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Abstract We investigate theoretical and observational
aspects of a warm inflation scenario driven by the β-
exponential potential, which generalizes the well-known
power law inflation. In such a scenario, the decay of the
inflaton field into radiation happens during the inflationary
phase. In our study, we consider a dissipation coefficient (Γ )
with cubic dependence on the temperature (T ) and investi-
gate the consequences in the inflationary dynamics, focus-
ing on the impact on the spectral index ns , its running nrun
and tensor-to-scalar ratio r . We find it possible to realize
inflation in agreement with current cosmic microwave back-
ground data in weak and strong dissipation regimes. We also
investigate theoretical aspects of the model in light of the
swampland conjectures, as warm inflation in the strong dis-
sipation regime has been known as a way to satisfy the three
conditions currently discussed in the literature. We find that
when Γ ∝ T 3, the β-exponential model can be accommo-
dated into the conjectures.

1 Introduction

The ΛCDM model, combined with the idea of primordial
inflation, constitutes a remarkable description of the universe
evolution from very early to late times. In particular, infla-
tion solves some of the problems that arise in the big bang
theory by assuming a rapid expansion of the universe while
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generating initial conditions for the subsequent cosmic evolu-
tion [1–6]. In the inflationary framework, the inflaton field is
responsible for the early accelerated expansion, whose evolu-
tion is driven by a specific potential function. Naturally, over
the years, many possible candidates appeared [7], from which
some of them are viewed as viable models, as they agree with
current observations provided by cosmic microwave back-
ground (CMB) experiments [8,9].

After inflation, however, one needs to direct the attention
to a reheating period, that connects the inflationary era to
radiation dominance [10,11]. In this epoch, the inflaton cou-
ples to other fields such that the remaining energy is converted
to create new particles that compose the radiation energy den-
sity. While much progress has been made in the description of
this era and its connection with CMB data [12–25], the exact
mechanism is still unknown since many factors may appear,
and they can be very dependent on the inflationary model in
consideration. In this scenario of cold inflation, the coupling
to other fields is neglected until inflation ends. On the other
hand, an alternative is to consider that this coupling is rele-
vant during inflation, which characterizes the warm inflation
picture [26–28]. The coupling of the inflaton to other fields
creates a thermal bath in which the production of relativis-
tic particles reheats the universe so that the universe can go
smoothly to a radiation-dominated era by the end of infla-
tion. Indeed, a dissipative term in the equations of motion
provides extra friction, which implies a modification in the
description of the accelerated expansion and, consequently,
in the observational predictions.

The warm inflation picture has been widely studied in
recent literature. In general, from a phenomenological per-
spective, models driven by potentials that are disfavored by
data in the cold inflation picture may become viable as, for
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example, scenarios described by monomial potentials [29–
35] (see [36,37] for the predictions of other known models).
This happens because as the dissipation coefficient intro-
duces another term of friction in the equation of motion of
the inflaton, an extra factor appears in the slow-roll param-
eters so that they can be suppressed more effectively, even
when the potential is steep [38,39]. From a more fundamen-
tal point of view, warm inflation might arise from concrete
particle physics scenarios [40–43], being able to sustain par-
ticle production leading to a ‘graceful exit’ to the radiation
era.

This work investigates the warm inflation scenario driven
by a class of β-exponential potentials that generalizes the
well-known power law inflation [44]. As shown in [45], such
a model can arise from brane dynamics and showed a good
agreement with Planck 2015 data. An updated analysis with
Planck 2018 and clustering data showed that the model with
a non-minimal coupling of the field with gravity seems to be
a more viable approach for this class of models [46]. Here
we investigate how the predictions of the β-exponential infla-
tionary model change when considering the warm inflation
picture, as recent studies have investigated the viability of
exponential potentials in this context. For example, in [47],
a pure exponential potential was considered in the strong
dissipation regime, with a dissipative coefficient Γ ∝ T 3;
a coupling of the type was motivated in [48–51], where the
assumption is that the scalar field has an axionic coupling
to gauge bosons. The application to an exponential poten-
tial, as investigated in [47], showed that either inflation still
would not end by violation of the slow-roll conditions or the
predicted spectral index was too red-tilted in the strong dissi-
pative regime. The distortion in the exponential form caused
by the β-exponential function may address both issues. It is
worth noting that another generalization of the exponential
function was considered in [38,52], showing that runaway-
type potentials are also an option in the warm inflation pic-
ture. In particular, the tensor-to-scalar ratio becomes signifi-
cantly suppressed if one wants to achieve the central Planck
value for ns .

