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Abstract We study the renormalization flow of Hilbert–
Palatini gravity to lowest non-trivial order. We find evidence
for an asymptotically safe high-energy completion based on
the existence of an ultraviolet fixed point similar to the Reuter
fixed point of quantum Einstein gravity. In order to manage
the quantization of the large number of independent degrees
of freedom in terms of the metric as well as the connection,
we use an on-shell reduction scheme: for this, we quantize all
degrees of freedom beyond Einstein gravity at a given order
that remain after using the equations of motion at the preced-
ing order. In this way, we can straightforwardly keep track
of the differences emerging from quantizing Hilbert–Palatini
gravity in comparison with Einstein gravity. To lowest non-
trivial order, the difference is parametrized by fluctuations of
an additional abelian gauge field. The critical properties of
the ultraviolet fixed point of Hilbert–Palatini gravity are sim-
ilar to those of the Reuter fixed point, occurring at a smaller
Newton coupling and exhibiting more stable higher order
exponents.

1 Introduction

For the approach to quantizing gravity both the degrees of
freedom to be quantized as well as the correct quantization
method are a matter of intense debate. A priori different
choices could lead to different potentially consistent theories
of quantum gravity ultimately requiring experimental data to
single out the theory realized in nature.

It is well known that – already on the classical level –
very different choices for the degrees of freedom can lead
to the same classical equation of motion, namely Einstein’s
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equation [1–4]. This includes of course the maybe simplest
choice being the metric, but also the vierbein, possibly in
combinations with various forms of connections. Of course,
classical equivalence does not entail quantum equivalence,
therefore different choices might rather be expected to lead
to different quantum theories.

In turn, different choices of degrees of freedom or even
the quantization procedure could finally describe the same
quantum theory if they lead to the same universality class as
for instance identified by a renormalization group analysis. In
discrete approaches this can be indicated by the presence of
a second order phase transition or even quantified in terms of
critical exponents of a corresponding quantum critical point;
in the context of gravity, cf. [5–8].

Research in recent years has accumulated evidence that
such a quantum critical point exists for gravity when using the
metric as the fundamental degree of freedom together with
a (standard) quantization procedure that is able to capture
non-perturbative information. The latter is necessary, since
the quantum critical point corresponds to a fixed point of the
renormalization group at a finite coupling, realizing Wein-
berg’s asymptotic safety scenario for Einstein gravity [9,10].
This Reuter fixed point has been discovered by applying func-
tional renormalization group (RG) methods to gravity [11],
and confirmed in many refined studies, see [12–17] for recent
reviews.

Functional RG methods and a classification of universal-
ity classes [18] are not limited to the metric as the quantum
degree of freedom. In fact, pioneering studies have been per-
formed for Einstein–Cartan theory with the Hilbert–Palatini
action being generalized to the Holst action [19–21] or con-
strained to self-dual connections [22], or for “tetrad only”
formulations [23]. All these works find indications for the
existence of UV fixed points supporting asymptotic safety of
such quantum gravity theories, with the fixed points likely
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representing universality classes different from that of quan-
tum Einstein gravity. In fact rather complex phase diagrams
are partly found being paralleled by the complexity of the
computations involving such a large number of gauge degrees
of freedom. On the other hand, it is interesting to observe that
also reduced versions such as unimodular gravity [24–28] or
conformally reduced gravity [29–32] exhibit UV complete
renormalization group trajectories (see however [33] for a
critical view on conformally reduced gravity.)

A major motivation to study formulations of gravity based
on the metric and the connection is the greater similarity to
gauge theories of particle physics. In addition to this struc-
tural resemblance, also a larger technical toolkit developed
for gauge theories may become available for concrete calcu-
lations; specifically lattice formulations for gravity become
accessible [34,35].

In the present work, we suggest to reduce the amount of
complexity introduced by the large number of gauge degrees
of freedom of a metric-affine formulation by an on-shell
reduction scheme: at a given expansion order, we only quan-
tize those degrees of freedom which remain after using the
equations of motion of the preceeding order. For instance at
lowest order in the curvature (Einstein–Hilbert level), differ-
ent choices of degrees of freedom boil down to the Einstein
equation for the metric; hence the on-shell reduction sug-
gests to quantize only the metric at this level. At higher order
in the curvature, connection degrees of freedom typically
develop their independent dynamics. In the present work, we
will focus on the second-order curvature level where a co-
vector field remains as an independent degree of freedom in
the connection after on-shell reduction. The corresponding
additional action to be quantized is of Maxwell type.

In the asymptotic safety scenario, this on-shell reduction
scheme helps to monitor the quantitative modifications of
the RG flow and of the universality class associated with RG
fixed points in a controlled and systematic way. We observe
a UV-attractive fixed point of Reuter type with more sta-
bilized critical exponents at a smaller value of the Newton
coupling G.

