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Abstract We compare two approaches for determining the
generation of lepton asymmetry during production and decay
of quasi-degenerate neutrinos, namely the density matrix for-
malism and a recent proposal which does not involve any
counting of neutrino number densities and is based on plug-
ging the resummed propagator in a quantum field theory
model for neutrino oscillations. We show numerically and
analytically that they are almost equivalent for small mass
splittings and also discuss the hierarchical limit. The com-
parison, performed in a simple scalar toy model, helps to
understand several issues that have been discussed in the lit-
erature.

1 Introduction

Quasi-degenerate exotic neutrinos allow for low-scale lepto-
genesis mechanisms that may be tested in current and near
future experiments. More specifically, in the type I seesaw
model the baryon asymmetry of the universe can be gen-
erated in the freeze-out of Majorana neutrinos with typical
masses around O (

102 − 103 GeV
)
, and also in the freeze-in

of much lighter neutrinos, with masses even below the GeV
scale. The former mechanism is commonly known as reso-
nant leptogenesis [1] and the latter as baryogenesis via neu-
trino oscillations (or ARS leptogenesis) [2,3]. Both mecha-
nisms have been analyzed with different formalisms, see e.g.
[4], [5], and Sect. II of [6] for comprehensive reviews and
references.

Indeed the treatment of CP violation in baryogenesis mod-
els with quasi-degenerate neutrinos and its implementation
in transport equations is not trivial and has actually been dis-
cussed over several decades. Some points of concern include

a e-mail: jracker@unc.edu.ar (corresponding author)

the proper calculation of the CP asymmetry in neutrino
decays to avoid a divergence in the limit of equal masses (and
particularly in the double degenerate limit of equal masses
and couplings), the distinction and interplay of two sources of
CP violation (mixing and oscillations), and the joint analysis
of freeze-in and freeze-out leptogenesis with a single set of
kinetic equations valid for any spectrum of the heavy neutrino
masses (cf. [6–20]). As a matter of fact, there are differences
in the literature regarding these issues, like in the regulators
for the decay asymmetry (reviewed e.g. in [4]), in the rela-
tive sign of the contributions from mixing and oscillations
(compare [11–14] with [17–19]), in the existence of an inter-
ference term between mixing and oscillations (compare [11–
13] with [14,17,19]), and in the set of kinetic equations (cf.
[11,16]). Note in particular that for a hierarchical spectrum
of neutrino masses, the standard classical approach requires
the inclusion of real intermediate state (RIS) subtracted rates
to be consistent with unitarity, which are present in [11] but
not in [16] (although the correct hierarchical limit is claimed
to be obtained in both works, see also [17–19]).

Motivated by these considerations we compare in this
work two different approaches to freeze-in and freeze-out
leptogenesis, namely the one based on quantum kinetic equa-
tions for matrices of densities and the one proposed in [17].
The density matrix approach (DMA), like the one used in
[6,16] to study jointly freeze-in and freeze-out leptogenesis,
is based on a generalization of the Sigl and Raffelt formal-
ism [21] to include heavy neutrinos, and can also be derived
under some approximations from non-equilibrium quantum
field theory (see e.g. [8,10,18,22]). In the approach pro-
posed in [17], an expansion around the complex poles of
the resummed one-loop propagator is plugged into a quan-
tum field theory model of neutrino oscillations, in order to
obtain time dependent probabilities for lepton number violat-
ing processes. The CP asymmetry obtained from these proba-
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bilities is suitably integrated over time in order to get a source
term for the evolution of the lepton asymmetry. Given that in
[17,19] we have employed an external wave packet model for
neutrino oscillations [23,24] (following [25]), we will refer to
it as the external wave packet approach (EWPA). The EWPA
is particularly transparent regarding unitarity (which is a key
principle to guide understanding), because no counting of the
heavy–unstable–neutrino states is performed.

The issues we are interested in discussing can be captured
in a simple scalar toy model, consequently we organize this
work as follows: In Sect. 2 we review the main results from
[17,19] and work out the kinetic equations in the DMA for the
scalar toy model, then in Sect. 3 we compare both approaches
and discuss the results, finally we conclude in Sect. 4.