Another point of investigation concerns the recently pro-
posed swampland conjectures [53–56]. In this concern, some
works constrain scalar field theories based on the assump-
tion that they can be embedded in more general theories,
such as string theory [57–62]. A discussion started from
the difficulty in obtaining de Sitter vacua in these theories
[53,63,64]; therefore, in order for a model to be theoreti-
cally consistent, it should obey certain limits to stay in the
landscape of well-motivated scenarios. In particular, it was
shown in [38,47,60,65–69] that warm inflation realized in
the strong dissipative regime makes it possible for all current
conjectures to be satisfied. The warm inflation idea com-
bined with extensions of the canonical picture as done in
Refs. [66,70,71] can also be considered to recover concor-

dance with observations. Adding to these recent interesting
studies, in this work we want to determine how far from
a simple exponential form one may go to provide reason-
able predictions. This way, we study if the β-exponential
model can be another option in a warm inflation construc-
tion in which the strong regime can be realized while being
consistent with CMB data and its impact on the swampland
conjectures.

This work is organized in the following manner: in Sect. 2,
we review warm inflation and the respective slow-roll equa-
tions. In Sect. 3, we introduce the β-exponential model into
the warm inflation framework, while in Sect. 4, we discuss if
the model is consistent with the swampland conjectures. To
conclude, in Sect. 5, we present our considerations.

2 Warm inflation

The dissipation of inflaton into other particles is often mod-
eled by the presence of a dissipation coefficient Γ in the
equation of motion of the scalar field. It means that the Klein–
Gordon equation for φ becomes

φ̈ + (3H + Γ ) φ̇ + V,φ = 0, (1)

during inflation. Here, a dot denotes a derivative in time,
while the subscript ,φ represents a derivative w.r.t. the field.
We see that the additional term with Γ constitutes an addi-
tional source of friction added to the Hubble one. Since
the field decays into radiation, the energy density evolution
comes from the conservation of the energy–momentum ten-
sor as

ρ̇r + 4Hρr = Γ φ̇2, ρ̇φ + 3H(ρφ + Pφ) = −Γ φ̇2, (2)

where we note that the term proportional to Γ represents the
energy transferred to the radiation particles from the infla-
ton. To close the set of equations, we need the Friedmann
equation, which gives us the background expansion

3H2M2
p = 1

2
φ̇2 + V + ρr , (3)

with Mp = 1√
8πG

being the reduced Planck mass. The usual
procedure in single scalar field inflation is to apply the slow-
roll approximation, in which the field slowly rolls down the
potential; this is achieved by neglecting higher-order deriva-
tives in the equations of motion and assuming that the poten-
tial dominates the energy budget of the field. As a conse-
quence, Eqs. (1–3) reduce to

φ̇ � − V,φ

3H(1 + Q)
, H2 � V

3M2
p
, 4Hρr � Γ φ̇2. (4)

Here, we have introduced the ratio Q ≡ Γ
3H as standard prac-

tice, and we have neglected ρ̇r by assuming that the thermal
equilibrium of the bath is quickly achieved. We note that the
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value of Q determines how effective the dissipation is: For
Γ < H , we have Q < 1, characterizing the weak dissipative
regime; on the other hand, if Γ > H , then Q > 1, and infla-
tion proceeds in the strong dissipative regime. In the same
manner as the cold inflation picture, one can derive slow-roll
parameters expressed as

εw ≡ εV

1 + Q
= M2

p

2(1 + Q)

(
V,φ

V

)2

,

ηw ≡ ηV

1 + Q
= M2

p

1 + Q

(
V,φφ

V

)
,

βw ≡ M2
p

1 + Q

(
Γ,φV,φ

Γ V

)
, (5)

and during inflation, εw, |ηw|, |βw| � 1. One interesting
aspect of slow-roll parameters in Eq. (5) is that the slow-roll
regime can be properly achieved even for steep potentials.
When Q is relevant, all three parameters can take smaller
values, thus making the slow-roll regime possible. The dissi-
pation coefficient Γ is usually dependent on the temperature
of the bath; therefore, let us determine it, especially since it
is connected to the final temperature that starts the radiation
era. By assuming quick thermalization, the radiation energy
density can be written in terms of its temperature as

ρr = g̃
T
4, (6)

where g̃
 ≡ π2g


30 and g
 is the number of relativistic degrees
of freedom of the fields during inflation. This thermal equi-
librium implies that T > H , along with the slow-roll condi-
tions, is necessary for warm inflation. We can combine the
expression for ρr in Eq. (5) with the one in Eq. (6), to obtain
the ratio T/H as a function of Q and φ

T

H
=

[
9QM6

pV
2
,φ

4g̃
(1 + Q)2V 3

]1/4

, (7)

where we have also used the equations for φ̇ and H in Eq. (5).
The scalar power spectrum is also affected by dissipation

during inflation. It has the form [29,72]

