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Abstract We analyze the standard fermionic 4D Volkov—
Akulov action with N global non-linear supersymmetries. We
find that the stationary points of the system are described by
an effective potential, written in terms of two composite real
scalar fields, which approaches the exact quantum effective
potential in the large N limit. We identify the existence of
at least two stationary points, one representing the original
supersymmetry breaking configuration and the other one cor-
responding to goldstino condensation, where supersymmetry
is restored in the deep IR.
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1 Introduction

Fermionic condensation often plays an important role in
understanding the vacuum structure of a quantum theory.
One of the basic systems where fermionic condensation has
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been understood is the Nambu—Jona-Lasinio model [1,2],
together with its 2D counter-part, the Gross—Neveu model
[3]. (For textbook discussions see e.g. [4,5]). An aspect that
makes these models stand out is that, due to a large N num-
ber of fermion species, the quantum effective potential can
be evaluated with arbitrary precision in a 1/N expansion, and
the stationary points can be analyzed with confidence.

Recently, a new type of fermionic condensation has been
brought to the forefront, namely the condensation of the N =
1 goldstino [6]. This effect has a crucial impact on string flux
compactifications and signals an intrinsic instability that may
be generically present in anti-brane uplifts to de Sitter vacua
[7-12]. This instability also adds a new obstacle to obtaining
4D long-lived de Sitter critical configurations from super-
symmetric string theories [13—17],' and may further restrict
de Sitter solutions in 4D N = 1 supergravity, thus extending
some previous results [21-25]. Furthermore, within N = 1
supergravity, the goldstino condensation effect seems to per-
sist [6], and it should be related to the gravitino condensation,
which again shows a tachyonic instability [26-30].2

In [6] the existence of the goldstino tachyonic instability
was demonstrated within 4D N = 1 non-linear supersymmetry
by means of the so-called functional renormalization group
flow [32]. The adoption of such a method was necessary
because a perturbative loop expansion would not be trustable.
In general, however, one would like to have at hand a model
where the goldstino condensation effect can be understood
directly with the use of more conventional methods of quan-
tum field theory. In particular, a large N demonstration of

1 Stringy de Sitter vacua that do not make use of non-linear supersym-
metry, e.g. [18-20], could possibly evade the goldstino condensation
instability. However, this is not certain since the effect may still take
place within theories with linearly realized supersymmetry. Such a ques-
tion needs to be addressed separately.

2 The condensation of gravitini has also been studied in 4D N = 2
supergravity as the sole source for a de Sitter uplift [31], but with full
stability still being an open question.
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the existence of this phenomenon would be welcome. In the
present work we take the first steps towards filling this gap.
It is of course the 4D N = 1 goldstino condensation that
has the most phenomenological value, but it is theoretically
important to analyze the generic existence of goldstino con-
densation from various perspectives.?

We will work with a single and well-established model
that includes only fermions: the Volkov—Akulov (VA) model
with N non-linearly realized supersymmetries [34—36]. Since
these supersymmetries are non-linearly realized, their num-
ber can be arbitrarily large, and the same holds for the number
of the accompanying Goldstone fermions, the goldstini. This
means that we are not restricted to the typical N < 4 of lin-
early realized supersymmetry (or N < 8 for supergravity). In
addition, our aim here is neither to extract nor to study a phe-
nomenological result, but we would like, instead, to answer
one and only one question: can a system with N goldstini
have a well-controlled stationary point described by gold-
stino condensation? Our main result is an affirmative answer
to this question, thus giving complementary support to the
findings of [6]. Our results further suggest that such a con-
figuration corresponds to the restoration of supersymmetry,
and we also give some arguments in favor of its protection
from higher-order corrections. Finally, we analyze a system
that is more relevant for string flux compactifications, where,
among N fermions, only one is a 4D N = 1 goldstino, with
all the others becoming pseudo-goldstini, once they acquire
a mass.

2 N goldstini
2.1 The effective action and large N

We work with a system that has N non-linearly realized
supersymmetries and focus explicitly on the goldstino sector,
which is described by the Lagrangian

£=- get[An9]. @.1)

2

where the goldstino vielbein A,,? is defined as

. N
1 —J
Ayt =80 + — GG
m m+Nf2JX=;m JO

3 In [33] a discontinuity is discussed for the goldstino condensation
of [6]. Such discontinuities can indeed appear when condensations take
place, but they do not signal an inconsistency per se. For example, in the
so-called CPY ! model (see e.g. [4]), the original classical critical point
is not a critical point of the quantum theory at all, for any finite value of
the coupling. Interestingly, the specific bosonic model has a classically
spontaneously broken symmetry which is dynamically restored. Then,
fields transforming linearly under the restored symmetry are built from
the classical Goldstone fields, as it also happens in [6].
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i —I
—— G;099,G (2.2)

Np? 2

and f is the supersymmetry breaking order parameter whose
mass dimension is [ f] = 2. Note that the actual supersym-
metry breaking scale is N'/4,/F. The system has a global
U(N) R-symmetry under which the spinors G; and 51 trans-
form in the fundamental and anti-fundamental representa-
tion, respectively. The goldstino vielbein A,,¢ is, instead, a
singlet under such U(N). This theory is defined with a cut-off
A for which we typically assume

Nf2 > A% (2.3)

For later convenience, and as it is typical in large N mod-
els, we have already extracted the N coefficient in front of
the starting Lagrangian (2.1): the 't Hooft limit [37] thus
corresponds to N — oo while keeping f fixed. Note that,
when N is large, both ./f > A and \/f < A can satisfy
(2.3). Let us also observe that the number N of non-linear
supersymmetries clearly matches the number of goldstini
I,J =1,...,N, whose transformations are

1
5G 1o = VNferq + ——
“ C T UNS
N J
x Z(G,omg/ —¢,6"G )amG,a.
J=1

2.4)

Making use of the definition (2.2), the leading-order terms
of the Lagrangian are

NP2 —1 1
c=-2 iy Giom,G +o(—>. 2.5)

2
=1 Nf

The constant —N f2/2 can be always removed so that there
is no divergent term in the large N limit. From now on we
will stop inserting the explicit ZI,\IZI and summation over the
same I, J indices will be implied unless otherwise specified.

