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Abstract We study five-dimensional N = 4 gauged super-
gravity coupled to five vector multiplets with SO(2)D ×
SO(3)×SO(3) gauge group. There are four supersymmetric
AdS5 vacua in the truncation to SO(2)diag invariant scalars.
Two of these vacua preserve the full N = 4 supersymmetry
with SO(2)D × SO(3) × SO(3) and SO(2)D × SO(3)diag

symmetries. These have an analogue in N = 4 gauged super-
gravity with SO(2)×SO(3)×SO(3) gauge group. The other
two AdS5 vacua preserve only N = 2 supersymmetry with
SO(2)diag×SO(3) and SO(2)diag symmetry. The former has
an analogue in the previous study of SO(2)D×SO(3) gauge
group while the latter is a genuinely new N = 2 AdS5 vac-
uum. These vacua should be dual to N = 2 and N = 1 super-
conformal field theories (SCFTs) in four dimensions with dif-
ferent flavour symmetries. We give the full scalar mass spec-
tra at all of the AdS5 critical points which provide informa-
tion on conformal dimensions of the dual operators. Finally,
we study holographic RG flows interpolating between these
AdS5 vacua and find a new class of solutions. In addition
to the RG flows from the trivial SO(2)D × SO(3) × SO(3)

N = 4 critical point, at the origin of the scalar manifold, to all
the other critical points, there is a family of RG flows from the
trivial N = 4 critical point to the new SO(2)diag N = 2 criti-
cal point that pass arbitrarily close to the SO(2)D×SO(3)diag

N = 4 critical point.

1 Introduction

The study of holographic RG flows has attracted much atten-
tion since the proposal of the AdS/CFT correspondence in
[1]. These solutions take the form of domain walls interpo-
lating between AdS vacua or between an AdS vacuum and
a singular geometry and holographically describe RG flows
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between conformal fixed points or from a conformal fixed
point to a non-conformal phase in the dual field theories. In
particular, holographic RG flows in AdS5/CFT4 correspon-
dence provide a very useful tool to understand strongly cou-
pled dynamics of four-dimensional gauge theories. A number
of solutions describing various deformations of the N = 4
Super Yang–Mills (SYM) theory, dual to type IIB theory on
AdS5 × S5, has been constructed both in type IIB super-
gravity and in the effective N = 8 five-dimensional gauged
supergravity, see for example [2–7]. The consistent trunca-
tion of type IIB supergravity on S5 constructed recently in
[8] allows solutions in the N = 8 gauged supergravity to be
uplifted to ten dimensions.

On the other hand, similar solutions in gauged supergrav-
ities with N < 8 supersymmetry are less known than those
of the maximal case. In particular, a number of RG flow
solutions in half-maximal N = 4 gauged supergravity have
appeared only very recently in [9,10], see also [11] for an ear-
lier construction and [12] for domain wall solutions in N = 2
gauged supergravity. Furthermore, a number of RG flow solu-
tions has been found in N = 4 gauged supergravity coupled
to three vector multiplets obtained from a consistent trun-
cation of the maximal SO(5) gauged supergravity in seven
dimensions [13]. In this case, there is only one supersym-
metric AdS5 vacuum, and the solutions describe RG flows
from a conformal fixed point to non-conformal phases dual
to singular geometries in the IR. In this work, we hope to
fill this gap by adding a new family of holographic RG flow
solutions between conformal fixed points to these results.
We will work in the half-maximal gauged supergravity with
a new gauge group that leads to more interesting AdS5 vacua
and holographic RG flows, see [14–23] for similar studies in
half-maximal gauged supergravity in other dimensions.