Δ2
R =

(
H2




2πφ̇


)2
(

1 + 2nBE + 2
√

3πQ
√
3 + 4πQ


T


H


)
G(Q
),

(8)

where nBE = 1
eH
/T
−1

is the Bose–Einstein distribution
function, and G(Q
) is an enhancement term that has been
argued to be present depending on the dependence of Γ on
the temperature [40,50,72], and it arises from the interaction
of the inflaton with radiation. In this work, we consider a
cubic dependence on T ; a numerical fit of G(Q) for this case
has been found as [36,50]

Gcubic(Q
) = 1 + 4.981Q1.946

 + 0.127Q4.330


 . (9)

We note that by taking the limits T → 0, Q → 0 in Eqs. (8)
and (9), one achieves the cold inflation limit. All quantities
are computed at the pivot scale k = k
, at which the CMB
scale leaves the horizon, for which the amplitude of the scalar
power spectrum is estimated as log(1010Δ2

R) = 3.044 ±
0.014 [8]. As for the tensor power spectrum, it is argued that
we can approximate it as having the same form as in cold
inflation [36,72]

Δ2
h = 2H2

π2M2
p
, (10)

so that we can readily write the tensor-to-scalar ratio as

r = Δ2
h

Δ2
R

. (11)

The spectral index ns and its running nrun can be derived
from (8) as

ns − 1 = d log Δ2
R

d log k
� d log Δ2

R
dN

,

nrun = d2 log Δ2
R

d log k2 � d2 log Δ2
R

dN 2 , (12)

where N is the number of e-folds. In Appendices A and B
we show a general manner for deriving an expression for ns
and nrun for a given dissipation coefficient Γ .

3 Warm β-inflationary model

The application we consider in this work is to the β-
exponential model [44]

V (φ) = V0

[
1 − λβ

φ

Mp

]1/β

, (13)

where λ is a dimensionless constant, and β is another con-
stant that controls the deviation from the pure exponential
function, achieved for β → 0. We note that β should not be
confused with βw, which is one of the slow-roll parameters in
Eq. (5). This model was first proposed as a phenomenological

generalization of the exponential potential V = V0e
−λ

φ
Mp ,

for which dissipative effects were studied in [73].
The β-exponential potential is able to achieve the break-

down of the slow-roll regime, with the end of inflation by
assuming εV = 1, and is able to predict the low values
for the tensor-to-scalar ratio, r, observed by recent experi-
ments increasing the β value [44]. Further investigations of
the model resulted in a concordance at the 2σ level with
the Planck 2015 ns − r data and reasonably favored results
when the model was statistically compared with the ΛCDM
one [45]. Also, in the same work [45] a more fundamental
theoretical motivation for the model was found from brane
dynamics; as a result, the ratio β/λ becomes associated with
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Fig. 1 Predictions of ns −r and ns −nrun planes for the β-exponential
model with Γ = CφT 3/φ2. We have chosen fixed values of β while
considering λ = 0.05 (left panels) and λ = 0.07 (right panels), with the

curves varying with Q
. The dashed lines represent the weak dissipa-
tion regime, while the solid lines represent the strong regime; the dotted
lines correspond to a regime where T/H < 1. We have set N
 = 55

the brane tension σ . This relation imposes a constraint on
both β and λ, where essentially, β must be larger than λ,
with β ≥ 1/2. In [45,46], this limit is satisfied in the priors
and numerical analysis results. Our analysis will also check
if this constraint is still respected when computing the infla-
tionary observables.

The slow-roll parameters for the model are

εw = M2
pλ

2

2(1 + Q)
(

1 − λβ
φ
Mp

)2 ,

ηw = M2
pλ

2(1 − β)

(1 + Q)
(

1 − λβ
φ
Mp

)2 ,

βw = εw

⎛
⎝1 + 2

(
1 − λβ

φ
Mp

)
λ

Q,φ

Q

⎞
⎠ , (14)

We determine the end of inflation for both φ and Q. The ratio
T
H is computed from Eq. (7) as

T

H
=

⎡
⎢⎣ 9

4g̃


Q

(1 + Q)2

(
M4

p

V0

)
λ2

(
1 − λβ

φ
Mp

)1/β+2

⎤
⎥⎦

1/4

(15)

where the dependence on Γ is implicit on Q. Hereafter, we
shall apply the model to a dissipation coefficient with cubic
dependence on the temperature. The general strategy is as
follows: we first isolate an expression for Qend from the slow-
roll condition by setting εW = 1. Then, by finding the general
relation between Q and φ for each Γ , it is possible to compute
a value for φend numerically for each set of parameters. Next,
we use Qend , φend as initial conditions for the first-order
differential equations that are evolved back to N
, so that
we obtain Q
 and φ
 and finally compute ns , nrun and r for
a given λ, β (Appendix A). Then we will see the impact of
considering different λ and β in the ns−r and ns−nrun plane
and the temperature at the end of inflation. Also, we will see
whether inflation with this model is favored in the weak or
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strong regime to find if the model addresses the swampland
conjectures to be discussed in Sect. 4.