For the sake of completeness, note that we are using the
conventions of [5]: therefore, n,, = diag(+ 1, — 1, — 1, — 1),
0% = (1,,0), and, because it will be useful later on,

0 o¢ I
yd = (E“ 0 ), with % = (1,, —0).
To pursue our aim, namely to get access to stationary

points that possibly describe goldstino condensation, we
write the theory (2.1) as

Nf? Nf?
L= _Tf det[e,, "] + cha’"(em“ — An®). (2.6)
Once we integrate out C,,”", we get
8L
8Cam =0 — ema = Ama (27)

and we recover the model with N goldstini (2.1). Equiva-
lently, the path integration over C,” yields a delta-function
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at each point of space-time that enforces the constraint. The
advantage of (2.6) is that the action becomes Gaussian in the
fermions and their path integration can be performed, leav-
ing behind only a bosonic theory. In doing so, we will also
be able to explicitly demonstrate the large N behavior of the
model under consideration.

We start with the path integral

1 _
zZ= —/D[em“]D[Cb"]D[GI]D[GJ]
No

X exp [i /d4x [,] ,

where we can split the Lagrangian as £ = Lp + LF with

2.8)

N f2 N2
Lp = _Tf det[ema] + Tcam(ema - ama) 2.9)
and
Lp = %Ca’" (G,a“amé’ — amG,o“E’) . (2.10)

The Ny stands for the overall normalization of the path inte-
gral. To evaluate the fermionic contribution to the path inte-
gral we pair the N Weyl goldstini into N /2 Dirac spinors as
follows

4 G
vt = E(A+N/2) A=1,...,N/2.

This seems as if we were assuming that N is even. However,
we would like to stress that this is just a formality that allows
us to easily evaluate the fermion path integral: for odd N the
end result would be the same. Thus, the fermionic contribu-
tion to (2.8) formally reduces to

@2.11)

N/2

Zp = /D[WA]D[EA]exp i/d4x ZEC“m 3
A=1
X (E*‘y“am\y/‘ — amEAya\yA)

= (det[i C,"y*3,1)'?, (2.12)

up to the overall Ny factor that we will shortly discuss and
specify.
If we now bring the determinants into the exponential and
then into the effective action we get the full bosonic theory
2
Sy = N x {—f? / d*x [det[e,,”] —C (em® — 5m“)]

—% trlog [i C," “am]} , 2.13)
where N crucially appears as a global factor, being at the
exponent of the determinant in (2.12). The power of the large
N construction is now manifest: by taking N parametrically

large we can make the classical effects dominant with arbi-
trary precision over the quantum effects because higher-loop
contributions are always suppressed by N factors compared
to the tree-level term. This happens because of the overall N
in front of the Lagrangian and means that in the large N limit
the quantum effective potential and any stationary points are
controlled by the scalar potential of (2.13).

Let us notice that the fermion functional determinant con-
tribution is clearly missing a dimensionful normalization
inside the logarithm. This is related to the choice of Ny in
the path integral normalization, which we should specify. For
instance, one can either introduce a scale to match the dimen-
sions or insert the inverse propagator i g. Here we will choose
Ny to be

No = (det [i§])> . (2.14)

Other choices of Ny reflect the different ways that one can use
to express the determinant in perturbation theory and should
ultimately not matter.

2.2 The effective potential and stationary points

Let us now search for stationary points of the bosonic theory
(2.13). From the form of its effective action we directly see
that this theory has tensor fields that signal the presence of
massive higher-spin excitations.* However, since we would
like to search for translation-invariant and Lorentz-invariant
stationary points, we are interested only in the trace parts
of these tensors and, consequently, in the resulting scalar
potential. We then describe the VEVs of C,” and ¢,,* as
follows:

C" =0 +h)é"™, en =A+¢)én" (2.15)

In order to get the full scalar potential we need to reduce
the functional determinant that includes C,™ to a convenient
form by treating C,™, and so &, as a constant background
field. The reader could be concerned that by ignoring the
tensor modes’ contribution to the scalar potential we may
be missing some non-trivial constraint on the trace parts of
the tensors. However, this does not happen for the following
reason. One can think of splitting both C,” and ¢, into
traceful and traceless parts as C,”* = (14+h) §, + X, and
en® = (1 4+ @) 8% + Y4, where X, = 0and Y,* = 0.
Then, it is easy to see that there can never exist a linear term
containing either X, or Y;,“ in the scalar potential simply
because there is nothing to contract them with: all terms with

4 A preliminary analysis of the spectrum shows that around the original
VA point the system has massive excitations, including spin-2 fields,
along the lines of [38—41]. Understanding the precise spectrum may be
interesting per se but we will not go into the specifics of these excitations
here. Let us only note that the interpretation of the excitations should
be done with care as pointed out e.g. in [41,42].

@ Springer
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X,™ and Y,,,* in the potential are directly quadratic in these
fields and, therefore, they can be set to vanish consistently
when we are searching for a background solution. There can
be kinetic mixing of all sorts, of course, but here we are dis-
cussing neither the dynamics of the system nor its spectrum.

To proceed, we normalize the fermionic determinant in
(2.12) with i #, and treat the bosons as a background. Focusing
directly on the relevant contributions from (2.15) we can see

that (2.12) becomes
i(1+ h)y’"am
iy"o,
N
7

iz

a
o))
l

242
_ (det[ (1+h)“0 14})
—9214
2027\ 4
= |:(d t|: (1+h) 9 :|> xdet[14:|

—(1+ h)%3?
SERA

o

exp |:N tr log [

(2.16)

—(1 4+ )22
IR

We then evaluate the trace of the operator as the sum of its
eigenvalues, that is

292 272
trlog[(H—h)a} Zl [(1+h)k }:(VT)

s / (jn)“ log 1+ 7],

where VT is the four-dimensional volume, which we write
as [ d*x. The expression for the fermionic path integral can
thus be brought to the form

ZF:eXp[ /d4 /(

which, once it is evaluated in Euclidean momentum space
with a cut-off, gives

(2.17)

log (1 +h) H (2.18)

/d4x Vi(h,¢) =ilogZp
NA

= /d4x<
327

VF constitutes the full correction to the bosonic effective
potential from the fermion Gaussian integral. For complete-
ness, in the Appendix we will also discuss such a calculation
from the perspective of dimensional regularization.