N = 4 gauged supergravity coupled to an arbitrary num-
ber n of vector multiplets has SO(1, 1) × SO(5, n) global
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symmetry. Gaugings of a subgroup G0 ⊂ SO(1, 1) ×
SO(5, n) can be implemented by using the embedding ten-
sor formalism [24], see also [25]. We will mainly consider
the case of n = 5 vector multiplets and SO(2)D × SO(3) ×
SO(3) ⊂ SO(5, 5) gauge group. Unlike the previously stud-
ied SO(2)× SO(3)× SO(3) gauge group in [9,10] in which
the SO(2) factor is a subgroup of the SO(5)R ∼ USp(4)R
R-symmetry, the SO(2)D considered here is a diagonal sub-
group of SO(2) ⊂ SO(5)R and SO(2) ⊂ SO(5) symmetry
of the vector multiplets. We will look for supersymmetric
AdS5 vacua dual to four-dimensional SCFTs and possible
holographic RG flows between these SCFTs.

Since the ungauged N = 4 supergravity with n = 5 vec-
tor multiplets can be obtained from a T 5 reduction of N = 1
supergravity in ten dimensions, the N = 4 gauged supergrav-
ity studied here might be possibly embedded in string/M-
theory. However, it should be pointed out that this N = 4
gauged supergravity has currently no known higher dimen-
sional origin. Therefore, a complete holographic description
is not available at this stage. However, even without higher-
dimensional embedding, the results from the effective N = 4
gauged supergravity in five dimensions could still be useful
in a holographic study of strongly coupled four-dimensional
SCFTs.

Similar studies in the cases of SO(2) × SO(3) × SO(3)

and SO(2)D×SO(3)gauge groups have appeared recently in
[9,10]. In the first case, there are two N = 4 supersymmetric
AdS5 vacua while the second gauge group admits N = 4 and
N = 2 AdS5 vacua. The holographic RG flows in both cases
have also been given in [9,10]. In the SO(2)D × SO(3) ×
SO(3) gauge group considered in this paper, we find a num-
ber of more interesting results. First of all, we discover four
supersymmetric AdS5 vacua within a truncation to SO(2)diag

invariant sector of the SO(1, 1)×SO(5, 5)/SO(5)×SO(5)

scalar manifold. Two of the critical points preserve the maxi-
mal N = 4 supersymmetry with SO(2)D × SO(3)× SO(3)

and SO(2)D × SO(3)diag symmetries while the remaining
two are only N = 2 supersymmetric with SO(2)diag×SO(3)

and SO(2)diag symmetries. The first three critical points have
an analogue in the results of [9,10] although with some dif-
ferences in scalar mass spectra. The N = 2 critical point
with SO(2)diag symmetry is however entirely new.

Another interesting result of the present paper is that there
exists a family of RG flows from the SO(2)D × SO(3) ×
SO(3) N = 4 critical point to the SO(2)diag N = 2 crit-
ical point that consists of a direct flow and flows that pass
arbitrarily close to the SO(2)D × SO(3)diag N = 4 critical
point. This is similar to the families of RG flows found in
the maximal gauged supergravity in four dimensions [26–
28]. To the best of the author’s knowledge, the present result
is the first example of families, or cones in the terminology
of [26], of RG flows in the framework of five-dimensional
gauged supergravity.

The paper is organized as follows. In Sect. 2, we review
five-dimensional N = 4 gauged supergravity coupled to vec-
tor multiplets in the embedding tensor formalism. In Sect. 3,
we consider the case of five vector multiplets and describe the
embedding of SO(2)D × SO(3)× SO(3) gauge group in the
SO(5, 5) global symmetry. Supersymmetric AdS5 vacua and
RG flows interpolating between these vacua are also given.
Finally, we end the paper by giving some conclusions and
comments in Sect. 4.

2 Five dimensional N = 4 gauged supergravity coupled
to vector multiplets

In this section, we give a brief review of five-dimensional
N = 4 gauged supergravity coupled to an arbitrary number
n of vector multiplets. We mainly focus on the scalar potential
and supersymmetry transformations of fermions which are
relevant for finding supersymmetric AdS5 vacua and RG flow
solutions. More details and the complete construction of N =
4 gauged supergravity can be found in [24,25].