2 Implementation of two approaches in a scalar toy
model

We will consider a simple scalar toy model which has often
been used to study basic aspects of leptogenesis with quasi-
degenerate neutrinos. The particle content is given by one
complex and two real scalar fields, denoted by b and ψi (i =
1, 2), respectively. The Lagrangian, in the basis where the
mass matrix of the real scalars is diagonal, can be written as

L = 1

2
∂μψi ∂μψi − 1

2
ψi M

2
i ψi + ∂μb̄ ∂μb − m2 b̄b

− hi
2

ψi bb − h∗
i

2
ψi b̄b̄ − λ

2 · 2
(b̄b)2 . (1)

The b-particles play in this toy model the analogous role
that leptons play in standard leptogenesis, hence they will be
referred to as “leptons”, whose mass m will be neglected for
simplicity. Lepton number is violated by the cubic Yukawa
interaction terms involving the ψi , to be called “neutrinos”
henceforth. For definiteness we will take ψ2 to be heavier
than ψ1, i.e. M2 > M1. The last term is a quartic interaction
which does not violate lepton number, therefore it will not
appear explicitly in our analysis, although we note that it
could be used as a way to localize the leptons and thus satisfy
the conditions to have oscillations [25].

Next we describe two approaches that can be implemented
to study the production of lepton asymmetry in this model.

2.1 External wave packet approach

The EWPA, proposed in [17] and extended to highly degen-
erate states in [19], proceeds in three steps: (1) expansion
around the complex poles of the resummed propagator, (2)
calculation of a time dependent CP asymmetry between lep-
ton number violating processes using a quantum field theory
model for neutrino oscillations, and (3) integration over time

of this CP asymmetry to obtain a source term for the evo-
lution of the lepton asymmetry. Below we extract the main
formulae from [19] that will be needed in this work.

The resummed one-loop propagator matrix, G, is given
by iG−1(p2) = p21 − M2(p2), with

M2(p2) =
(
M2

1 + �11(p2) �12(p2)

�21(p2) M2
2 + �22(p2)

)
, (2)

and

�i i (p
2) = |hi |2

(4π)2

[

1 + ln
p2

M2
i

− p2

M2
i

− iπ

]

,

�12(p
2) = �21(p

2) = Re
[
h∗

1h2
]

(4π)2

×
⎡

⎢
⎣
M2

2 ln p2

M2
1

− M2
1 ln p2

M2
2

− p2 ln
M2

2
M2

1

M2
2 − M2

1

− iπ

⎤

⎥
⎦ ,

(3)

with i = 1, 2. The propagator can be expanded around the
two complex poles following [26], namely G � ZT �BW Z,
with

�BW = i

(
(p2 − M2

a)
−1 0

0 (p2 − M2
b)

−1

)
,

Z =
( √

Z1
√
Z1Z12√

Z2Z21
√
Z2

)
, (4)

and M2
a,b the poles of the propagator given by the roots of

the determinant of G−1.
At O(

h2
)

(with h representing any of the Yukawa cou-
plings), the elements of the Z matrix are equal to

Z12 = −θ ′ + O
(
h4
)

= −Z21 + O
(
h4
)

,

Z1 = 1 + r

2r
+ O

(
h4
)

= Z2 + O
(
h4
)

,

with

r ≡
√√√√1 −

[
2Re

[
h∗

1h2
]

16πε + i
(|h1|2 − |h2|2

)

]2

,

−θ ′ ≡ i Re
[
h∗

1h2
]
/(16π)

ε + i (M1
1 − M2
2)

2

1 + r
,

ε ≡ M2
2 − M2

1 , and the O (
h4
)

terms are finite in the limit
ε → 0. Taking

M2
a = M2

1 − iM1
1 + i
Re

[
h∗

1h2
]

16π
θ ′

≡ M̃2
1 − i M̃1
̃1 ,
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M2
b = M2

2 − iM2
2 − i
Re

[
h∗

1h2
]