We conclude that the stationary points of the theory (2.1)
are described by the critical points of the scalar potential

log [(1+h) ])

(2.19)

@ Springer

2
Verr (b ¢) = x{f [+ )" 41 +mg]

4

—5p5 loe [ +m?] } . (2.20)
The scalars & and ¢ on which Vg depends should not be
directly thought of as standard scalar fields, because they
are physically parts of the tensor fields C,” and e;,“: h is
related to the trace of C,”™ and ¢ to the trace of ¢,,%. In
spite of this, the critical values of /& and ¢ do correspond to
stationary points of the system and their potential energies at
the stationary points can be legitimately identified as actual
energy densities [4,5]. The equations for the critical points

are
A4

8 221
1672(1 + h)’ (221)

2% = - (1 +h) =1+¢),
and they can be combined into a single equation for ¢, which
in turn directly gives the value of 4. The resultant equation

for ¢ is
4

T = (2.22)

(1 +¢)° +

This equation has at least two real solutions that can be eas-
ily found if we solve the system numerically, but can also be
determined analytically if we solve the equations perturba-
tively.

Willing to adopt the latter approach, we assume that

Vf > A. (2.23)
Under such requirement, we find
A IR
b= =gy +O |:<—327r2 fz) ] (2.24)
and
A4 % 1 A4 %
~ —1 —_— | —
dac + <32n2f2) T3 <327t2f2)
1 A4 A4 %
+§ <—32”2f2) + O (—32712]‘2) (2.25)

The first solution corresponds to the original VA point and
the second one is related to goldstino condensation (GC). On
these critical configurations £ takes the values h = —1 +
(1+¢)° ’ b=dvn.doc” The potential energies corresponding to
the stationary points of (2.20) that we have just found can
then be extracted: they are

Nf2 NI

(2.26)
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and

4 A4 A4
— log
32 f2 32a2f7 % | 3222
A4 %
() |

respectively. We see that the configuration (¢gc, hgc), which
describes the large condensate, has lower energy than the
VA point (¢va, hva) (which seems to correspond to a small
condensate; we will shortly come back to this point). We
would like to highlight that, since N is assumed to be very
large, the scalar potential (2.20) is arbitrarily close to the full
quantum effective potential. Therefore, its stationary points
(¢c1, he1) (butonly those) correspond to actual quantum states
of the theory and the corresponding value of the scalar poten-
tial captures the energy density of the state with energy
E = (VT) Vet (¢el, he). As an aside, let us also note that,
since the overall value of a potential can always be shifted
by a constant, these energy densities have to be considered
as relative one to the other. We will come to this point in a
while.

It is also worth observing that classically, from (2.7), we
have

Eac = 2N f? {

(2.27)

i

¢= 4N f2

(amG,o G’ G,amamé’) . (2.28)

This justifies the interpretation of a non-trivial ¢ background
value as a signal of goldstino condensation. We also see
that, when ¢ approaches unit, the VEV of the condensate
approaches N f2 and possibly jeopardises the control over
the possible higher-order terms. Indeed, since we are work-
ing with the pure VA term (2.1), we are certainly ignoring
higher-order goldstino self-interactions. We will see shortly
that, as long as the Lagrangian is written in terms of A,,¢
and its derivatives, we maintain full control of the vacua at
large N. Therefore, no matter what power of ¢ we have in
the higher-order terms, the condensate is robust even when
¢ goes near unit.

For completeness, let us mention that, contrary to what
we have done so far, due to the large number N we could
also work under the assumption that ./f < A. After further
assuming «/f < A, while still respecting Nf2 > A%, in
order to extract an analytic result we find two almost degen-
erate solutions: ¢+ ~ £ 557~ — F and hy ~ qﬁi The original
VA point is not a part of the stationary configurations any
more and only solutions corresponding to large condensa-
tion correspond to stationary points. Since the condensate
(2.28) takes parametrically large values in this case, we will
not pursue this limit further here.

2.3 The stationary points in the deep IR

In this subsection we would like to understand what flowing
towards the IR means and how f changes while going to
lower energies, assuming that we are already in a low energy
regime where the VA model is weakly coupled, that is

V> A

Since the VA model has a single coupling, f, it would be
enough to evaluate the flow of any specific term or interaction,
and the other interactions would change accordingly. This in
principle would require to have a regularization scheme that
respects non-linear supersymmetry (as, for example, in [6]).
Within such a setup one could deduce the flow of f by con-
sidering the 4-Fermi derivative interaction. However, such a
calculation would be quite involved for various reasons. For
instance, it would firstly require the identification of a proper
regularization scheme, and then the evaluation of both the
fermionic wave-function renormalization and the actual run-
ning of the 4-Fermi vertex. Nevertheless, because of (2.29),
one expects that the loop contributions would be subdomi-

(2.29)

nant (i.e. O (%)) with respect to the classical running due
to the mass dimensionality of f. Therefore, without going
into the loop calculation we can focus on the vacuum energy,

Vvac = NTfZ, as a tool to infer the classical flow of f towards
the IR. Even though this is a crude analysis, we will not only
be able to capture the dominant running, but we will also see
that the assumption (2.29) is enforced by the flow itself.