The N = 4 supergravity multiplet consists of the gravi-

ton eμ̂
μ, four gravitini ψμi , six vectors (A0

μ, Am
μ), four spin- 1

2
fields χi and one real scalar �, the dilaton. Space-time and
tangent space indices are denoted respectively by μ, ν, . . . =
0, 1, 2, 3, 4 and μ̂, ν̂, . . . = 0, 1, 2, 3, 4. The fundamen-
tal representation of SO(5)R ∼ USp(4)R R-symmetry is
described by m, n = 1, . . . , 5 for the SO(5)R and i, j =
1, 2, 3, 4 for the USp(4)R . The latter also corresponds to
spinor representation of SO(5)R . For the n vector multiplets,
each multiplet contains a vector field Aμ, four gaugini λi and
five scalars φm . These multiplets will be labeled by indices
a, b = 1, . . . , n. The corresponding component fields are
accordingly denoted by (Aa

μ, λai , φ
ma). The 5n scalar fields

parametrize the SO(5, n)/SO(5) × SO(n) coset.
Combining the gravity and vector multiplets, we have 6+n

vector fields denoted collectively by AM
μ = (A0

μ, Am
μ, Aa

μ)

and 5n + 1 scalars in the R
+ × SO(5, n)/SO(5) × SO(n)

coset. All fermionic fields are symplectic Majorana spinors
subject to the condition

ξi = 	i jC(ξ̄ j )T (1)

with C and 	i j being the charge conjugation matrix and
USp(4) symplectic matrix, respectively.

The SO(5, n)/SO(5)× SO(n) coset can be described by
a coset representative VM

A transforming under the global
G = SO(5, n) and the local H = SO(5) × SO(n) by
left and right multiplications, respectively. We use the global
SO(5, n) indices M, N , . . . = 1, 2, . . . , 5 + n. The local H
indices A, B, . . . can be split into A = (m, a). The coset
representative can then be written as
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VM
A = (VM

m,VM
a). (2)

In addition, the matrix VM
A satisfies the relation

ηMN = VM
AVN

BηAB = −VM
mVN

m + VM
aVN

a (3)

with ηMN = diag(−1,−1,−1,−1,−1, 1, . . . , 1) being the
SO(5, n) invariant tensor. Furthermore, the SO(5, n)/SO(5)

× SO(n) coset can also be described in terms of a symmetric
matrix

MMN = VM
mVN

m + VM
aVN

a (4)

which is manifestly SO(5) × SO(n) invariant.
Gaugings of N = 4 supergravity can be efficiently

described by using the embedding tensor which determines
the embedding of admissible gauge groups in the global
symmetry SO(1, 1) × SO(5, n). Supersymmetry allows for
three components of the embedding tensor of the form ξM ,
ξMN = ξ [MN ] and fMN P = f[MN P]. These components
also need to satisfy a set of quadratic constraints. Further-
more, the existence of supersymmetric AdS5 vacua requires
ξM = 0 [29]. Therefore, we will consider only gaugings with
ξM = 0. In this case, the gauge group is entirely embedded
in SO(5, n), and the quadratic constraints reduce to

fR[MN fPQ]R = 0 and ξM
Q fQN P = 0. (5)

With ξM = 0, the gauge generators in the fundamental
representation of SO(5, n) can be written as

(XM )N
P = − fM

QR(tQR)N
P = fMN

P

and (X0)N
P = −ξ QR(tQR)N

P = ξN
P (6)

with (tMN )P
Q = δ

Q
[MηN ]P being SO(5, n) generators. The

gauge covariant derivative reads

Dμ = ∇μ + AM
μ XM + A0

μX0 (7)

where ∇μ is the usual space-time covariant derivative. We use
the definition of ξMN and fMN P that includes the gauge cou-
pling constants. Note also that SO(5, n) indices M, N , . . .

are lowered and raised by ηMN and its inverse ηMN .
In this paper, we are mainly interested in AdS5 vacua

and holographic RG flows in the form of domain walls that
involve only the metric and scalar fields. For AdS5 vacua with
all scalars constant, this is always a consistent truncation.
However, for holographic RG flows given by domain wall
solutions with non-constant scalars, some of the scalars can
be charged under the gauge group and couple to the gauge
fields via the following Yang–Mills equation, see [24] for
more detail,