The present paper is organized as follows: in Sect. 2, we
review Hilbert–Palatini gravity to second order in the cur-
vature and apply on-shell reduction in order to identify the
degrees of freedom to be quantized. The correspondingly
quantized theory is studied in Sect. 3 using the functional
RG. Here, we focus on the UV fixed-point structure and deter-
mine the critical parameters in comparison to those of metric
gravity. We conclude in Sect. 4.

2 Hilbert–Palatini gravity

In the Einstein formulation of gravity, the connection is
linked to the metric in the form of the Levi-Civita connection.

By contrast, the Hilbert–Palatini formulation of gravity treats
the metric and the connection as independent degrees of free-
dom. Therefore, the connection can a priori carry additional
degrees of freedom that may or may not be fully linked to the
metric via the equations of motion. In the following, we start
with a general connection and study the on-shell constraints
at increasing orders of curvature.

2.1 General connection on smooth manifolds

Suppose we have a vector field V on a smooth manifold with
metric g and connection �̃. The covariant derivative ∇̃ of this
vector field reads

∇̃μV
α = ∂μV

α + �̃α
μνV

ν . (1)

In the most general case, the connection �̃ can be decom-
posed into the expressions for the Levi-Civita connection
� (Christoffel symbols), contorsion K and displacement L
(though the latter does not have a collectively agreed upon
name [36]),

�̃α
μν = �α

μν + K α
μν + Lα

μν. (2)

The Levi-Civita connection is constructed from the metric,
� = �[g] and can be used to define the standard covariant
derivative ∇ of Einstein gravity

∇μV
α = ∂μV

α + �α
μνV

ν . (3)

The Levi-Civita part of the connection � accounts for cur-
vature through the Riemann tensor defined below. The con-
torsion tensor K is related to Cartan torsion T which cor-
responds to the anti-symmetric part of the connection with
respect to the lower indices,

T α
μν = �̃α

μν − �̃α
νμ. (4)

The displacement tensor L induces non-metricity Q which
is symmetric in the last two indices,

∇̃μgαβ = −Qμαβ. (5)

the linear relation between contorsion K and torsion T , and
analogously for the displacement L and the non-metricity Q,
can be found in the literature [36–38], but are not of relevance
for what follows.

The general connection (2) can be used to define a gen-
eralized Riemann tensor analogously to the pure metric for-
mulation,
[
∇̃μ, ∇̃ν

]
Vσ = R̃ρ

σμνVρ, (6)

taking the familiar form

R̃ρ
σμν = ∂μ�̃ρ

νσ − ∂ν�̃
ρ
μσ + �̃

ρ
μλ�̃

λ
νσ − �̃

ρ
νλ�̃

λ
μσ . (7)

In contrast to the standard case, where the Riemann tensor
is composed out of the metric, we can view R̃ as dependent
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on the metric, the contorsion and the displacement, R̃ =
R̃[g, K , L]. Since the general connection �̃ is not symmetric
in the lower two indices anymore, the generalized Riemann
tensor R̃···· is not anti-symmetric in the first two indices, as
will be important below.

Analogously, we can construct a generalized Ricci tensor
by contracting the first and the third index

R̃σν = R̃ρ
σμν gμ

ρ , (8)

which – contrary to Einstein gravity – is not purely sym-
metric anymore. Contracting this tensor further leads to a
generalized Ricci scalar,

R̃ = R̃σνg
σν. (9)

As in Einstein gravity, we can use these generalized curva-
ture forms to construct curvature invariants and formulate an
action S governing the dynamics of a theory, with the metric,
the contorsion/torsion and the displacement/non-metricity as
fundamental degrees of freedom, S = S[g, K , L]. In a quan-
tized version, all these degrees of freedom have to be inte-
grated out, requiring appropriate gauge fixing also for the
connection degrees of freedom, cf. for instance [19].

2.2 Einstein–Hilbert–Palatini action

Let us focus on a Palatini formulation of gravity starting with
the lowest nontrivial order in the curvature. This corresponds
to the Einstein–Hilbert action (also referred to as Einstein–
Hilbert–Palatini action in order to emphasize the dependence
on the general connection),

S[g, �̃] =
∫

d4x
√
g

1

16πG

(
� − 2R̃

)
. (10)

Classically, the corresponding fields (the metric g and the
connection �̃) are constrained by their equations of motions,
namely

δS

δgμν

!= 0 (11)

which is a partial differential equation for the metric, and
additionally in the Palatini formulation

δS

δ�̃α
μν

!= 0. (12)

This new equation can be interpreted as an equation of motion
for the contorsion K and displacement L . As the derivative
terms turn out to be total derivatives, Eq. (12) is a purely
algebraic equation for K and L . Its general solution in terms
of the general connection �̃ can be written as

�̃α
μν = �α

μν + Aμδα
ν , (13)

with a general co-vector field A as the independent degree of
freedom [39]. This field contributes, for instance, to the trace

of the Cartan torsion, T α
μα = 3Aμ [40,41]. For the discussion

of a relation to the affine Weyl connection, see [42,43].
The generalized curvature tensors in the Palatini formu-

lation can now be expressed in terms of curvature quantities
familiar from ordinary Einstein gravity which derive from the
the Levi-Civita connection and additional terms that depend
on the new vector field A,