Following [5], let us consider the VA model in the form
(2.1) and the Euclidean path integral

1 _ _
Z:V/[DGDG]A exp{—/d4x [Vvac+iGla’”8mGl
0

1
(7))
where
[DGDGs = [] dGdG (k). (2.31)

k| <A

A representing a momentum cut-off for the quantum field
fluctuations (and without specifying the species index, for
simplicity). We then distinguish the integration variables
into two groups: the “high-momentum” degrees of freedom

(G, G) that pave bA < |k| < A, and the “low-momentum”
modes (G, G) carrying a momentum |k| < bA (the param-
eter b being a fraction b < 1). We thus have

—[d x|:VvaC+zGlo 9 5I+...:|
Z= —/DGDGe

—fd4x[lG10mdm :|

/ DGDG e , (2.32)

@ Springer
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and we further split the path integral normalization factor Ny
into the high-momenta and the low-momenta contributions
as

Ny = No\f; X No’@ = (det [i(’na"])N ‘|k\<bA

x (det [io",]) | 2.33)

bA<[k|<A’
Let us now integrate over the high-momentum modes and
focus on the vacuum energy change. The leading contribution

to it comes from the Gaussian kinetic term of G and G. Once
we integrate over such degrees of freedom, we find

AVyae =0.

Gaussian

(2.34)

Higher-order contributions coming, for instance, from quar-

tic terms of G or G are further suppressed by powers of f.
Then, we rescale distances and momenta according to

and k = bk, (2.35)

x=—

so that the variable k’ is still integrated over the range |k'| <

A, and the fermionic path integral has once more [DGDE] A
as its measure. Therefore, we have

/[DéDé]A e_fd4x/b_4(Vvac+AVmc+...)

- / [DGDGl e/ 4 Viaet (2.36)
where, in light of (2.34),
1
Viae = Vyac X o + sub-leading contributions. (2.37)

Because of the rescaling (2.35), while considering (2.37), a
decrease of the parameter b represents how much the system
flows towards the IR. The expression (2.37) clearly shows
that the vacuum energy tends to increase as b decreases. From

2
Vvac = % we deduce that

f= g + sub-leading contributions, (2.38)

where fj is the starting value of f, before we integrate out any
high-momentum modes (i.e. for b = 1), and the sub-leading
contributions are of order «/Lffo <« 1. This in turn implies that
the coupling accompanying the higher-order interactions of
the VA model becomes more and more irrelevant as one flows
to the IR.

We thus conclude that in the deep IR regime » — 0 and
gives

A _ A
VI Vo

x b — 0.

(2.39)

@ Springer

In such a limit we can check the relative difference between
the energy densities of the two critical points: we obtain

Eva — Ege

N f2
Eva '

— 1 and EVA — T (240)
We see that the goldstino condensation point has paramet-
rically lower energy than the VA configuration. Moreover,
under the limit (2.39) the VA point recovers its classical
energy density and all corrections to it vanish. We see that
(2.40) is quite suggestive in favor of interpreting the GC
point as a supersymmetry restoring field configuration. Such
interpretation is further corroborated by the properties of the
kinetic terms of the fermions. Indeed, in the deep IR regime
(2.39), where a scalar VEV is properly defined, we observe
that

¢va —> 0, hya — 0, (2.41)

which means that one recovers the classical stationary point
for the VA model, and

¢cc — —1, hec — —1. (2.42)

Since we know from (2.10) that the kinetic terms of the
fermions on a background defined by the stationary points
are

Liin = '5(1 i) (Gla’"amé’ _ amG,omEJ) L 43)

we conclude that at the VA point the fermions have canoni-
cal kinetic terms, whereas the kinetic terms of the fermions
vanish on the GC point in the deep IR. This absence of appro-
priate Goldstone modes when 7 — —1 is consistent with the
restoration of supersymmetry.’

As we mentioned earlier, in the Appendix we are going
to present the same analysis by using dimensional regular-
ization. We will see that in the deep IR regime that we just
studied, defined by the limit » — 0, the results from the two
different regularization methods nicely match.

Our findings also connect with the ERG analysis for the
4D N =1 system that used superfields [6]. There, the sys-
tem is driven to an asymptotic supersymmetric point where
the derivatives of the superpotential vanish, and so does the
vacuum energy. In particular, the asymptotic supersymmetric

point of the 4D N = 1 system satisfies 628262 ~ f* where
G is the N = 1 goldstino and /f the N = | supersymmetry
breaking scale. We can interestingly observe that (2.28) for
¢ ~ —1 corresponds to a similar limit. For completeness, let
us also note that the growth of f in [6] is controlled in the
IR by its mass dimension.

5 A similar effect takes place in [43], where the goldstino stops prop-
agating on the supersymmetric background. One could expect that on
such a background the massive spin-2 excitations organize themselves
in a supersymmetric way, e.g. along the lines of [44].
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3 Robustness against higher-order terms

In this section we would like to understand how much the
stationary points (¢va, hva) and (¢gc, hge) are influenced
by the higher-order terms that our starting model is ignor-
ing. Even though there are terms that we cannot account for
and may change the solutions, especially if they describe R-
symmetry breaking, we will provide a simple rule of thumb
for the circumstances when higher-order interactions could
be dangerous. More precisely:

(A) When higher-order terms appear only through the gold-
stino vielbein A,, and its derivatives, the goldstino con-
densation is always robust for large N.

(B) When higher-order terms also include explicit
(A_l)a'"amGI terms, the goldstino condensation may
be jeopardized.

We will prove (A) and we will give two different examples
of (B).

The reader should keep in mind that, if the goldstino con-
densation does restore supersymmetry, then higher-order cor-
rections to the treatment above do not threat its existence;
only non-perturbative corrections could do that. This is pos-
sibly the reason why it is easy to readily control a large class
of higher-order corrections of the form (A). Despite of the
lack of a proof, we will also see that the corrections of the
form described in (B) seem to remain innocuous most of the
time.

3.1 Corrections from goldstino vielbeins and matter

Let us start by considering the case in which the higher-order
terms are expressed only by the goldstino vielbein A,,* and
its derivatives. Schematically, they have the form

1 1

g @) (An)T — @) (em™"

MR—4

1 R T
Bryy =TCONURROL 3.1
for some scale M and some powers R and 7. Since we are
focused on the stationary points of a scalar potential, such
derivative terms do not change the outcome. More impor-
tantly, when the higher-order terms take the form (3.1), even if
they are not only derivative interactions, they are always para-
metrically sub-leading in the large N limit simply because
they have no N factor in front of them. We can conclude that
for large N the goldstino condensation is not spoilt by such
higher-order corrections.