The dissipation coefficient we will consider has a cubic
dependence on the temperature, with the form

Γ = Cφ

T 3

φ2 . (16)

This form can be motivated from a supersymmetric set-
ting, where the correspondent superpotential involves inter-
acting Φ, X , and Y superfields [48,49,51,74,75]. It comes
from the possibility of a two-stage decay φ → χ → yy, in
which the field χ acts as an intermediate to decay into light
particles y. The potential obtained from the general superpo-
tential generates a mass for the bosonic and fermionic compo-
nents of the field X , denoted by χ , from which it is possible
to derive a low-temperature approximation (T � mχ ) for
Γ , as studied in [48]. For large field multiplicities, and by
knowing that m2

χ = 2g2φ2, one arrives at the form given by

Eq. (16) with Cφ � 1
16π

h2NY NX [51].
Due to the coupling of the inflaton with radiation, one

would expect corrections to the inflationary potential to
appear, altering its form and potentially spoiling the slow-
roll regime. For the setting described, it is possible to esti-
mate both fermionic and bosonic contributions to the infla-
tionary potential due to these couplings. In [74], this issue
was discussed, showing that while these corrections might be
relevant, the effect on the slope of the potential is properly
suppressed at a low-temperature regime. Thus, inflationary
dynamics under (16) can be well approximated as unaffected
by radiative and thermal effects [29].

Proceeding with the predictions of the β-exponential
model, one can find that the relation between Q and φ is
given by

Q(1 + Q)6 = Aλ6
(
Mp

φ

)8 (
1 − λβ

φ

Mp

)1/β−6

, (17)

with

A ≡ C4
φ

576g̃3



(
V0

M4
p

)
, (18)

being another constant that encapsulates the dependence of
Cφ with the amplitude V0. The differential equation for the
evolution of Q in this case is

dQ

dN
= λ2Q

(1 + 7Q)(1 − λβφ/Mp)2

×
[

6β − 1 −
(
1 − λβφ/Mp

)
Mp

λφ

]
, (19)

meaning that while

φ

Mp
>

1

λ (7β − 1)
, (20)

the growth of Q with N is ensured. We then use Eq. (17) along
with the slow-roll condition at the end of inflation εW = 1 to
compute φend and Qend and evolve the differential equations
for φ, in Eq. (5) and for Q, in Eq. (19).

The predictions of the ns and r parameters are shown in
Fig. 1. Choosing values of β in the interval 0.2 − 0.7, we
have checked for any dependence on the λ chosen; we see
immediately that λ greatly impacts the parameters. Consid-
ering the figure at the upper left, where λ = 0.05, we note
that larger values of β are favored in the weak dissipative
regime, as seen in the β = 0.3 curve (dashed blue line). An
effect of choosing higher values of λ is shifting curves to
lower ns , favoring higher values of β (dashed curves on the
upper right panel), where we have chosen λ = 0.07. It is
then clear the importance of λ, as it can completely change
the character of a curve for a given β. When we look at the
strong dissipative regime, represented by the solid lines, a
lower value of β is preferred for both choices of λ. This
happens because, as a higher Q results in an increase of the
spectral index for the dissipation coefficient we are consid-
ering, we need a value of β that results in a low enough ns
in the weak dissipation regime so that the curve will enter
the confidence regions when Q
 > 1. From this, we can
conclude that a small deviation from the exponential form is
enough for inflation to end while also happening in a strong
regime. Also, in Fig. 1, we plot the model’s predictions for
the running of the spectral index nrun (lower panels). The
effect of increasing Q
 is known [36], in which the run-
ning can become positive for a larger Q
, but resulting in a
spectral index too large, as seen in the figures. On the other
hand, if β (the deviation from the exponential potential) is
small enough, a strong dissipation is allowed by data, and we
can have values for the running that are well into the Planck
constraints. However, we also note that while it is not pos-
sible to achieve a positive running for the smallest values
of β considered, a negative nrun is estimated by the most
recent Planck results of nrun = −0.0045 ± 0.0067 (Planck
TT,TE,EE+lowE+lensing).