16π
θ ′

≡ M̃2
2 − i M̃2
̃2 ,

with 
i = |hi |2
16πMi

(i = 1, 2), it can be verified that

|G−1(M2
a,b)| = 0 +O (

h8, h6ε
)
. The last equalities in each

of the above equations define the real quantities M̃1, M̃2, 
̃1

and 
̃2.
Using the approximate propagator in an external wave

packet model of neutrino oscillations and neglecting the
factors related to coherence and localization (which could
destroy oscillations), one arrives at these time-dependent
probabilities for the lepton number violating processes (see
[19]):

|A|2 (t) = N

∣∣∣∣∣∣

(
h∗2

1 − 2h∗
1h

∗
2 θ ′ + h∗2

2 θ ′ 2
)
e
−i

(
M̃1−i


̃1
2

)
t
γ

+
(
h∗2

2 + 2h∗
1h

∗
2 θ ′ + h∗2

1 θ ′ 2
)
e
−i

(
M̃2−i


̃2
2

)
t
γ

∣∣∣∣∣
∣

2

,

∣∣ Ā
∣∣2 (t) = N

∣
∣∣∣∣∣

(
h2

1 − 2h1h2 θ ′ + h2
2 θ ′ 2

)
e
−i

(
M̃1−i


̃1
2

)
t
γ

+
(
h2

2 + 2h1h2 θ ′ + h2
1 θ ′ 2

)
e
−i

(
M̃2−i


̃2
2

)
t
γ

∣
∣∣∣∣∣

2

, (5)

where A ≡ A(b̄b̄ → bb), Ā ≡ A(bb → b̄b̄), N is a normal-
ization constant, t is the time between production and decay
of the neutrinos that mediate these processes, γ ≡ E/M is
the Lorentz factor, E is the average energy of the neutrinos,
and M ≡ (M1 + M2)/2.

Finally, a proper integration over time of the CP asymme-

try |A|2 −∣∣ Ā
∣∣2 yields a source term, SEWPA, for the evolution

of the lepton density asymmetry nL ≡ nb − nb̄, where nb
(nb̄) is the number density of leptons (antileptons). For our
purposes it is sufficient to consider a static universe, a single
average momentum p for the neutrinos (to avoid unessential
integrals over momentum), and neglect finite density effects.
Hence the normalization constant N in Eq. (5) is the same
as in [19],1 N = |Z1|2 /(32πE)2 and the evolution of nL is
given by

dnL
dt

= SEWPA(t) − W (t)

= 2
∫ t

0
neq(t ′)

( ∣∣A(t − t ′)
∣∣2 − ∣∣ Ā(t − t ′)

∣∣2
)

dt ′

− W (t). (6)

1 The factor |Z1|2 was omitted by mistake in some of the equations of
[19].

The source, SEWPA(t), contains the terms in the kinetic equa-
tion which may be non-null in the absence of a lepton den-
sity asymmetry and will be the focus of this work, while
the washout part, W (t), will not be considered. Moreover,
neq(t) is the equilibrium number density of a scalar parti-
cle with mass M . Note that in an expanding universe, neq(t)
varies according to the time-dependent temperature, while
for our simplified study in a static universe neq will be varied
artificially, with equilibrium corresponding to constancy over
time (when neq remains constant for a long enough period
of time, it can be taken outside the integral of Eq. (6) and
unitarity conditions imply that SEWPA vanishes, although not
exactly due to higher order corrections, as explained in [17]).

2.2 Density matrix approach

Following [21] we can obtain a kinetic equation for the den-
sity matrix ρ of the neutrinos and write it as

dρ

dt
= −i[H, ρ] − 1

2
{
d , ρ} + γ p , (7)

where each term depends on the momentum k of the neutri-
nos, 
d is a decay rate matrix, γ p is the production term and
we will work in the basis where the Hamiltonian is diago-

nal, H = Diag(E1, E2), with Ei =
√
k2 + M2

i (i = 1, 2).
Note that for simplicity we have used Maxwell-Boltzmann
statistics and we are not including terms proportional to the
lepton asymmetry. In the scalar model the decay rate matrix,
neglecting the mass difference between the neutrino states as
commonly done (see e.g. [6]), is given by


d = h†h + hT h∗

32πE
, (8)

with h = (h1 h2) the matrix of Yukawa couplings. Note that
decay into both, leptons and antileptons (with total energy E),
have been included in this expression. As explained e.g. in
[3], the production and decay terms should be related in order
for the right-hand side of Eq. (7) to vanish in equilibrium,
namely

γ p = ρeq 
d , (9)

with ρeq = neq(t) I and I the identity matrix, so that the
kinetic equation for ρ becomes

dρ

dt
= −i[H, ρ] − 1

2
{
d , ρ − ρeq}. (10)