Dμ(�2MMNHNμν) = 1

8
XMP

RMRQD
νMPQ (8)

with the covariant field strengths defined by

HM
μν = 2∂[μAM

ν] + XN P
M AN

μ AP
ν + 1

2
ξMN BNμν. (9)

It should be noted that the two-form fields are introduced in
the embedding tensor formalism for the requirement of gauge
covariance for the gauge field strengths. However, these are
auxiliary fields since they do not have kinetic terms. In all the
truncations we will consider here, it turns out that the Yang–
Mills currents given by the right hand side of (8) vanish.
Therefore, it is consistent to set all the gauge fields to zero
in the RG flow solutions. With all vector fields vanishing, it
is also consistent to set all the two-form fields to zero as can
be seen from the corresponding field equation given in [24].
Accordingly, for simplicity of various expressions, we will
set all the fields but the metric and scalar fields to zero from
now on.

The bosonic Lagrangian of a general gauged N = 4 super-
gravity coupled to n vector multiplets can be written as

e−1L = 1

2
R − 3

2
�−2∂μ�∂μ� + 1

16
∂μMMN ∂μMMN − V

(10)

where e is the vielbein determinant. The scalar potential reads

V = −1

4

[
fMN P fQRS�

−2
(

1

12
MMQMNRMPS − 1

4
MMQηN RηPS

+1

6
ηMQηN RηPS

)
+ 1

4
ξMN ξPQ�4(MMPMNQ − ηMPηNQ)

+
√

2

3
fMN PξQR�MMNPQR

]
(11)

where MMN is the inverse of MMN , and MMNPQR is
obtained from

MMNPQR = εmnpqrVM
mVN

nVP
pVQ

qVR
r (12)

by raising indices with ηMN .
Fermionic supersymmetry transformations are given by

δψμi = Dμεi + i√
6
	i j A

jk
1 γμεk, (13)

δχi = −
√

3

2
i�−1∂μ�γ μεi + √

2	i j A
k j
2 εk, (14)

δλai = i	 jk(VM
a∂μVi j

M )γ μεk + √
2	i j A

ak j
2 εk . (15)

The fermion shift matrices are in turn defined by

Ai j
1 = − 1√

6

(√
2�2	klVM

ikVN
jlξMN

+4

3
�−1V ik

MV jl
NV P

kl f
MN

P

)
,

Ai j
2 = 1√

6

(√
2�2	klVM

ikVN
jlξMN

−2

3
�−1V ik

MV jl
NV P

kl f
MN

P

)
,

Aai j
2 = −1

2

(
�2VM

i jVN
a
ξMN

123
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−√
2�−1	klVM

aVN
ikVP

jl f MN P
)

. (16)

VM
i j is defined in terms ofVM

m and SO(5) gamma matri-
ces �mi

j as

VM
i j = 1

2
VM

m�
i j
m (17)

with �
i j
m = 	ik�mk

j . Similarly, the inverse Vi j
M can be

written as

Vi j
M = 1

2
Vm

M (�
i j
m )∗ = 1

2
Vm

M�kl
m	ki	l j . (18)

In this paper, we will use the following representation of
SO(5) gamma matrices

�1 = −σ2 ⊗ σ2, �2 = iI2 ⊗ σ1, �3 = I2 ⊗ σ3,

�4 = σ1 ⊗ σ2, �5 = σ3 ⊗ σ2 (19)

with σi , i = 1, 2, 3, being the Pauli matrices.
The covariant derivative on εi is given by

Dμεi = ∂μεi + 1

4
ωab

μ γabεi + Qμi
jε j (20)

with the composite connection defined by

Qμi
j = Vik

M∂μVM
kj . (21)

Finally, we note the relation between the scalar potential and
the fermion shift matrices A1 and A2

V = −Ai j
1 A1i j + Ai j

2 A2i j + Aai j
2 Aa

2i j (22)

which is a consequence of the quadratic constraints (5). Note
also that raising and lowering of i, j, . . . indices by 	i j and
	i j are related to complex conjugation.