The difference between choices of λ in the spectral index
is more clearly shown in Fig. 2, where we plot the ns − Q


plane. Four values of β are chosen, and we note how the
curves change when we increase or decrease λ. When β is
low, it is challenging to achieve concordance with data in
the weak dissipative regime, as the resulting ns is below the
2σ confidence limit, as seen in the β = 0.2 plot (upper
left panel). As we go towards the strong dissipative regime,
however, it is possible for the curves to reach the confidence
region since there is an increase of ns . By slightly increasing
β, we can accommodate both regimes into the constraints for
ns , depending on the λ chosen (upper right panel). It results
in an upward shift in curves for β = 0.25 choice, in which
the shape of curves for each λ is essentially the same. This
changes, however, for higher values of β. Choosing β = 0.5
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Fig. 2 The spectral index ns as a function of Q
, for fixed values of β

and λ = 0.03, 0.05, 0.07, 0.08. As for the values of β, we have β = 0.2
(upper left), β = 0.25 (upper right), β = 0.5 (lower left) and β = 0.7

(lower right). The grey horizontal lines denote the 68%, 95% limits of ns
for Planck TT,TE,EE+lowl+lowE+lensing, ns = 0.9649+0.0042+0.0082

−0.0042−0.0082
[9]

(lower left panel), it is clear how the choice of λ affects the
curves compared to the two previous choices, and the same
goes for β = 0.7 (lower right panel). The main results for
all these choices are the increase of ns to a higher constant
value at Q
 	 1, and the convergence of all lines for a very
low/high Q
, indicating that λ has a negligible effect for
more extreme values.1 Finally, we note that for β ≥ 1/2, it
is in general difficult to achieve concordance with data in the
strong dissipative regime for N
 = 55, which is in conflict
with the restriction for β given in [45]; on the other hand,
there is an easy agreement with the Planck limits, when we
consider inflation taking place in the weak regime.

1 Recently, a new fit for the function G(Q) was found in [76], also for
a cubic dissipation coefficient. We have considered this fit for the β-
exponential model and found that the difference in the results is minimal,
so our conclusions for the model are unchanged.

In Fig. 3, we plot the dependence of the temperature at the
end of inflation with Qend (left panel) and the Q
 − Qend

plane (right panel). Looking at T , we first note that while
the dependence on β is more evident, the impact of λ in
the curves is not as strong as it is in the ns − r plane: we
have almost the same predictions for both values of λ, indi-
cated by the solid and dashed curves. The general behavior
is as follows: if inflation ends in the weak regime, the tem-
perature is high, varying from T ∼ 1013 − 1015 GeV, and
an increase with Qend is noticeable. However, as soon as
Qend ∼ 1, the picture changes completely. In the interval
Qend ∼ 1 − 1000, the temperature decreases by many order
of magnitude, being able to reach T ∼ 109 GeV for β = 0.2
and Qend ∼ 103. As for the impact of β, we see that higher
β will correspond to higher T , but there seems to be a max-
imum value for the temperature for each Qend as the curves
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Fig. 3 On the left panel, we plot the temperature of the thermal bath
in GeV as a function of Qend , for the same values of β as in Fig. 1.
On the right panel, we have the Q
 − Qend plane, indicating inflation
in the weak regime (grey region), strong regime (yellow region), and a

transition from weak to the strong regime during inflation (blue region).
Solid lines correspond to λ = 0.05, while dashed lines correspond to
λ = 0.07

become closer to one another as β increases. Looking now
at the Q
 − Qend plane in the right panel, it is possible to see
the relation between the values of Q with inflation proceed-
ing totally in the weak/strong regime or when a transition
between regimes happens. Curves inside the grey region cor-
respond to a state where inflation happens entirely in the weak
dissipation regime, while the yellow region corresponds to
inflation in the strong regime. Curves represent a transition
from weak to strong regimes are in the blue region, where we
note that Q
 must be at least of order 10−2, and the higher
β increase the parameter space for which the transition can
happen.

Finally, we show in Fig. 4 how the coefficient Cφ (left
panel) and the potential amplitude V0 (right panel) vary for
a wide range of Q
. We remember that Cφ can be estimated
from Eq. (18), while V0 is obtained by fixing the amplitude
of scalar perturbations in Eq. (8). In a supersymmetric imple-
mentation, Cφ is interpreted as directly proportional to the
product of multiplicities of chiral fields X and Y present in
the model [51]. We note that a huge multiplicity is present
in warm inflation models, where in particular, the number
increases sharply in the strong dissipation regime, of order
NX NY ∼ 1015. This result was pointed out in [38], which
is also confirmed here, and this can be seen as a problem
associated with the warm inflation scenario. The different
behavior between values of Q
 is also noticed when one esti-
mates the amplitude of the potential V0, shown in the right
panel of Fig. 4. A decrease of several orders of magnitude
is seen when inflation occurs in the strong regime, ranging
from V0 ∼ 10−23 to V0 ∼ 10−31 for the values of β chosen.