Then the equation for the lepton density asymmetry, neglect-
ing washouts, can be obtained taking into account that for
each production (destruction) of a neutrino state two leptons
or antileptons are destroyed (produced):
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dnL
dt

= − 2
neq

32πE
Tr

(
hT h∗ − h†h

)

+ 2
1

32πE
Tr

(
[hT h∗ − h†h] ρ

)
,

where Tr (.) denotes the trace of the corresponding matrix.
Given that (h†h)T = hT h∗, the first term, which comes from
the destruction of leptons and antileptons, is actually zero,
therefore only the production of lepton asymmetry from the
decay of the neutrinos contributes to this equation:

dnL
dt

= 2
1

32πE
Tr

(
[hT h∗ − h†h] ρ

)
≡ SDMA(t). (11)

3 Comparison and discussion

To perform an analytical comparison between the EWPA and
the DMA, we start by noticing that from

iG−1(p2) = p21 − M2(p2) � i Z−1(�BW)−1 Z−1 T

and Z−1 = ZT + O (
h4
)
, one can derive that

M2(p2) = ZT
(M2

a 0
0 M2

b

)
Z

+ O
(
h4, (p2 − M2

a,b)
2
)

.

Then, expanding M2(p2) around M2
1,2 we get

ZT
(M2

a 0
0 M2

b

)
Z

=
(
M2

1 0
0 M2

2

)
− i

16π

( |h1|2 Re
[
h∗

1h2
]

Re
[
h∗

1h2
] |h2|2

)

+ O
(
h4, h2ε, ε2

)
.

This is the square of the relation we are interested in, namely
(using that ZZT = I + O (

h4
)
)

ZT
(Ma 0

0 Mb

)
Z = Hef + O

(
h4, h2ε, ε2

)
, (12)

where we have introduced the effective Hamiltonian,

Hef =
(
M1 0
0 M2

)
− i

32πM

( |h1|2 Re
[
h∗

1h2
]

Re
[
h∗

1h2
] |h2|2

)
. (13)

Equation (12) can be used to relate the probabilities
|A|2 (t) and

∣∣ Ā
∣∣2 (t) given in Eq. (5) (which are the ones

employed to calculate SEWPA) to other functions which
appear in an integral representation of SDMA (to be stated
in Eq. (17)):

|A|2 (t) = 1

(32πE)2

×

∣
∣
∣
∣∣
∣
∣
∣

∑

j,k

h∗
j h

∗
k ×

⎡

⎢
⎣ZT

⎛

⎜
⎝
e
−i

(
M̃1−i


̃1
2

)
t
γ

0

0 e
−i

(
M̃2−i


̃2
2

)
t
γ

⎞

⎟
⎠Z

⎤

⎥
⎦

jk

∣
∣
∣
∣∣
∣
∣
∣

2

= 1

(32πE)2

×
∣
∣
∣
∣
∣∣

∑

j,k

h∗
j h

∗
k ×

[
exp

(
−i ZT

(Ma 0
0 Mb

)
Z

t

γ

)]

jk

∣
∣
∣
∣
∣∣

2

+O (
h8)

= 1

(32πE)2

∣
∣
∣∣
∣
∣

∑

j,k

h∗
j h

∗
k

[
e−i Hef

t
γ

]

jk

∣
∣
∣∣
∣
∣

2

+ O (
h8, h6ε, h4ε2)

= 1

(32πE)2

∣
∣
∣h∗e−i Hef

t
γ h∗T

∣
∣
∣
2 + O (

h8, h6ε, h4ε2) , (14)

where again we have taken into account that ZZT = I +
O (

h4
)
. In the same way, for the CP-conjugate process,

∣
∣ Ā
∣
∣2 (t) = 1

(32πE)2

∣∣
∣h e−i Hef

t
γ hT

∣∣
∣
2

+ O
(
h8, h6ε, h4ε2

)
. (15)

On the other hand, the formal solution to the Eq. (10) of the
DMA can be written as

ρ(t) =
∫ t

0

neq(t ′)
32πE

e−i Hef
t−t ′
γ ρp ei H

†
ef

t−t ′
γ dt ′ , (16)

with ρp ≡ h†h + hT h∗. Replacing this expression in the
source term of the DMA, i.e. in Eq. (11), some terms cancel
and the remaining ones read