Let us now make the discussion a bit more precise by
assuming that we have some massive scalars coupled to the
system in a way that preserves the existing non-linear super-
symmetry. We assume that such scalars are in their VEVs

so that we can restrict ourselves to consider the Gaussian
piece of their action. These scalar fields could represent some
degrees of freedom that have been removed from the spec-
trum to deduce the low energy goldstino theory. Their impact
can serve as a proxy for the higher-order corrections. We con-
sider n real scalars b; with

1 .
AL = - detles " Ea" Ombi) Ep" (i)

1
—EMZ det[e,,“1b? fori=1,...,n. (32)

We are interested in evaluating the contribution of the func-
tional determinant of the scalars b; to the effective potential.
To this end, we expand e,,,“ once more as e,,* = (1+¢)4,,7,
treating ¢ as a background field. We get

4 in c1..ab m n
/d xAVerr(¢) = —- log det [det[ez 1 E" 8, Eb" 9,
M2 det[em“]]
in d*k 5 5
- —T(VT)/ i o8 [—(1 + )2k
M2+ ¢)4] . (3.3)

If we now assume that the N for each of the scalar fields b;
corresponds to a free massive scalar, after a Wick rotation,
we obtain

n [ d*%
AVesi () == £ log {

(1+¢) k% +M?(1 + ¢)*
2/ @n)t ’

k% + M?
(3.4)

and, explicitly,
n

AVeit () =3

[At10gl(1+9)%1+M2A2 [(1+0)2-1]

M2+A2}

4
+M log|: Y2

+A*log [Mz(l rort Aq

M? + A?

+M*(1 + ¢)* log [ M*(1 + ¢)° ] } .

M2(1 4 ¢)? + A2
3.5)

We would like to see how this new contribution to the
effective scalar potential changes the stationary points. Even
though it is not necessary, we can assume that the scalars
b; are heavy, that is M> > A%. Without actually perform-
ing any further calculation, but simply exploiting the large
N limit, we observe that the contribution (3.5) to the total
scalar potential is parametrically subdominant with respect
to (2.20) as long as

N> n. (3.6)
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Indeed, the analysis here falls under the general arguments
for the robustness of the stationary points under higher-order
deformations of the form (3.1). In particular, as far as (2.21)
is concerned, the left-hand-side equation does not change,
whereas the right-hand-side equation becomes

I 9(AVesr (@)
N2 3

(1+h) =(1+¢)°+ 3.7)
From here it is evident that the deviation of (3.7) from (2.21)
is arbitrarily small at large N.

Let us notice that we can also extend the above conclusion
to a more general matter-coupled VA system. Consider a
Lagrangian that has a matter part (made by scalars, vectors,
spinors) of the form [35,45]

Lmatter (Am“, b, Vi, Xa)- (3.8)

Ultimately, its induced contribution to the quantum effective
potential boils down to some A V¢ (¢) and, as a consequence,
the deviation from the original system is controlled by (3.7),
therefore being arbitrarily small at large N.

We can conclude that goldstino condensation is quite a
robust prediction of the large N non-linear supersymmet-
ric theory, assuming that matter is coupled to the starting
VA system via (3.8) (which inevitably preserves also the R-
symmetry).

3.2 Explicit goldstini under derivatives

We now discuss terms where the goldstini explicitly appear
under derivatives,

D,G!' = E/"9,,G, (3.9)
thus breaking the assumption (3.1). These terms can possi-

bly jeopardize goldstino condensation even at large N. For
example, one can consider a term like

g det[e,,°1 D, G 6" DG + c.c., (3.10)

for some complex dimensionful coupling g. Such a term
potentially has a non-trivial impact: not only it is not of the
form (3.8), but it also contributes to the large N functional
determinant because it contains the N goldstini. However,
since we are interested in scalar backgrounds, (3.10) takes
the form

g(1+¢)?3,G'0%9,G' +c.c., (3.11)

and it is then clear that it will never contribute to the quantum
effective potential of ¢. One can in fact perform an integration
by parts, treating ¢ as a constant background field (because
we are interested in the properties of the effective potential),
to obtain

@ Springer

/d“x g(1+¢)? 3,6 o 9,G!
— —/d4xg(1 +¢)>Glo®8,0,G' =0.  (3.12)

Letus notice that the same manipulation can be done by going
to momentum space and assigning zero momentum to ¢, as
the standard procedure to evaluate the contributions to the
quantum effective potential requires. We conclude that terms
like (3.10), if present, do not jeopardize the new stationary
point associated to goldstino condensation.

As a further example, we can consider the term

¢y, det[e,,“1D,G' DG’ +c.c., (3.13)

for some complex dimensionful couplings g ,. This term
will contribute to the quantum effective potential with a large
N coefficient. However, it manifestly changes the number of
degrees of freedom because it leads to G132G” terms, which
induce an additional massive fermion in the spectrum for
each goldstino. For a consistent EFT such terms should be,
in any case, independently highly suppressed. Even so, let us
analyze the impact of (3.13), assuming that one uses it only as
an interaction vertex. The easiest way to handle such a term
is to package the goldstini once again into Dirac spinors W4
of the form (2.11), where A = 1, ..., N/2. For our analysis
we will also assume that the only non-zero contributions to
(3.13) come from

g;J = g/ X 5A.A+N/2’ (3.14)

with g’ € R now. Then, considering only the background
h and ¢ contributions from (3.13), the Gaussian fermionic
sector is

L=i(l+nTymy,wA

—¢/(1+ @)W iy 0) W, (3.15)
where the first term originates from (2.10). The functional
determinant for a single Dirac spinor of (3.15) becomes

det [i(l g —g 1+ ¢)2(i,3)2] = det [i (1 + h)J]

2
x det [14 - g/mia] )

3.16
1+h .