4 Is this model in accordance with the swampland
conjectures?

Since the establishment of quantum gravity theories, such
as string theory, efforts have been made towards finding sce-
narios consistent within this context, including cosmological
models. These continuous attempts ended up giving rise to
what is known today as the swampland conjectures, which
are translated into conditions that can establish bounds in
many models, including scalar field theory-based ones. The
first conjecture was determined from the search for a stable
de-Sitter vacuum in string theory [53,63,64] resulting in the
de Sitter (dS) Swampland criterion. This discussion is impor-
tant in cosmology since we know two periods of accelerated
universe expansion: inflation and dark energy domination.
Both lead the universe to a state close to a de Sitter one.
As more developments were made, other swampland crite-
ria were proposed. The swampland distance conjecture [55]
gives an upper limit on the excursion of the scalar field along
the potential during inflation. These limits are important in
the context of a universe whose acceleration is described by
the evolution of a scalar field, which is (possibly) the case
of inflation, and possible candidates for late-time accelera-
tion, such as quintessence models. A third condition also has
appeared, which restricts sub-Planckian modes from leaving
the horizon during inflation, the Transplanckian Censorship
conjecture (TCC) [77,78]. These conjectures have been used
to restrict inflationary models in the past years. However,
it was seen that the usual picture of canonical, single-field
inflation that leaves a cold universe afterwards is in direct
conflict with all of the conjectures. In this way, if one wants
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Fig. 4 The coefficient Cφ is shown as a function of Q
, for the same values of β as in Fig. 1 (left panel). On the right panel, we have the amplitude
of the potential V0 also as a function of Q
. Once more, solid lines correspond to λ = 0.05, while dashed lines correspond to λ = 0.07

to conciliate slow-roll inflation with more general theories,
it might be necessary to consider significant changes in how
we view the early universe’s evolution.

It is possible to summarize the three criteria as conditions
imposed on an inflationary potential. They are expressed as

– dS conjecture: this criterion limits the slope of a given
scalar potential in a way that the gradient of V must fol-
low

Mp

( |∇φV |
V

)
> a (21)

with a � O(1). We see here the first problem: during
inflation, both slow-roll parameters must be much less
than one, so the simplest picture of inflation cannot satisfy
this conjecture regardless of the model. This condition
favors steep potentials, which are usually unsuitable for
inflation; at the same time, it excludes potentials with
plateaus, which are the most favored by data, such as the
Starobinsky model [60].

– Distance conjecture: this conjecture gives a restriction on
the excursion of the scalar field during inflation; essen-
tially

|Δφ|
Mp

< b, (22)

with b being another constant of order one. It restricts
classes of inflationary models in which inflation happens.
The field excursion is not super-Planckian; in particular,
this conjecture tells that small field models of inflation
might be favored, while large field models, such as those
given by monomial potentials, are disfavored.

– TCC: by placing a limit on the scales that leave the hori-
zon during inflation, one gets a limit on the energy scale
of inflation itself

V 1/4 < 3 × 10−10Mp. (23)

This bound comes from the imposition that scales of the
order of Planck length should not leave the horizon during
inflation. As a result, such limitation results in a tensor-to-
scalar ratio of order r ∼ 10−30, which might be a problem
from the observational standpoint, while stating that the
primordial gravitational wave spectrum is significantly
weaker when compared to the one produced by scalar
perturbations.

Recent works in the literature attempted to fulfill the three
conditions in extensions of the usual inflationary scenario. In
particular, the idea of warm inflation comes as a possibility to
realize inflation while satisfying the swampland conditions.
For instance, by looking at (5), we see that due to the (1+Q)

factor, in the strong dissipative regime, it is possible to have
εV , ηV > 1, as imposed by the dS conjecture, at the same
time that εW , |ηW | � 1, which are the conditions for slow-
roll inflation. Also, the presence of the Γ φ̇ term in Eq. (1)
means that extra friction is being added as the field rolls down
the potential; as a consequence, it can be possible for a larger
class of models to be consistent with the distance conjecture
(Eq. 22).