R̃ρσμν = Rρσμν + gρσ Fμν (14)

R̃σν = Rσν + Fσν (15)

R̃ = R, (16)

with the tensor F acquiring the form of a Maxwellian field
strength,

Fμν = ∂μAν − ∂ν Aμ. (17)

In Eq. (16) we observe that the generalized Ricci scalar
reduces to the standard Ricci scalar on shell. Therefore, the
classical action (10) is on-shell equivalent to the Einstein–
Hilbert action of classical GR, see [39,44,45] for recent
detailed discussions. Since each component Aμ ∈ R, the
Einstein–Hilbert–Palatini action has an R

4 gauge invariance.
Interestingly, the A field appears in the form of a Maxwell-

type field strength tensor F as the anti-symmetric part of the
generalized Ricci tensor. At higher orders in the curvature, we
can thus expect that more general gravity theories of higher
order in the curvature will exhibit Maxwellian gauge invari-
ance. This implies that the R

4 invariance for this part of the
general connection reduces to a U (1) invariance at higher
orders.

Let us therefore consider terms to second order in the cur-
vature. More specifically, we concentrate on terms that can
be constructed from a Ricci-like tensor. Since the general-
ized Riemann tensor R̃···· is not anti-symmetric in the first
two indices, we can construct a second Ricci-like tensor of
rank two L̃ by instead contracting the second and the fourth
index

L̃σν = gρμ R̃σρνμ = Rσν − Fσν. (18)

The tensors L̃ and R̃ obviously coincide in the limit A → 0,
reducing to the ordinary Ricci tensor R. In the general case,
we can use both curvature tensors for the construction of
invariants, yielding

R̃σν R̃
σν = L̃σν L̃

σν = RσνR
σν + FσνF

σν, (19)

R̃σν L̃
σν = RσνR

σν − FσνF
σν. (20)

We observe that only two combinations are independent. A
general contribution to the action can thus be spanned by
the linear combination of the two independent invariants. On
shell, we have the equivalence for general couplings σ 1, σ 2:

σ 1 R̃μν R̃μν + σ 2 R̃μν L̃μν = σ R RμνRμν + σ F FμνFμν.

(21)
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The corresponding couplings in front of the standard Ricci-
squared and Maxwell terms satisfy

σ R = σ 1 + σ 2 (22)

σ F = σ 1 − σ 2. (23)

Equation (21) illustrates that a second order curvature the-
ory built from the generalized Ricci-like tensors is on-shell
equivalent to a second-order metric theory plus an abelian
gauge field. Of course, a further independent second-order
invariant can be formed by suitably squaring the generalized
Riemann tensor. As is obvious from Eq. (14), this boils down
to a square of the Riemann tensor and a Maxwell term as well.
In the following, we ignore such terms to quadratic order in
the Riemann tensor for simplicity.

3 Quantum Hilbert–Palatini gravity

The preceding observations on the classical level suggest to
study the quantized version of Hilbert–Palatini gravity in the
on-shell reduction scheme: we use the degrees of freedom
of the on-shell form found for the general connection to first
order in the curvature, i.e., Eq. (13), to quantize the theory to
second order in the curvature. In practice, this corresponds to
extending results for quantum Einstein gravity to this order
by including a Maxwell-type gauge field.

3.1 Renormalization flow of Hilbert–Palatini gravity

We now investigate the renormalization flow of the gravita-
tional effective action �k[g, �̃] in the theory space spanned
by the Hilbert–Palatini action including the terms to quadratic
order in Ricci-like curvature tensors as discussed above,

�gr,k[g, �̃] =
∫

d4x
√
g

1

16π Ḡk

×
[
�̄k − 2R̃ + σ̄ 1

k R̃
μν R̃μν + σ̄ 2

k L̃
μν R̃μν

]
.

(24)

Here, k denotes a renormalization scale at which the theory
is considered, and all coupling constants are considered to
be k dependent. Now, instead of considering all degrees of
freedom of the general connection �̃, we perform the on-
shell reduction of Eq. (13) which allows us to understand the
action as a functional of the metric and the abelian gauge
field,

�gr,k[g, A] =
∫

d4x
√
g

1

16π Ḡk

×
[
�̄k − 2R + σ̄ R

k RμνRμν + σ̄ F
k FμνFμν

]
.