We readily see why such a deformation changes the degrees
of freedom and introduces new massive fermions. However,
as far as our purpose is concerned, we simply need to treat the
new contribution to the effective potential from the new mas-
sive fermionic functional determinant, having in mind that
det [i (1 4+ h)d] is already included in the effective potential
and corresponds to the original goldstini. One way to do this
calculation is to recast the overall functional determinant in
the form
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det [i(l Fj—o(1+ ¢)2(ia)2] =det [—g’(1+¢)2ia]
(1+h) ]

—=14 .

g'(1+¢)>

The first term is similar to that which we have already calcu-

lated, but with 1 + & replaced by —g’(1 + ¢)>. The second

factor corresponds, instead, to the contribution of a massive

fermion with canonical kinetic term.® We conclude that the
potential that we have to extremize is (up to constants)

x det [ia - (3.17)

N 2
Vear(h, 0) = “L-[(1 -+ 0)* — 401 + g ]
4
4
v log [(1 + ) ]
Nm* [ A? 1 m?
3272 (W g + A?
4 2
_ A_410g [_2A ZD (3.18)
m m=+ A
where
_ (d+h
m= e (3.19)

Contrary to the previous case, we cannot use the large N limit
any more to eliminate the new terms. However, the theory still
has a valid large N limit and the stationary points of (3.18)
correspond to stationary points of the full quantum effective
potential (in such a limit).

We would like to investigate the existence of a goldstino
condensate for the scalar potential (3.18). In order to be able
to continue analytically we make the assumption that there
is a hierarchy between the scales at play, namely

M > A, once M =—, (3.20)
and we furthermore assume that
M1+ h)
m=———7>—> A. 3.21
(1 +¢)? 62D

We will check that this condition holds on the solutions.
We can already see that it is satisfied for the VA point,
if the latter persists. Under such assumption, and up to
constants, the potential that we need to extremize takes
exactly the form (2.20) at leading order in the A%/m?>-
expansion. In particular, the corrections are all of the form
A* x (A?/m?+ A*/m* +- - .). Therefore, both the VA con-
figuration and the GC solution remain intact. Finally, one can

6 To evaluate the contribution of the massive fermions we notice that
det[ij) — m14] = det[(ij) — m1s)yZ] = det[(if} — m1Ly)ys) det[ys] =
det[ys(ig — m1ls)ys] = det[—ig — m14]. This allows us to express
the functional determinants of massive Dirac fermions in terms of
functional determinants of massive scalars, giving the known result:

det [if) — m14] = (det [0% + m2])’.

check that both solutions satisfy (3.21), as long as

M3A > f2 (3.22)

This further implies that M > /f.

Let us observe that we have worked with a parametric sep-
aration between the various scales (M, /f and A) that enter
the problem so that we can easily deduce analytic results.
Clearly, the solutions still exist for weaker assumptions but
they have to be found numerically: we provide few numerical
solutions for more conservative values of the coefficients in
Table 1. We do not know under which conditions the solu-
tions will seize to exist and if they seize to exist at all. When
M becomes smaller than / f, the extremization problem can
not be approached easily by the adoption of analytical meth-
ods, and also the numerical analysis seems to require stronger
machines or more refined techniques.

We conclude that higher-order terms with explicit deriva-
tives of the goldstini may seem harmful at first sight, but it is
not obvious that they actually have an impact on the system
after all. As the reader has appreciated, we have analyzed
few such terms and we have seen that the properties of the
stationary points do not considerably change. Nonetheless,
we do not have a general argument to state that the higher-
order corrections lying under the circumstance (B) cannot
threat the goldstino condensate. As an aside final remark, let
us note that other higher-order terms of a similar form can
in principle be reduced to the Gaussian terms that we have
studied by using Lagrange multipliers.

4 A single goldstino and N-1 pseudo-goldstini

In this section we wish to take advantage of the large number
of fermions in the system to deduce a result for a model that
has only N = 1 non-linear supersymmetry. To do this, we
make all the fermions massive but one, which corresponds
to the single goldstino that the theory has in the low energy
regime.

We split the goldstini as
G' =G GY, 4.1
where G, which we will denote as G from now on, represents
the goldstino for the N = 1 non-linear supersymmetry, and the
G's are 2n pseudo-goldstini for a reason that will be clarified
in a while. For convenience we pair the 2n pseudo-goldstini
into n Dirac spinors W4 following (2.11). We then explicitly
break the extended non-linear supersymmetries down to 1 by
introducing a Dirac mass term

M det[A,, 0" wA. 4.2)

Note that, if each Dirac spinor is split into two Majorana
fermions, then one gets a Majorana mass term for each
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Table 1 Few instances of numerical solutions for stationary points of
(3.18) with A = 1, but without making any approximation on the effec-
tive potential. The numerical solutions approach the analytic ones as we
go closer to the parametric limits that allow our approximations. The

vacuum energy at the VA point is always in very good agreement with
N f2/2 and therefore we do not write it explicitly. Note that, because we
are interested in the orders of magnitude and in the possible existence
of a solution, we have rounded-up the presented numerical results

f M dce hae Ecc/N dva hva

591 17.1x 103 —14+1072 —1+4x107° 6x1072 —-3x10°8 —6x1078
24 670 —145x1072 —1+3x107° 4% 1072 —6x107° —2x1073
6 162 —1+107! —144x1073 3x 1072 —9%x107° —3x107*

one of them. Since we get back the full N goldstini system
when these masses vanish, we call the massive fermions W4
pseudo-goldstini. We have

2 2
L= __f det[e ma] + — f am(ema - Ama)
+M det[em“]lll \IJA, 4.3)
with
Ap® = 8p® + Nf2 ——08,GoG — Nf2 ——G0%9,G
— T, 0, et 4

N f2 " Nf

As elsewhere throughout this paper, we are interested in
stationary points that are translation-invariant and Lorentz-
invariant: we will consider directly the trace parts of C,” and
e,® asin (2.15).