Figure 5 shows how the warm β-exponential model
behaves when confronted with the swampland conjectures.
We have considered the same range of β as described in
the ns − r plane while fixing λ = 0.05, 0.07, as we have
found that the results are very similar when other values are
considered. We first plot |Vφ/V | in the left panel. While in
the weak dissipation regime (Q
 < 1), the smallness of the
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Fig. 5 The ratio Mp|V,φ |/V , the field excursion Δφ (left panel) and

the potential V 1/4
end /Mp (right panel) as a function of Q
 for the β-

exponential model when the dissipation coefficient is given by Eq. (16).
We have fixed λ = 0.05 (solid lines), λ = 0.07 (dashed lines) and have
considered different β in the range β = 0.2 − 0.7

quantity is guaranteed, as soon as Q
 ≈ 1, it starts rising
to values that can be larger than one. We note that smaller
β leads to |Vε/V | = 1 being reached for a smaller Q
. In
the strong regime where Q
 ≥ 10, the dS conjecture is eas-
ily satisfied for all values of β considered, so we have the
freedom to choose some β that are in concordance with the
Planck constraints on ns and r . Next, we check if the model
satisfies the distance conjecture by showing the field excur-
sion Δφ/Mp as a function of Q
. In the weak dissipation, the
excursion is super-Planckian, but again, when Q
 approaches
unity, Δφ/Mp decreases, so that when Q
 ≥ 10, the field
excursion becomes sub-Planckian, as the dissipation is large
enough to make even a steep potential to behave like a small-
field model. As for the last conjecture, TCC is showed on
the right panel of Fig. 5, where we can see that V 1/4

end /Mp is
almost constant in the weak dissipative regime, but decreases
sharply in the strong regime by many orders of magnitude,
especially for the cubic coefficient case; here, the TCC is
respected for Q
 ≥ 103.

5 Discussion and conclusions

The warm inflation picture has attracted much attention in the
past years as the reheating process is surrounded by many
questions on its realization. This is mainly due to the fact
that it is a difficult epoch to probe and construct consistent
connections with the inflation era from a microscopical per-
spective. Also, well-motivated inflationary models, such as
those given by potentials of monomial and exponential form,
suffer from inconsistency with CMB data. Indeed, when one
looks to inflationary parameters ns and r , some extension
that allows concordance with data to be restored is usu-

ally required. While for instance, a non-minimal coupling
of the inflaton with gravity might alleviate much of these
issues [46,79], it is interesting (and plausible) to consider
a situation where the energy stored in the inflaton is con-
verted to other particles as inflation happens, resulting in a
warm inflationary universe that can lead towards a radiation-
dominated universe afterwards. Another issue related to infla-
tionary models is their agreement with the recently proposed
swampland conjectures [47,65], which result from attempts
to incorporate models based on field theory into general ones
such as string theory. In general, minimally-coupled scalar
field inflationary models are inconsistent with these conjec-
tures due to the essential smallness of the slow-roll parame-
ters for inflation or a large energy scale of inflation. Recent
works [38,47,66] have looked into the conjectures from a
warm inflation perspective. It was found that the three pro-
posed conjectures can be simultaneously satisfied when infla-
tion takes place in a strong dissipation regime. At the same
time, cosmological parameters such as the spectral index
and tensor-to-scalar ratio can be driven into the Planck con-
straints.

In this work, we have considered how the β-exponential
inflationary model [44–46] behaves when we allow dissipa-
tion of the inflaton energy into radiation in the warm inflation
picture. In the original model, for N
 = 50−60, it is not pos-
sible to have a low enough r while satisfying the constraints
for ns [46]. In contrast, in the warm inflation scenario, we
can easily have concordance with data when inflation hap-
pens in the weak dissipation regime for a restricted interval
of β. We have considered a dissipation coefficient, in which
a cubic dependence on the temperature exists. It is found that
both weak and strong dissipation regimes are allowed, and
in particular, the strong regime leads ns to a constant value
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as Q
 increases, with little dependency on the λ parameter.
This case is then viewed favorably in light of the swampland
conjectures, as we have found (see Fig. 5) that all three con-
jectures are satisfied in the strong regime for the values of β

considered.
This topic is far from over and further investigations are

underway. In fact, considering a recently proposed warm
inflation scenario where brane effects are considered for an
exponential potential [66], in which inflation ends more nat-
urally, the swampland conjectures are satisfied while also
providing a connection with the late-time universe as a
quintessence model. We consider it interesting to see how a
deviation from the exponential form might affect the results.
Another interesting and important aspect of our investigation
is the study of how these models, especially in the strong dis-
sipation regime, affect the predictions for the CMB power
spectra. All these questions are being investigated and will
be discussed in an upcoming paper.
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Appendix A: Deriving ns for a given Γ

To obtain the spectral index ns by following Eq. (12), we can
first write Eq. (8) in the form

log Δ2
R = log PR + log

(
1 + 2nBE + f (Q)

T

H

)

+ logG(Q), (24)

where

PR = H2

4π2φ
′2 , f (Q) ≡ 2

√
3πQ√

3 + 4πQ
, (25)

and differentiate everything with respect to N , denoted by
the primes. For the first term of (24), with the help of Eq. (5),
we find that

d log PR
dN

= 2
d log H

dN
− 2

d log φ′

dN
,

= −6εw + 2ηw + 2Q′

1 + Q
.