(25)

We are interested in the scale dependence of the running
Newton coupling Ḡk , the cosmological parameter �̄k , the
higher curvature coupling σ̄ R

k , and the wave function renor-
malization Z A

k of the abelian field strength defined by

Z A
k = σ̄ F

k

4π Ḡk
. (26)

For a treatment of the gauge degrees of freedom, we use the
background field formalism and perform a linear split of the
metric g and the gauge field A into fluctuations around their
respective background fields which are denoted by a bar

gμν = ḡμν + κ̄hμν, (27)

Aμ = Āμ + aμ, (28)

with the abbreviation

κ̄2 = 32π Ḡ. (29)

The rescaling of the metric fluctuation h by the quantity κ̄

ensures a standard canonical mass dimension of the field. For
the Faddeev–Popov quantization, we include gauge-fixing
terms

�gf,k = 1

2

∫
d4x

√
ḡ

(
1

αgr
FμFμ + 1

αA
GG

)
(30)

with gauge parameters αgr and αA. As gauge-fixing condi-
tions for the metric sector F and the abelian gauge sector G,
we use

Fμ = √
2κ̄

(
ḡμκ ∇̄λ − 1 + β

4
ḡκλ∇̄μ

)
hκλ (31)

G =
√
Z A
k

(∇̄μa
μ
)
, (32)

where β denotes another gauge parameter of the metric sec-
tor. Also including the corresponding ghost terms �gh,k for
both sectors, the total effective (average) action reads

�k[�̄,�] = �gr,k + �gf,k + �gh,k . (33)

Here, �̄ and � denote collective field variables, representing
the background and fluctuations fields, respectively,

(�) = (
h, a, c̄, c, b̄, b

)
(34)(

�̄
) = (

ḡ, Ā
)

(35)

with c̄ and c being the (anti-)ghost fields for the gravitational
sector and b̄ and b being the (anti-)ghost fields for the abelian
gauge sector.

We quantize the system, using the Wetterich equation [46–
49],

∂t�k[�̄,�] = 1

2
STr

[(
�

(2)
k [�̄,�] + Rk

)−1
∂tRk

]
, (36)
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to compute the renormalization flows of the renormalized,
dimensionless couplings denoted without a bar

Gk = k2Ḡk, �k = 1

k2 �̄k, σ R
k = k2σ̄ R

k , (37)

For simplicity, we focus on the Landau gauge, choosing

αA → 0, (38)

αgr → 0, (39)

β = 0, (40)

see [50–53] for studies of gauge or parametrization depen-
dencies in the metric context. For the computation of the
traces and the identification of the corresponding operators
on both sides, we use a spherical background ḡ, and a covari-
antly constant background field Ā. For the details of the reg-
ularization around the scale k controlled by the regulator Rk

in Eq. (36), we choose a Type I regularization scheme, fol-
lowing the computation of [54]. Computations that include
further invariants and higher order curvature terms are, in
principle, possible, e.g., along the lines of [54–63].

Using the flows for the dimensionless, renormalized cou-
plings, the wave function renormalization Z A

k occurs only
through the corresponding anomalous dimension

ηA = −k∂k Z A
k

Z A
k

, (41)

which is determined by an algebraic equation. The flows of
the couplings as driven by the metric fluctuations has been
computed in [54]. These are amended by contributions from
the abelian vector field which we evaluate analogously to
[64], but to second order in the curvature. The anomalous
dimension of the abelian gauge field subject to metric fluc-
tuations has been computed in [26]; see the Appendix.

We collect all running couplings into �u which is a vector
in the truncated theory space

�uk =
⎛
⎝
Gk

�k

σk

⎞
⎠ , (42)

allowing for a compact notation for the flow equations

�β (�u) =
⎛
⎝

βG

β�

βσ

⎞
⎠ =

⎛
⎝
k∂kGk

k∂k�k

k∂kσk

⎞
⎠ . (43)

The explicit flows are summarized in the Appendix. We are
specifically interested in fixed points �u� of the RG flow which
satisfy

�β (�u�)
!= 0. (44)

In order to characterize the fixed points, we linearize the flow
equations around the fixed point and determine the critical

Table 1 Fixed-point solutions and critical exponents in second order
truncation for Hilbert–Palatini gravity (this work) and metric gravity
for the present truncation [54]

Palatini gravity (this work) Metric gravity [54]

G� 1.132 1.467

�� 0.214 0.171

σ� 0.326 0.339

θ1,2 2.057 ± 3.195 ·i 1.627 ± 2.570 ·i
θ3 12.780 21.232

ηA,∗ −0.0924 –

exponents related to the eigenvalues of the Jacobian (stability
matrix) of the expansion,

{θ1, θ2, θ3} = −eig
( �∇�u ⊗ �β

)∣∣∣�u=�u�

. (45)

Positive critical exponents characterize RG relevant direc-
tions which are attracted by the fixed point towards the UV.
These directions determine the long-range properties of the
theory towards the IR and correspond to physical parameters.

3.2 Results

The fixed point equations (44) turn out to be rational equa-
tions in the couplings, see the Appendix, and can be solved
analytically. In addition to the Gaußian fixed point, we find
five non-Gaussian fixed points. Discarding those with a
negative Newton coupling for physical reasons, those with
�∗ > 1

2 which is beyond a singularity in the graviton propa-
gator, and those with very large values for G∗ which we con-
sider as artifacts of the approximations involved, we end up
with one viable fixed point the quantitative results of which
are listed in Table 1.

