period interval and have
intervals where they are the only one visible, resulting in
two overlapping peaks and a single zero flux period.

Fig. 23 Representative pulse profiles of each class. The violet, water
green, light blue, orange, yellow, blue, red, black and green curves
correspond respectively to classes I, II, III, IV, V, VI, VII, VIII and IX
of Table 2

Fig. 24 Representative pulse profiles of each subclass

• c: The visibility period of one of the caps is completely
contained within the visibility period of the second,
resulting in a single peak and a single period of zero
flux.

To close this section, in Fig. 24 we show some character-
istic pulse profiles for the subclasses just mentioned.
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8 Conclusions

A correction to the cosine relation presented in [29] [Eq.
(5.1)] was found to now include the refraction effects pro-
duced by a plasma environment whose density is given by a
power law, arriving at Eq. (5.2), whose exact form depends
on the plasma profile h, the metric model and the quotient
between frequencies ε. This formulation was applied to the
study of pulsars, allowing a much simpler treatment of the
problems seen above by replacing the complicated numerical
integrations [30], giving simple expressions for the deflection
angle β and for θ in terms of r and the impact parameter x .
The study of the errors in θ showed that our approximation
is effectively an accurate improvement of the Beloborodov’s
formula when considering plasma environments, presenting
different levels of accuracy depending on the compactness
of the star, the density and distribution of the plasma or
the metric model. In general, the errors are acceptable for
stars of low compactness (R ≥ 6) with low frequency ratios
(ε ≤ 0.3). We emphasize that the analytical approximations
obtained can be used to considerably simplify the calcula-
tion of pulse profiles produced by circular and homogeneous
caps, and even combinations of these, in environments where
the plasma has a significant impact on light deflection, under
realistic compactness and electric charge conditions, thus
facilitating the study and understanding of these systems.
In our case, we gave a demonstration of its use to solve the
profile produced by ring-shaped caps [16,87], but this is only
one of the wide range of models that can be treated with this
approach.

Given these new facilities, we were able to consider neu-
tron stars with two non-antipodal, non-identical caps, which
gave rise to new pulse profiles that did not fit Beloborodov’s
classification scheme. For this reason we developed our own
classification system, taking into account the new peculiari-
ties of the model. The main effect was the enlargement of the
non-specular area of the class map in the χ − ξ plane, i.e.,
the area that cannot be obtained as a reflection or translation
of the others. At the same time, due to the flexibility in the
model configuration, many profiles of the same class have
distinctly different morphologies, so we have extended the
classification into different subclasses.

We also mention that one or more of the assumptions made
in our model are likely to be violated in nature, so it is impor-
tant to know their range of validity. It should be noted that
the formalism presented here can only be applied to slowly
rotating neutron stars. Otherwise, metrics such as Kerr’s or
similar ones must be considered. Moreover, the caps of a
realistic pulsar have no need to emit isotropically according
to Lambert’s law ( fB(δ) = 1), either because the star is cov-
ered by an atmosphere, or because the emissivity is strongly
constrained to energies below the electron plasma frequency.
Realistic emission models predict an angular dependence in

the emitted intensity. An interesting possibility is that the
emission originates above the neutron star surface, generat-
ing emission with δ > π/2 [13]. A more realistic model
would have to take into account the effect of the strong mag-
netic fields in the vicinity of the star on the propagation of
light rays [88–90]. A study of this nature has been made in
the past to study light rays in plasma environment around
black holes [89].