We want once more to perform the Gaussian integral
over the fermions and derive the contribution to the effective
potential for 4 and ¢. To deduce the relevant modifications
to it we perform two formal steps that allow us to get the
result directly from the formulas that we already have at our
disposal. First, we redefine all the fermions as follows

1
~1+h

treating &, as always, as a constant (because we are only
interested in the effective potential critical points). As a con-
sequence, the Lagrangian takes the form

G!, (4.5)

G —

2
%447(1 +h)

2
L=—Tatgts

M(1 4_
( +¢) \IJA\IJA
14+h

—%(8,,,60’"5 — G603, G — Wy, wh
19, Ty

: log [ (1+h?].

t353 4.6)

@ Springer

The last term appears from the fermionic measure in the path
integral because of the redefinition of the fermions. It has
to be so in light of the fact that, if no field redefinition is
performed, such a contribution appears from the Gaussian
integral over the massless fermions. After (4.5) the massless
fermion G decouples and it can be eliminated without any
effect. This implies that the fermion redefinition has to con-
tribute to the Lagrangian through the path integral measure.
Before proceeding, as a reminder for the reader, let us note
that N = 2n + 1.

As we were mentioning just above, the goldstino G can
now be integrated over without any effect, except of an overall
shift in the vacuum energy, which we ignore. After eliminat-
ing G right away, the remaining 2n fermions are combined
into n massive Dirac spinors with canonical kinetic terms and
mass M (1 + ¢)*/(1 + h). Knowing from the previous sec-
tion how to evaluate the functional integral of these massive
fermions, once we integrate out all the fermions by perform-
ing the corresponding Gaussian integral, we explicitly find

2
Ver(h, 9) =~ [(1 -+ 9)* — 401 + g ]
4
2
3222 log [(1 + h) ]
(N — DHm* [ A2 . m?
L (W +log [mz + A2]
A* A?
"o 18 [WD : 7
where
_ M+ (4.8)
1+ 4

We see that the large N limit still gives us a reliable approxi-
mation to the full quantum effective potential with arbitrary
precision. To derive the stationary points we extremize (4.7)
with respect to & and ¢. To avoid clutter we also assume that
in the large N limit we can have N >~ N — 1. Then, com-
bining the equations for # and ¢ we see that we can readily
eliminate s because it is bound to satisfy

872 f2(1 + ¢)* —
871'2f2(1 + 5¢)

14+h= 4.9
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The system of the equations of extremization of (4.7) there-
fore reduces to a single equation for ¢. It is possible to search
for stationary point solutions without making any assump-
tion on a hierarchy among the various scales at work, but, in
this case, one has to proceed numerically. For completeness,
we give some numerical results in Table 2.

However, we can easily proceed analytically by first invok-
ing the typical hierarchy A < 4/ f and consequently observ-
ing that, under such requirement, (4.9), for the goldstino con-
densation point, gives

A4
14+ hge 2 ——, 4.10
+ hge 322 S (4.10)
assuming that
¢cc >~ =1, f2(1+dco)’ < AL @.11)

These equations are in complete agreement with (2.25) and
we will also verify them on the solution. Always within such
limits the equation for ¢gc is

B A4512f4M2712(1 +¢)’
A0
512 f4M272(1 +¢)7)2

A4
2121+ ¢)° — 162

Al0

1 AIO

2(1 + w2 512 fAM2n2(1 + ¢>)7] '
4.12)

= =2(1 + p)m2A* <

x log |:1 +

From this relation we can recover the goldstino condensation
solution (2.25), if we assume that

512 M%7 (1 + ¢)’
10 <

which (for (2.25)) reduces to M3 <« Af and therefore also
to M> « f. Consistently with these bounds we can still
have M > A or M < A: the original goldstino condensa-
tion solution is intact for arbitrarily light or for quite heavy
pseudo-goldstini. The VA point also remains intact when we
have /f > A > M. It is of course good that the limit
M — 0 can be taken smoothly: in this limit the N-1 pseudo-
goldstini become goldstini and we recover the results for the
original N goldstini model of Sect. 2.

This result is relevant for string flux compactifications
that include anti-D3/O3 systems as, for example, KKLT does
(where supersymmetry is non-linear [46—57]). For the sake of
the discussion, let us extrapolate our large N results to the case
where N = 4. In [50] the masses of the extra fermions living
on the anti-brane world-volume are discussed, in particular
for the three massive fermions belonging to the anti-brane,
which are pseudo-goldstini. The mass of these fermions is
determined by the n>1) ISD flux. As we have seen here a
small M or, equivalently, a small n?! ISD flux may lead to
goldstino condensation and further support the existence of

1. (4.13)

such effects on an anti-brane. Conversely, if n@D jg large,
then M becomes large as well, and the system has further
issues due to large tadpoles [58,59].

5 Discussion

In this work we have investigated the existence of new sta-
tionary points in the standard 4D Volkov—Akulov fermionic
system in the presence of N non-linear supersymmetries. An
intuitive way to think of such an investigation and of our find-
ings is the following. From the standard Lagrangian det[A,,,“]
describing the VA system (see (2.1)), one can derive the clas-
sical equations of motion

det[A%1(A™1,"6?8,G =0, (5.1)

and suspect that these equations have two types of vacuum
solutions:

(Gg) =0 or (det[A4,"]) =0. 5.2)

Clearly, the vacuum solution where the goldstino vanishes
corresponds to the original VA point that describes super-
symmetry breaking: there, in fact, (det[A,,“]) = 1. The
solution where the goldstino vielbein determinant vanishes,
instead, corresponds to a condensation of the goldstini (see
(2.2) for the form of A,,*), and implies that supersymme-
try is restored, because the vacuum energy is now vanishing.
The actual computation is more involved than simply solving
(det[A,“]) = O for the goldstini and proceeds with path inte-
gral methods [4,5], which allow to properly treat fermionic
condensates. However, the naive intuitive expectation turns
out to be correct and a solution of the form (det[A,,4]) = 0
does actually exist, as the path integral method that we fol-
lowed here verifies.