For comparison, we also list the results for the Reuter
fixed point in pure metric gravity obtained in the analogous
approximation as obtained in [54]. In general, we observe
that the results are rather similar to one another which we
interpret as evidence that a direct analogue of the Reuter
fixed point in metric gravity also exists in on-shell reduced
Hilbert–Palatini gravity with additional dynamical degrees
of freedom in the general connection. For comparison, we
plot the fixed point positions projected onto the G,� plane
in Fig. 1. The fixed point labeled as “EH” marks the Reuter
fixed point in metric gravity in the lowest-order Einstein–
Hilbert truncation. Upon inclusion of terms quadratic in the
Ricci tensor, this fixed point moves a bit to larger values of
the coupling parameters (labeled by “Ric2” in the figure and
listed in the second column of Table 1). The position of the
corresponding fixed point in Hilbert–Palatini found in this
work is labeled by “HP” in Fig. 1.
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Fig. 1 Fixed-point positions projected onto theG,�plane. The orange
circle and red diamond represent metric gravity in the Einstein–Hilbert
truncation (EH) and its extension to quadratic order in the Ricci tensor
(Ric2) [54], while the blue square represents Hilbert–Palatini gravity
(HP) to the second order in the Ricci tensor found in this work using
on-shell reduction

Inspecting the results of Table 1 more closely, we observe
that specifically the fixed-point value of the Newton cou-
pling is somewhat smaller. This can serve as an indication
that a quantum gravity theory with independent connection
variables may more easily be compatible with weak-gravity
bounds [65–75] which arise from the demand for gravity-
matter systems to be compatible with particle-physics obser-
vations.

While the leading critical exponents become somewhat
larger in Hilbert–Palatini gravity, the most decisive change
occurs for the third critical exponent θ3 which becomes much
smaller by almost a factor of 2. The story of this critical
exponent is somewhat involved: already in the first analysis
of the asymptotic safety scenario at the quadratic curvature
order [55], this exponents was found to be rather large which
seemed to contradict the expected hierarchy of decreasing
critical exponents for higher order operators. In fact, subse-
quent higher-order truncations revealed that this large value
θ � 20 is a truncation artifact [76–78], stabilizing at O(1) if
computed at higher order. In the light of these findings, we
interpret the reduction of θ3 by a factor of 2 as a hint that
Hilbert–Palatini gravity may not be so severely affected by
the truncation artifact.

It is interesting to observe that the anomalous dimension
of the U(1) vector field at the fixed point ηA,∗ is negative. This
is in agreement with studies of the influence of gravitational
fluctuations on (non-)abelian gauge fields, where (depending
on the matter sector) ηA,∗ < 0 can go along with either (i)
an asymptotically free gauge sector even for abelian gauge
theories or (ii) an asymptotically safe gauge sector with a
higher degree of predictivity [79–81]. Both scenarios indicate
that the fluctuations of the additional degrees of freedom
in the connection do not induce new UV problems such as

Fig. 2 Flow diagram in the theory space spanned by the couplings �

and G with the third coupling set to its UV fixed-point value σ�. The
red dot represents the non-Gaussian UV fixed-point and the blue dot
the Gaussian IR fixed-point. The arrows flow towards the IR

Landau pole singularities despite their similarity to abelian
gauge theories in the on-shell reduction scheme.

For the physical validity of the fixed point, a crucial ques-
tion is as to whether an RG trajectory exists that connects the
high-energy fixed-point regime with the regime of classical
gravity where the dimensionful renormlized Newton cou-
pling and cosmological constant are indeed constant over a
wide range of scales (higher order curvature couplings are
not tightly constraint by observations). For this, an RG tra-
jectory must exist that emanates from the UV fixed point
and passes by sufficiently near the Gaussian fixed point for
G and � such that they satisfy canonical scaling. The fact
that such trajectories exist is illustrated by the stream plot in
the G,� plane (evaluated at σ = σ∗) in Fig. 2 where the
arrows indicate the RG flow towards the IR. We conclude
that our findings support the existence of a UV-complete RG
trajectory in quantum Hilbert–Palatini gravity that features a
long-range regime where classical GR holds as an effective
low-energy theory.

4 Conclusions

We have analyzed the renormalization flow of Hilbert–
Palatini gravity using the functional renormalization group.
Our study provides evidence for the existence of a non-
Gaussian UV fixed point similar to the Reuter fixed point of
metric gravity. This result is based on an analysis of an expan-
sion of the action in terms of curvature invariants including
squares of generalized Ricci-like tensors and uses an on-shell
reduction scheme that allows to gradually include the addi-
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tional degrees of freedom introduced by a general connection
in comparison to a pure metric formulation.

The discovered fixed point supports the existence of UV-
complete RG trajectories in Hilbert–Palatini gravity within
an asymptotic safety scenario. Quantitatively, the fixed point
occurs at coupling values similar to those of metric gravity. A
similar comment applies to the critical exponents – although
we even find indications for a larger degree of stability under
the increase of the expansion order. Importantly, there exist
RG trajectories emanating from this fixed point which can be
connected to a low-energy regime with the long-range limit
corresponding to Einstein’s classical GR.