For the second term, we note that

d

dN

(
1 + 2nBE + f (Q)

T

H

)

=
[

2n′
BE + T

H
f ′ + f

(
T

H

)′]
, (26)

in which

n′
BE = 2eH/T (T/H)′

(eH/T − 1)2(T/H)2 ,

T

H
f ′ =

(
T

H

)
d f

dQ
Q′

=
(
T

H

)
2
√

3π(2πQ + 3)

(3 + 4πQ)3/2 Q′. (27)

Finally, from the last term of (24) we have simply

d logG

dN
= 1

G

dG

dQ
Q′. (28)

Gathering all the terms together, we find that

ns − 1 = −6εw + 2ηw + 2Q′

1 + Q
+ 1

G

dG

dQ
Q′

+ 1(
1 + 2nBE + f (Q) T

H

)
[

2eH/T (T/H)′

(eH/T − 1)2(T/H)2

+ T

H

2
√

3π(2πQ + 3)

(3 + 4πQ)3/2 Q′ + 2
√

3πQ√
3 + 4πQ

(
T

H

)′ ]
.

(29)

To compute ns for a specific Γ , we use the evolution equa-
tions [40,75] for φ and Q that must be substituted in (29):

Q′ = Q

1 + 7Q
(10εV − 6ηV + 8σV ) , (30)

(
T

H

)′
= 2(T/H)

1 + 7Q

(
2 + 4Q

1 + Q
εV − ηV + 1 − Q

1 + Q
σV

)
, (31)

with σV ≡ M2
pV,φ/(φV ).
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Appendix B: Deriving nrun for a given Γ

As the running involves second derivatives, it is useful to
determine first the differential equations for Q′′, ε′

V , η′
V , σ ′

V
and (T/H)′′:

Q′′ = Q(10ε′
V − 6η′

V + 8σ ′
V )

1 + 7Q
+ Q

′2

Q
− 7Q

′2

1 + 7Q
, (32)

ε′
V = 2εV

1 + Q
(2εV − ηV ) , (33)

η′
V = 1

1 + Q

(
2εV ηV − ζ 2

)
, ζ 2 ≡ M2

p
V,φφφV,φ

V 2 , (34)

σ ′
V = 1

1 + Q

(
2εV σV − ηV σ + σ 2

V

)
(35)

(
T

H

)′′
= 2

[
(T/H)′

1 + 7Q
− 7Q′(T/H)

(1 + 7Q)2

] [ (2 + 4Q)εV

1 + Q
− ηV

+ 1 − Q

1 + Q
σV

]
+ 2

(T/H)

1 + 7Q

[2 + 4Q

1 + Q
ε′
V + 4εV

1 + Q
Q′

− (2 + 4Q)εV

(1 + Q)2 Q′ − η′
V − σV

1 + Q
Q′ + 1 − Q

1 + Q
σ ′
V

− (1 − Q)σV

(1 + Q)2 Q′]. (36)

As we approximate the running as nrun � d2 log Δ2
R

dN2 , from 24,
we compute

nrun = d2 log PR
dN 2 + d2 log F

dN 2 + d2 logG

dN 2 , (37)

F ≡ 1 + 2nBE + f (Q)
T

H
, (38)

where the individual terms can be obtained as

d2 log PR
dN 2 = (6εV − 2ηV − 2Q′)

(1 + Q)
Q′

+2η′
V − 6ε′

V + 2Q′′

1 + Q
(39)

d2 logG

dN 2 = Q
′2

G

d2G

dQ2 + dG

dQ

Q′′

G
− (Q′ dG

dQ )2

G2 (40)

d2 log F

dN 2 = F ′′

F
−

(
F ′

F

)2

, (41)

F ′ ≡ 2n′
BE +

(
T

H

)
f ′(Q) − f (Q)

(
T

H

)′
, (42)

F ′′ ≡ 2n′′
BE +

(
T

H

)′
f ′(Q) +

(
T

H

)
f ′′(Q) + (43)

f ′(Q)

(
T

H

)′
f (Q)

(
T

H

)′′
, (44)

f ′(Q) = d f

dQ
Q′, (45)

f ′′(Q) = Q′
[
d2 f

dQ2 Q
′ + d f

dQ

Q′′

Q′

]
. (46)
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