Even though our formulas and plots are expressed in terms
of dimensionless coefficients to maintain as much universal-
ity as possible, regardless of the specific details of the model,
in order to have an rough estimation of the order of magni-
tude in the involved parameters, let us consider a NS rotating
at the angular velocity � and with an exterior dipole mag-
netic field B. We also assume that the particle number density
N (R) of the magnetospheric plasma at the surface of the star
is proportional to the Goldriech–Julian density NGJ (R), i.e.,

N (R) = κNGJ (R) = 2κε0
�B

e
, (8.1)

with κ the so called multiplication parameter, taking values
in the range 103–105 [91,92] and B the characteristic value
of magnetic field strength at the surface R [12],

B = 1

R3

√
3μ0c3

32π3 I P Ṗ, (8.2)

with I = 2/5MR2 the Newtonian moment of inertia of the
star (assumed as a rigid sphere). Moreover, due to the rela-
tivistic motion of electrons and positrons along the magnetic
field lines, the angular plasma frequency is decreased by a
factor γ̄ −3/2 [93], where γ̄ is the average of the Lorentz fac-
tor γ = E/(mec2) of the mentioned particles, which takes a
minimum value γ̄ ≈ 102, [92–94].

Note also that the frequency ν∞ of the electromagnetic
wave as measured for an asymptotic observer is related to ε

by:

ν∞ = νe(R)

ε
K , (8.3)

with K =
√

1 − 2 M
R + q∗

R2 the gravitational redshift factor.
In that setting, a NS of mass M = 1.8M� with a rotation
period P = 1s varying as Ṗ = 10−15 has the associated
parameters shown in Table 3. Corrections to the Goldriech-
Julian density when one consider a RN-like metric are given
by [77] (see their Eq.(9)). It can be checked that the correction
terms are of order O(1), therefore the estimated values for
the parameters in RN-like metrics remain of the same order
of magnitude as those presented in Table 3.

On the other hand, a strong magnetic field leads to an
anisotropic emissivity with a preferential direction along the
field [29]. In such a situation, one surely should abandon
semi-analytic models and perform a full numerical integra-
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Table 3 Characteristic values of the parameters involved in the descrip-
tion of the plasma magnetosphere for a assumed mass of 1.8 solar masses
of the NS

Quantity R/2M = 1.675 R/2M = 2

M (M�) 1.8 1.8

R (Km) 9.04 10.8

�/(2π) (Hz) 1 1

Ṗ (s/s) 10−15 10−15

γ̄ 102 102

κ 105 105

N (R) (m−3) 1.02 × 1022 7.24 × 1021

B(R) (T) 1.48 × 108 1.04 × 108

ωe(R)/γ̄ 3/2 (rad/s) 5.72 × 109 4.79 × 109

νe(R) = ωe
2πγ̄ 3/2 (MHz) 911 763

tion of the ray path equations taking into account a dielectric
permittivity tensor.

Despite all these restrictions on the range of validity and
being limited to extreme cases, the present work constitutes
a simple model that allows us to describe and approximate to
a large extent the photon dynamics around compact objects
embedded in plasma media, achieving a better understand-
ing and comprehension of the different morphologies in the
light curves and their dependence on different physical and
geometric parameters involved.

Finally, we would like to emphasize that the general-
ized Beloborodov formula that we have obtained can also
be applied to the study of polarization of light rays in plasma
environments, as well as to determine luminosity profiles
associated with accretion disks around black holes and other
possible compact objects. It is worth mentioning that in the
last years alternative formulas to Beloborodov’s (many of
them empirical) that improve it have also been proposed in
the literature [95–101]. It would be desirable to be able to
obtain its analogs in situations where a plasma medium (not
necessarily a cold plasma) is present.
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Appendix A: Other plasma distributions

In this appendix we show the graphs corresponding to h = 2
and to a plasma density with exponential decay, according to
the expressions

n2
2(r) = 1 − A(r)

A(R)

(
R

r

)2

ε2 (A1)

and

n2
e(r) = 1 − A(r)

A(R)
eR−rε2. (A2)

In order to use the analytical approximation in the plasma
profile with exponential decay, we will assume a density of
the form of Eq. (3.19) with an h such that both the refractive
index n and its first derivative with respect to r match those
of the exponential profile over the stellar surface. It can be
seen that this is achieved by taking h = 2R.