Within our on-shell reduction scheme, the additional
degrees of freedom in the general connection reduce to a
vector field that is related to the trace of the Cartan torsion.
In our present truncation, the vector field features a local U(1)
invariance and thus contributes similarly to an abelian gauge
field. This observation holds true for any truncation built from
local curvature invariants of the generalized Riemann tensor.

To higher-orders in the on-shell reduction scheme and
the curvature expansion, we expect that further additional
degrees of freedom acquire their own dynamics and start
to contribute to the flow. At the present order, they drop
out, because their equation of motion is algebraic and their
action corresponds to that of simple quadratic mass terms.
Therefore, we expect that their dynamics at higher orders
corresponds to that of massive modes. This does not only
suggest that they decouple towards the IR, but are also likely
to contribute to the UV only at the prize of corresponding
mass suppression factors. This observation justifies to con-
sider the on-shell reduction scheme as a quantitatively con-
trolled expansion scheme, provided the underlying curvature
expansion scheme has satisfactory convergence properties
for observables.

While the differences to metric gravity as found in this
work are comparatively small, the question remains as to
whether the additional connection degrees of freedom exert
a stronger influence on other sectors. In particular, since
the additional field after on-shell reduction is a vector field
resembling an abelian gauge field, a possible impact on the
matter sector in the fixed-point regime or beyond is conceiv-
able. Towards low-energies, this degree of freedom has been
discussed as a candidate for dark matter (dark photon) [82].
A particularly relevant question for the high-energy regime
where gravity is non-perturbative refers to possible conse-
quences of this degree of freedom for the realization of sym-
metries such as chiral symmetry of fermionic matter particles
[83–88]. The latter is closely related to the existence of light
fermions in nature which are an observational fact that needs
to be supported also by the quantum gravitational sector.

At this point, it should be emphasized that we have treated
all couplings in our truncation as independent. This has facil-
itated a direct comparison with a large body of literature on

metric gravity. However, this implies that potentially inessen-
tial couplings [10,89] are treated on the same footing as
essential couplings. Recently, a functional RG scheme has
been suggested to remove inessential couplings [90] and has
already been applied to gravity [91,92]. A similar procedure
could be applied to our results, presumably removing one of
the couplings in the metric sector.

Finally, we believe that our on-shell reduction scheme
can also be useful in further formulations of quantum grav-
ity with different and/or additional degrees of freedom. An
example would be given by “tetrad-only” formulations [23]
or generalizations of Hilbert–Palatini gravity using the spin-
base invariant formalism [93]. In the latter case, it has been
shown that on-shell reduction of a generalized spin connec-
tion would entail two vector fields [94], presumably with
analogous consequences for the construction of an asymp-
totic safety scenario as found in the present work.

Beyond quantum gravity, on-shell reduction is a rather
obvious scheme in functional RG approaches to supersym-
metric theories [95]. In this case, on-shell reduction elimi-
nates the auxiliary field(s) that are introduced for a superfield
formulation in superspace. While the functional RG can be
employed both in the on-shell as well as the off-shell case,
the off-shell formulation is advantageous for the descrip-
tion of phase transitions in connection with order parameters
related to the off-shell sector [96–99]. As a word of caution,
it may therefore be advisable not to use the on-shell reduction
scheme for systems in which the off-shell sector is relevant
for critical phenomena.
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Appendix A: Flow equations

The anomalous dimension for an abelian gauge field ηA has
been computed in Appendix D of Ref. [26] and expressed in
our notation reads

ηA = −G(10 − 40� + 7σ)

18π(1 − 2� + σ)2 . (A.1)

The flow equations for the three remaining couplings �,G
and σ have been computed along the lines of [54]. The right-
hand side of the Wetterich equation – labeled as I in [54] – is
extended by the contributions from the abelian gauge field to
quadratic order in the curvature according to [12]. The final
results for the flow equations are

β� = − A�

B�

, βG = AG

BG
, βσ = 2

Aσ

Bσ

, (A.2)

with

A� = −432π2G2(−2� + σ + 1)2 · A(2)
� − 67184640π4�

×(4� + 6σ − 3)3(−2� + σ + 1)5 + G4 · A(4)
�

+31104π3G(−2� + σ + 1)2 · A(1)
� + 3πG3 · A(3)

� (A.3)

A(1)
� = −27�

(
16200σ 6 + 90996σ 5 − 92998σ 4

−145681σ 3 + 120465σ 2 − 8599σ − 5701
)

+622080�7 + 128�6(9000σ − 15743) − 32�5

×
(

71460σ 2 + 48998σ − 87891
)

+18�2
(

79200σ 5 − 188908σ 4 − 502556σ 3

+ 553149σ 2 − 80446σ − 25643
)

+12�3
(

101880σ 4 + 825560σ 3

−1166136σ 2 + 173151σ + 96557
)