SDMA = 2
∫ t

0

neq(t ′)
(32πE)2

× Tr

(
hT h∗ e−i Hef

t−t ′
γ h†h ei H

†
ef

t−t ′
γ

− h†h e−i Hef
t−t ′
γ hT h∗ ei H

†
ef

t−t ′
γ

)
dt ′

= 2
∫ t

0

neq(t ′)
(32πE)2

(∣∣∣∣h
∗ e−i Hef

t−t ′
γ h∗T

∣∣∣∣

2

−
∣∣∣∣h e

−i Hef
t−t ′
γ hT

∣∣∣∣

2
)

dt ′ , (17)

where we have used the cyclic property of the trace. There-
fore, comparing this last equation with Eqs. (6), (14) and
(15), we conclude that

SDMA = SEWPA + O
(
h8, h6ε, h4ε2

)
, (18)

i.e. SDMA and SEWPA are equal up to higher order terms in
h2 and/or ε.

123



Eur. Phys. J. C (2023) 83 :170 Page 5 of 8 170

Fig. 1 Absolute value of the source term (left plots) and lepton asym-
metry (right plots), as a function of time normalized to γ /M1. The solid
red lines correspond to the EWPA approach, the dashed black lines to the
DMA using Eq. (8), the blue line in the top right plot to the mixing contri-
bution of the EWPA, and the dotted green lines in the bottom plots to the
standard classical approach valid in the hierarchical limit. In the top plots
we have chosen 
1/M1 = 1/100, 
2/M1 = 1/120 and �M = 
1,
while for the bottom plots, 
1/M1 = 1/100, 
2/M1 = 1/120 and

�M/M1 = 4. In all cases we have taken h1 = |h1| and h2 = |h2| eiφ ,
with the phase φ = π/4, and neq(t) = e−M1 t/(10000 γ ). The lepton
asymmetry has been obtained integrating only the source term (i.e.
ignoring washouts) and the scale on the vertical axis of the plots is
not relevant (note that after a change of variables in the integration over
time, the factor M1/γ becomes part of the normalization chosen for the
lepton asymmetry)

To corroborate and exemplify this result, we plot in Fig. 1
the evolution of SDMA and SEWPA (left plots), as well as
the corresponding lepton asymmetries (right plots), for two
different values of the mass splitting �M ≡ M2 − M1. The
lepton asymmetries have been obtained by integrating the
corresponding source term over time (ignoring washouts)
and in both cases we have taken neq(t) = e−M1 t/(10000 γ ),
in order that the time scale of the evolution of neq be much
larger than the lifetimes of the neutrinos.

The top plots illustrate the highly degenerate case by tak-
ing �M = 
1. There are two main things to notice. First,
the left plot shows that SDMA and SEWPA are–almost–equal
at all times. Second, from the right plot it can be seen that
there actually small differences between both sources, com-
ing from theO (

h8, h6ε, h4ε2
)

terms in Eq. (18), which accu-
mulate over time and result in noticeable differences between
the lepton asymmetries at late times. In particular, while the
final lepton asymmetry in the DMA is null, it is not so in the
EWPA (as discussed in detail in [17,19]). This is interest-
ing because unitarity and CPT invariance imply that when
washouts are negligible and the initial abundances of neu-

trinos and lepton asymmetry are null, the final asymmetry
must also be null. Therefore the discrepancy between the final
lepton asymmetries reflect the non-trivial differences in the–
crucial–implementation of unitarity constraints, as explained
next.

On one hand, in the kinetic equations of the DMA, as
derived above or e.g. in [3,21], the right-hand side of Eq. (7)
is made zero in equilibrium by relating the production and
decay rates as in Eq. (9). Moreover, the equation for the lepton
asymmetry is inferred from some particle number conserva-
tion condition. It is then easy to show analytically that the
final lepton asymmetry in the DMA is exactly null. Namely,
the final lepton asymmetry in the DMA, n f

L , can be obtained
integrating the source SDMA given in Eq. (11),

n f
L = 2

32πE

∫ ∞

0
Tr

(
[hT h∗ − h†h] (ρ − ρeq)

)
dt

= 2

32πE
Tr

(
[hT h∗ − h†h]