Since the analytical approximation was developed to fit a
plasma profile with a density given by a power law, it is to
be expected that it does not correctly approximate the tra-
jectories and pulse profiles obtained from a plasma profile
with exponential decay, as can be seen in the tables shown in
this appendix. However, we include it as a practical example
(Figs. 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35).

Fig. 25 Pulse profile for single caps. h = 2, ξ = χ = π/2. The purple,
blue, green, green, red, and brown lines correspond to ε = 0.00, 0.30,
0.60, 0.90 and 0.99 respectively. The solid lines correspond to q∗ > 0
while the dashed lines correspond to q∗ < 0
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Fig. 26 Pulse profile for single caps. Exponential decay, ξ = χ =
π/2. The purple, blue, green, green, red, and brown lines correspond
to ε = 0.00, 0.30, 0.60, 0.90 and 0.99 respectively. The solid lines
correspond to q∗ > 0 while the dashed lines correspond to q∗ < 0

Fig. 27 Pulse profile for antipodal caps. h = 2, ξ = χ = π/2. Purple,
blue, green, green, red and brown lines correspond to ε = 0.00, 0.30,
0.60, 0.90 and 0.99 respectively. The solid lines correspond to q∗ > 0
while the dashed lines correspond to q∗ < 0

Fig. 28 Pulse profile for antipodal caps. Exponential decay, ξ = χ =
π/2. Purple, blue, green, green, red and brown lines correspond to ε =
0.00, 0.30, 0.60, 0.90 and 0.99 respectively. The solid lines correspond
to q∗ > 0 while the dashed lines correspond to q∗ < 0

Fig. 29 Pulse profile for antipodal caps. h = 2, R/rh = 3. Purple,
blue, green, green, red and brown lines correspond to ε = 0.00, 0.30,
0.60, 0.90 and 0.99 respectively. The solid lines correspond to q∗ > 0
while the dashed lines correspond to q∗ < 0
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Fig. 30 Pulse profile for antipodal caps. Exponential decay, R/rh = 3.
Purple, blue, green, green, red and brown lines correspond to ε = 0.00,
0.30, 0.60, 0.90 and 0.99 respectively. The solid lines correspond to
q∗ > 0 while the dashed lines correspond to q∗ < 0

Fig. 31 θ as a function of δ. q∗ = −(0.50M)2, R = 4M . The purple,
blue, green, red and brown lines correspond respectively to ε = 0.1,
0.2, 0.3, 0.4 and 0.5. The continuous lines were obtained by numer-
ical integration from Eq. (4.8) while the dashed lines were obtained
analytically from Eq. (5.2) (with plasma correction)

Fig. 32 Relative error in θmax (|θmax,a − θmax |/θmax ) as a function
of the frequency ratio ε for r = R. q∗ = −(0.50M)2. The purple,
blue, green, red and brown lines correspond respectively to R = 3.5,
4, 5, 6 and 7. The continuous lines were obtained from Eq. (5.2) (with
plasma correction) while the dashed lines were obtained from Eq. (5.1)
(without plasma correction)

Fig. 33 Relative error in θ (|θa −θ |/θ) as a function of the radius r for
δ(R) = π/2. q∗ = −(0.50M)2, R = 4M . The purple, blue, green, red
and brown lines correspond respectively to ε = 0.1, 0.2, 0.3, 0.4 and
0.5. The continuous lines were obtained from Eq. (5.2) (with plasma
correction) while the dashed lines were obtained from Eq. (5.1) (without
plasma correction)
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Fig. 34 Analytical pulse profile for two identical, antipodal caps.
Schwarzschild, R = 6M , q∗ = −(0.50M)2, θc = 5o. Purple, blue,
green, green, red and brown lines correspond to ε = 0.1, 0.2, 0.3, 0.4
and 0.5 respectively. The solid lines correspond to the numerical result,
while the dashed lines correspond to the analytical approximation
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