−8�4
(

483840σ 3 − 1212552σ 2 + 53236σ + 279421
)

+7290
(

2σ 2 + σ − 1
)2 (

20σ 2 + σ − 4
)

(A.4)

A(2)
� = 5633536�6 + 64�5(463464σ − 478897)

+32�4
(

865786σ 2 − 3584586σ + 1918663
)

+27�
(

79720σ 5 + 712632σ 4

−2374666σ 3 − 1147514σ 2 + 1342848σ − 200281
)

+36�2
(

160900σ 4 + 1825044σ 3

+1414833σ 2 − 3232750σ + 848251
)

−243
(

41500σ 5 − 43496σ 4 + 14055σ 3

−31589σ 2 + 5968σ + 1608
)

−12�3
(

2566696σ 3 + 5505748σ 2

−13621200σ + 5113385
)

(A.5)

A(3)
� = −54�

(
242816σ 6 − 43621136σ 5

−105741110σ 4 − 33856598σ 3 + 65125975σ 2

−58567640σ + 19071545)

−81
(

3694416σ 6 + 14436454σ 5 + 16191029σ 4

−889985σ 3 − 4324109σ 2 + 5270879σ − 1603988
)

+36�2
(

3194560σ 5 − 152974904σ 4

−131239628σ 3 + 194163574σ 2

−197711957σ + 83407825)

×106823680�7 + 512�6(387008σ − 938935)

−64�5
(

661408σ 2 + 23286680σ − 1885541
)

−24�3
(

12370624σ 4 − 146478720σ 3 + 172896708σ 2

−225254630σ + 165900405)

+16�4
(

24289856σ 3 + 27106560σ 2

+18900738σ + 133505315) (A.6)

A(4)
� = 67230720�5 + 128�4(578163σ − 1781875)

−16�3
(

2661552σ 2 + 8298109σ − 18340280
)

+27
(

1232336σ 5 + 5064046σ 4 + 5332307σ 3

+620285σ 2 − 500522σ − 193960
)

−18�
(

15761360σ 4 + 36304598σ 3

+6154946σ 2 − 3194187σ − 2801570
)

+12�2
(

44960536σ 3 + 7553626σ 2

+425125σ − 14839910
)

(A.7)

B� = 216π2(−2� + σ + 1)2 ·
[
155520π2

(
8�2 + 8�σ

−10� − 6σ 2 − 3σ + 3
)3 + G2 · B(2)

� + 144πG · B(1)
�

]

(A.8)

B(1)
� = 101248�5 + 64�4(4693σ − 7716) + 8�3

×
(

27216σ 2 − 180968σ + 119287
)

+27
(

3012σ 5 + 9284σ 4 + 11483σ 3 − 26775σ 2

+15752σ − 2887
)

−18�
(

14444σ 4 + 17728σ 3 − 99747σ 2

+94133σ − 23561
)

+12�2
(

12640σ 3 − 106428σ 2 + 201663σ − 75629
)

(A.9)

B(2)
� = 334208�4 + 32�3(8839σ − 14089) + 48�2

×
(

487σ 2 + 49392σ − 11720
)
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−27
(

51700σ 4 + 197344σ 3 + 129897σ 2

−108638σ + 13984

)

+18�
(

230868σ 3 + 155580σ 2 − 325499σ + 57664
)

(A.10)

AG = 2G(4� + 6σ − 3)3
[
−3 · A(1)

G · A(2)
G

+G2 · A(3)
G · A(4)

G

]
(A.11)

A(1)
G = 30πG(4� + 6σ − 3)2

×
(
−6�(5σ + 3) + 9σ 2 + 44σ + 25

)

−54πG
(

4�(4σ − 3) + 72σ 2

−46σ + 9) (−2� + σ + 1)2

+243πG(4� + 6σ − 3)2(−2� + σ + 1)2

−432π2(4� + 6σ − 3)2(−2� + σ + 1)2

×G2(4� + 6σ − 3)2(40� − 7σ − 10) (A.12)

A(2)
G = −6G

(
496�2 + 24�(22σ − 31) − 9

×
(

276σ 2 + 44σ − 31
))

(−2� + σ + 1)3

+5G(4� + 6σ − 3)3
(

116�2 − 4�(19σ + 129)

+24σ 2 + 118σ + 469
)

+1080π(−4� − 6σ + 3)3(−2� + σ + 1)3 (A.13)

A(3)
G = 24(4� + 15σ − 3)(−2� + σ + 1)2

+5(4� + 6σ − 3)2(20� − 7σ − 22) (A.14)

A(4)
G = 54π

(
16�2(62σ + 29) + 24�

×
(

4σ 2 + 86σ − 29
)

+ 9
(
−1192σ 3

+788σ 2 − 234σ + 29
))

(−2� + σ + 1)3

+90π(−4� − 6σ + 3)3
(

4�2(29σ − 1) − 2�

×
(

43σ 2 + 351σ + 178
)

+ 44σ 3 + 117σ 2

+822σ + 499
)