∫ ∞

0
(ρ − ρeq) dt

)
,
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where we have taken nL(t = 0) = 0 and for convenience
the null contribution from the terms proportional to ρeq has
been included. Now, from Eq. (10) and using that [H, ρ] =
[H, ρ − ρeq], it is clear that

∫∞
0 (ρ − ρeq) dt = 0 when the

initial and final densities of neutrinos are null, and therefore
that n f

L is zero in the DMA.
This procedure to obtain the kinetic equations in the DMA

has sometimes been justified by detailed balance conditions.
However, in a time non-invariant theory, as is the case when
CPT is conserved but CP is violated, detailed balance may
not hold and the canonical equilibrium distributions result
from a cyclic balance involving several processes, which is
precisely ensured by unitarity (see e.g. [27,28] and note that
this is at the root of the RIS subtraction procedure to be
discussed below). Moreover, this procedure does not clarify
whether the rate in Eq. (8) should be calculated at tree level
(which leads to an agreement with the EWPA) or involve
effective couplings to account for CP violation in production
and decay (due to the presence of oscillatory and secular
terms, as well as enhancements inversely proportional to the
mass splitting, higher order corrections to the rates could be
non-negligible).2

On the other hand, in the EWPA there is no counting of
neutrino abundances, avoiding unitarity problems that may
arise when using perturbation theory with unstable particles
in the initial or final states. Instead, the source term is built
from the probabilities in the Eq. (5), which only involve the
stable leptons and antileptons as asymptotic states, and have
been obtained after a perturbative expansion of the propa-
gator. Then unitarity constraints are satisfied as a matter of
course up to higher order terms in the expansion. Notably,
as explained in [17,19], there is a non-trivial cancellation
between three different terms contributing to the final lep-
ton asymmetry. These terms (dubbed mixing, oscillation,
and interference) arise when calculating the CP asymmetry
|A|2 − ∣∣ Ā

∣∣2 from the Eq. (5) and will be discussed below in
greater detail. To illustrate the cancellation we have plotted
one of these contributions in Fig. 1 (the mixing term repre-
sented by the blue curve in the top right panel), that should be
compared with the net lepton asymmetry (red curve), whose
final value is almost null–but not exactly null due to higher
order corrections.

In the bottom plots we have taken a very large mass split-
ting, �M/M1 = 4, to illustrate the hierarchical limit. As
can be seen, there are differences of around 50% in the lep-
ton asymmetries obtained from the DMA and EWPA. These
deviations arise because for the DMA we have used the decay
rate matrix of Eq. (8), where the mass difference between the
two neutrino states is neglected, which is a usual and very

2 Note that we are not including one-loop vertex corrections, which are
negligible in resonant and ARS leptogenesis, and moreover they appear
independently in unitarity constraints, see e.g. [29].

good approximation for small mass splittings (see in particu-
lar [6]). We have verified numerically that if instead of Eq. (8)
we use the decay rate matrix given by


̃d = M

E

(

1

Re[h∗
1h2]

16πM
Re[h∗

1h2]
16πM 
2

)

= 
d + O
(
h2ε

)
, (19)

the source term and lepton asymmetry from the DMA and
the EWPA perfectly match in the bottom plots of Fig. 1. The
decay rate 
̃d can be obtained from the imaginary part of
the self-energy matrix of the neutrinos (or more precisely the
antihermitian part [6]) and using the Lorentz factor E/M .
Overall, however, we conclude that the differences using

d or 
̃d are not very significant and only appear at very
large mass splittings for which, actually, decoherence effects
not included in either approach may become dominant and
destroy oscillations (see e.g. [25]). That being said, it is inter-
esting to note that the lepton asymmetries from the EWPA
and the DMA (disregarding the minor differences discussed
above), match the one obtained with the standard classical
Boltzmann equations for large mass splittings (green curve in
Fig. 1), except at early times (of the order of the oscillation
period). As is well known, in the standard classical Boltz-
mann treatment, it is key to include the rates of some pro-
cesses subtracting RIS contributions in order to satisfy unitar-
ity conditions. Therefore it is reasonable to ask whether this
type of RIS-subtraction procedure should also be performed
somehow in the DMA in order to be valid in the hierarchical
limit (cf. [11]). Indeed, as we have shown, such procedure
is not required since both, the DMA and the EWPA, which
are equivalent up to higher order terms (Eq. (18)), basically
yield the same hierarchical limit as the classical Boltzmann
equations.