As we already mentioned in the Introduction, even though
in the present paper we are working directly in the component
form and we are exploiting large N methods, our results lend
further support to the goldstino condensation analysis of [6]
that was performed with the ERG technique for superfields.
These two approaches can be considered complementary and
it is gratifying to see that they agree. It is also important to
bring to the reader’s attention the fact that bosonic systems
with bosonic Goldstone modes can have a similar behavior
where the classically broken symmetry is restored by quan-
tum effects ([60-63]; see [4,5] for textbook analysis). The
fact that something similar happens for fermionic systems
should not come as a big surprise, then. Moreover, this does
not mean that supersymmetry cannot be broken, but it sig-
nals that the breaking of supersymmetry is more intricate than
what one naively expects and has to be studied with care.

It is also worth noting that our results give further evi-
dence that the anti-D3-brane/O3-plane system is inherently
unstable on a flux-less Minkowski background: such a system
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Table 2 Few instances of numerical solutions for stationary points of
(4.7) with A = 1, but without making any approximation at the level of
the effective potential. The numerical solutions approach the analytic
solutions as we go closer to the parametric limits that allow our approx-
imations. Since the vacuum energy at the VA point is always in very

good agreement with N f2/2, we do not write it explicitly. Here again,
because we are interested only in the orders of magnitude and in the
existence of a solution, we have rounded-up the presented numerical
results

f M $Ge hce Ecc/N dva hva

8.8 % 10° 0.16 —1410~* —1+4+2x107Y 0.25 —4x107V — 10716
4595 4 —141073 —142x10710 0.15 —6x10712 —6x10710
1122 0.017 —141072 —1+4+2x107H1 0.15 —3x107? —8x107°

corresponds, in fact, to N = 4 [49]. It is true that N =4 is not
large, but the large N results may still persist. In this respect,
evaluating the leading 1/N corrections to the potential will
be illuminating.

We have also discussed a system where all but one golds-
tini get masses. Such a setup corresponds to placing the anti-
D3-brane/O3-plane system on a flux background [50]. In this
setup we have seen that the goldstino condensation persists.
Such a model can also be studied with the use of constrained
superfields satisfying X2 = 0 = XY’ [55], and exploiting
the ERG technique to analyze the existence of condensates.
The resulting (supersymmetric) backgrounds corresponding
to the condensation may be ultimately related to some kind
of brane-flux annihilation [64,65], but we cannot know if this
is indeed the case yet. This is one of the important questions
that we leave for future studies. In addition, the impact of
including gravitation in our analysis is not necessarily triv-
ial.

Another path that deserves to be investigated is how the
goldstino condensation behaves in different dimensions. It
is worth performing a similar analysis for example in 2D or
in 3D, especially taking into account that spin-2 fields and
gauge fields behave differently compared to the 4D case. An
analysis of the condensate directly in 10D would also be illu-
minating, and especially interesting for the BSB models [66].
However, such a study seems more challenging compared to
that of the lower dimensional systems.
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Appendix A: Dimensional regularization and stationary
points

The reader may ask what happens if we utilized dimensional
regularization when evaluating, for instance, the momentum
integral of (2.18) in Sect.2. Here we are then going to work
out the pure large N Volkov—Akulov model and the corre-
sponding integrals by means of dimensional regularization
(instead of using cut-off regularization as we did in the bulk
of the paper). Once done, we will compare the results.

We directly consider the calculation of the relevant integral
for (2.18), that is

j 2 d*k A.l)
iNlog[(1 + h)~] ) (A.
The cut-off prescription gives [ % = %, whereas the

integral vanishes within dimensional regularization. Let us
then evaluate the integral
/- d4 k ( k2)2

(27.[)4 (k2 _ M2)2’
using dimensional regularization and taking, only in the very
end, the limit M — 0 to make contact to (A.1). We find

(A2)

2 ddk (k2)2
@) (2= M2)?

3iM4F[ 24 €] 4nu2 €
= — €
82 M? ’

(A.3)

where d = 4 — 2¢. When sending M — 0, we recover the
known result that the integral (A.1) vanishes within dimen-
sional regularization.
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If we went through all the analysis that we did in the bulk
of the paper, we would find that

3MAT[—2 + €] [4mp®\©
— 87T2f2 M2 + e

dva =

1
3MAT[-2 + €] (4np®\ |’
¢GC=—1+|: ) <M2> +oo

(A4)

the first solution corresponding to the original VA point and
the second one to the goldstino condensation configuration.
As far the energy densities of the stationary points are con-
cerned, we have

N f2 SMAT[-2+¢] (4m2\ ]
Eva=——14 146
VA 5 + 872 /2 ( IYE ) +
(A.5)
and
ANMAT[=2 + €] [4mp?\©
&ac = = 5
T M
- 3MAT[—2+4€] [4mu®\© N
x {1-1lo
g 872 2 M2
(A.6)
Let us now send M — 0. We obtain that
. . N2
Original VA point: ¢ya — 0, Eva — 7 (A7)
and
Goldstino condensation configuration: ¢gc — —1,
Ecec — 0. (A.8)

A few comments are in order. First of all, any dependence on
the regularization scheme has dropped out. In addition, the
VA stationary point has the original vacuum energy value
and there is no condensate appearing at that point. In the
new stationary point the condensate reaches its maximum
value which is independent of the regularization, namely
¢cc — —1, while its energy density vanishes. Due to the
exact vanishing of the vacuum energy we can deduce, giving
further support to what we state in the bulk, that supersymme-
try has to be restored at that point. As we already mentioned,
let us notice also that the goldstini stop propagating in such
a limit at the goldstino condensation point.

Even though, because of the freedom to shift energies, the
true value of the energy density in a QFT is a relative mat-
ter, we see that the original VA stationary point reaches its
original energy density in the limit M — 0. We can there-
fore define the energy density of the supersymmetry breaking

point with respect to that limit as

N 2
pn = (VAIIOPIVA) = 1 (A9)
and in the same limit we also find
pGe = (GCJ|Q?IGC) =0 — Q|GC) =0, (A.10)

thus interpreting the GC point as a supersymmetry restora-
tion point. We see that this analysis agrees exactly with the
analysis that we did in Sect. 2 for the deep IR limit. It is grat-
ifying to see that the results do not change depending on the
regularization scheme. For this reason we work only with the
cut-off regularization prescription in the bulk of the article.
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