−G(−4� − 6σ + 3)3(−40� + 7σ + 10)(−2� + σ + 1)

+7038π(−4� − 6σ + 3)3(−2� + σ + 1)3 (A.15)

BG = 9π(−4� − 6σ + 3)5(−2� + σ + 1)2

×
[
−155520π2

(
8�2 + 8�σ

−10� − 6σ 2 − 3σ + 3
)3

+G2 · B(2)
G + 144πG · B(1)

G

]
(A.16)

B(1)
G = 101248�5 + 64�4(4693σ − 7716)

+8�3
(

27216σ 2 − 180968σ + 119287
)

+27
(

3012σ 5 + 9284σ 4 + 11483σ 3

−26775σ 2 + 15752σ − 2887
)

−18�
(

14444σ 4 + 17728σ 3

−99747σ 2 + 94133σ − 23561
)

+12�2
(

12640σ 3 − 106428σ 2 + 201663σ − 75629
)

(A.17)

B(2)
G = −334208�4 − 32�3(8839σ − 14089)

−48�2
(

487σ 2 + 49392σ − 11720
)

+27
(

51700σ 4 + 197344σ 3

+129897σ 2 − 108638σ + 13984
)

−18�
(

230868σ 3 + 155580σ 2 − 325499σ + 57664
)

(A.18)

Aσ = −1399680π3σ(−2� + σ + 1)5

×(4� + 6σ − 3)3 + 9πG2(−2� + σ + 1)2 · A(2)
σ

−648π2G(−2� + σ + 1)2 · A(1)
σ + G3 · A(3)

σ (A.19)

A(1)
σ = −27

(
16200σ 7 + 32644σ 6

−41054σ 5 − 133133σ 4 + 105227σ 3

+29329σ 2 − 41471σ + 8812
)

+18�
(

79200σ 6 − 182460σ 5 − 431284σ 4

+633841σ 3 + 11688σ 2 − 255583σ + 74494
)

+12�2
(

101880σ 5 + 826616σ 4

−1214152σ 3 + 27963σ 2 + 743483σ − 278368
)

−8�3
(

483840σ 4 − 1152328σ 3

−432924σ 2 + 1510489σ − 629598
)

×512�6(1215σ − 1564) + 128�5

×
(

9000σ 2 − 37931σ + 23614
)

−32�4
(

71460σ 3 + 126606σ 2 − 340887σ + 156880
)

(A.20)

A(2)
σ = 27

(
79720σ 6 + 174652σ 5

−1081722σ 4 + 689497σ 3 + 249706σ 2

−327888σ + 72432
)

+18�
(

321800σ 5 + 1596732σ 4

−2697526σ 3 + 781767σ 2 + 915448σ − 386209
)

−24�2
(

1283348σ 4 + 242426σ 3

+987572σ 2 − 319735σ − 233846
)

×128�5(44012σ + 27247) + 128�4

×
(

231732σ 2 + 1394σ − 75545
)

+8�3
(

3463144σ 3 − 3908896σ 2
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−2731276σ + 691313
)

(A.21)

A(3)
σ = 27

(
30352σ 7 + 131896σ 6

+424260σ 5 + 105248σ 4 − 509251σ 3

+49896σ 2 + 147724σ − 42080
)

−18�
(

399320σ 6 + 1353488σ 5

+1610334σ 4 − 4440304σ 3 + 753902σ 2

+1625577σ − 561570
)

+24�2
(

773164σ 5 + 1232404σ 4

−6465153σ 3 + 3676846σ 2 + 2410429σ − 1353600
)

−8�3
(

3036232σ 4 − 10230572σ 3

+19821964σ 2 + 2913489σ − 6181090
)

−5120�6(1304σ + 189) − 128�5

×
(

96752σ 2 − 253283σ − 94070
)

+64�4
(

41338σ 3 + 1428338σ 2 − 555863σ − 578655
)

(A.22)

Bσ = 9π(−2� + σ + 1)2
[
155520π2

×
(

8�2 + 8�σ − 10� − 6σ 2 − 3σ + 3
)3

+G2 · B(2)
σ + 144πG · B(1)

σ

]
(A.23)

B(1)
σ = 101248�5 + 64�4(4693σ − 7716)

+8�3
(

27216σ 2 − 180968σ + 119287
)

+27
(

3012σ 5 + 9284σ 4 + 11483σ 3

−26775σ 2 + 15752σ − 2887
)

−18�
(

14444σ 4 + 17728σ 3

−99747σ 2 + 94133σ − 23561
)

+12�2
(

12640σ 3 − 106428σ 2 + 201663σ − 75629
)

(A.24)

B(2)
σ = 334208�4 + 32�3(8839σ − 14089)

+48�2
(

487σ 2 + 49392σ − 11720
)

−27
(

51700σ 4 + 197344σ 3

+129897σ 2 − 108638σ + 13984
)

+18�
(

230868σ 3 + 155580σ 2 − 325499σ + 57664
)

(A.25)
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