In [17,19] we identified two different types of CP even
phases in Eq. (5), one independent of time in θ ′, and an oscil-
lating one in the exponentials e−i M̃ j t/γ . Consequently the
source term could be written as a sum of three contributions,
one from mixing (involving only θ ′), one from oscillations
(involving only e−i M̃ j t/γ ), and interference terms (involv-
ing both θ ′ and e−i M̃ j t/γ ). This result went along the lines
of previous findings [11–14], although differences remained
regarding the relative sign between the mixing and oscilla-
tion contributions and the existence or not of an interference
term. However, in the DMA no such separation into CP vio-
lation from mixing and oscillations appears (see e.g. [6,16]).
Now this can be understood from Eqs. (14) and (17): if the
effective Hamiltonian Hef present in the source term of the
DMA (Eq. (17)) is diagonalized by an orthogonal matrix, the
time exponential involving Hef can be diagonalized by the
same matrix, leading to an expression like the first line of
Eq. (14), where it is possible to identify a time independent
CP even phase in the orthogonal matrix and oscillating CP
even phases associated to the eigenvalues of Hef . Indeed, in
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the hierarchical limit this decomposition into time indepen-
dent and oscillating CP even phases becomes quite meaning-
ful, since the oscillation contribution can be identified with
the contribution from RIS subtracted rates to the source of the
classical Boltzmann equations, as shown in [17], while the
mixing contribution matches the contribution from decays to
the classical source (see also, e.g., [6,30] for related limits).

Moreover, the EWPA is valid for relativistic as well as
non-relativistic neutrinos and does not involve any counting
of neutrino states, therefore it can clearly be applied whether
the lepton asymmetry is mostly generated during produc-
tion or decay. Therefore we think the equivalence we have
demonstrated between this approach and the DMA, provides
further support to the validity of the DMA for describing
jointly freeze-in an freeze-out leptogenesis, although issues
related to the helicity degree of freedom cannot be captured
in the scalar toy model (see [6,16,18,31–38]).

Finally, note that in the EWPA, as in other approaches, it
is quite involved to obtain consistent results in the degenerate
limit, and even more in the double degenerate limit of equal
masses and couplings. Therefore the agreement between the
EWPA and the DMA, which does not suffer from this prob-
lem, supports the treatment of the degenerate limit in [19].

4 Conclusions

We have shown analytically that the EWPA and the DMA
are equivalent up to higher order corrections in the couplings
and mass splitting (see Eq. (18)). The fact that there are dif-
ferences coming from higher order terms, actually makes
the comparison between both approaches more meaningful,
and in particular they reflect the different implementation of
unitarity requirements, as discussed in Sect. 3.

The connection between both approaches established in
this work helps to understand several issues that have been
discussed quite extensively in the literature. In particular, we
have shown that the production and decay rates in the DMA
should be calculated at lowest order (i.e. without involv-
ing effective couplings to account for CP violation in pro-
duction and decay), in order to get the agreement given by
Eq. (18) with the EWPA, which does not bring this type of
doubts. Regarding the meaningfulness or existence of differ-
ent types of contributions to the generation of lepton asym-
metry associated to CP violation in mixing, oscillations and
interference, we have shown how to get this decomposition
from a solution to the kinetic equations of the DMA. In turn,
given that in the hierarchical limit the oscillation contribution
can be identified with the contribution from RIS subtracted
rates to the source of the classical Boltzmann equations (see
[17]), this provides further insight into how the hierarchical
limit can be obtained from the DMA without including RIS
subtracted rates. Moreover, the validity of the EWPA in the

degenerate limit and the double degenerate limit of equal
masses and couplings is confirmed by its concordance with
the DMA. Finally, the agreement between both approaches
also supports their use for a joint analysis of freeze-in and
freeze-out leptogenesis, although issues related to the helic-
ity degree of freedom cannot be captured in the scalar toy
model we have employed and might be interesting to address
in future works. Another possibility worth considering for
future research along the lines of this work is the tri-resonant
heavy neutrino system [39], consisting of three nearly degen-
erate neutrinos.
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