3 N = 4 gauged supergravity with
SO(2)D × SO(3)× SO(3) gauge group

We now consider N = 4 gauged supergravity coupled to
n = 5 vector multiplets with the global symmetry group
SO(1, 1) × SO(5, 5). We are interested in a compact gauge
group of the form SO(2)D×SO(3)×SO(3) with the embed-
ding tensor given by

ξMN = g1(δM1 δN2 − δM2 δN1 ) − g2(δM10δN9 − δM9 δN10),

(23)

fm̃+2,ñ+2, p̃+2 = h1εm̃ñ p̃, m̃, ñ, p̃ = 1, 2, 3, (24)

fãb̃c̃ = h2εãb̃c̃, ã, b̃, c̃ = 1, 2, 3 (25)

where g1, g2, h1 and h2 are the corresponding coupling con-
stants.

The form of ξMN implies that the SO(2)D is a diagonal
subgroup of SO(2)R ⊂ SO(5)R and SO(2) ⊂ SO(5) gen-
erated by the SO(5, 5) generators t12 and t9,10. This factor

is gauged by the vector field A0
μ in the supergravity multi-

plet, see [29] for more detail. Since ξMN and fMN P have no
indices in common, the second quadratic condition in (5) is
identically satisfied while the first condition holds by virtue
of the Jacobi’s identity for the two SO(3) factors. Therefore,
this is an admissible gauge group. Similar gauge groups with
g2 = 0 or h2 = 0 have already been considered in [9,10].

To parametrize the coset representative for SO(5, 5)/

SO(5)× SO(5), we first identify the SO(5, 5) non-compact
generators

Yma = tm,a+5, m = 1, 2, . . . , 5, a = 1, 2, . . . , 5.

(26)

Dealing with all 25 scalars in this coset is not practi-
cally possible, we will truncate to a smaller submanifold of
SO(5, 5)/SO(5)×SO(5) invariant under a certain subgroup
of SO(2)D×SO(3)×SO(3). For later convenience, we will
denote the gauge group by SO(2)D × SO(3)R × SO(3)

corresponding to the components (ξ12, ξ9,10), fm̃ñ p̃ and
fãb̃c̃ of the embedding tensor, respectively. SO(3)R and
SO(3) are subgroups of the SO(5)R R-symmetry and the
SO(5) symmetry of the five vector multiplets. A simple trun-
cation that is more manageable and still gives interesting
results is given by scalars that are singlet under SO(2)diag ⊂
SO(2)D × SO(3)R × SO(3). In this truncation, SO(2)diag,
generated by a linear combination of t12, t45 and t9,10, is
the diagonal subgroup of SO(2)D × SO(2)R × SO(2) with
SO(2)R × SO(2) ⊂ SO(3)R × SO(3).

There are nine singlet scalars under SO(2)diag corre-
sponding to the non-compact generators

Ŷ1 = Y31, Ŷ2 = Y42 + Y53, Ŷ3 = Y44 + Y55,

Ŷ4 = Y43 − Y52, Ŷ5 = Y45 − Y54, Ŷ6 = Y12 + Y23,

Ŷ7 = Y13 − Y22, Ŷ8 = Y14 + Y25, Ŷ9 = Y15 − Y24.

(27)

The coset representative can then be written as

V = eφ1Ŷ1eφ2Ŷ2eφ3Ŷ3eφ4Ŷ4eφ5Ŷ5eφ6Ŷ6eφ7Ŷ7eφ8Ŷ8eφ9Ŷ9 . (28)

It turns out that the resulting scalar potential and fermion
shift matrices computed from this coset representative are
still highly complicated. However, it can be straightforwardly
verified that setting φi = 0, for i = 4, . . . , 9, is a consistent
truncation. In this case, the analysis simplifies considerably.
In particular, the Ai j

1 tensor is diagonal in this subtruncation.
Furthermore, non-vanishing φi , i = 4, . . . , 9, do not give rise
to any new AdS5 vacua other than those given below. We then
make a subtruncation by setting φi = 0, i = 4, . . . , 9, for
simplicity.
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Using (28) with φ4 = · · · = φ9 = 0, we find the scalar
potential

V = 1

8
g2

2 sinh2 2φ3�
4 + 1

8
�−2

cosh2 φ3

[
2h1h2 cosh2 φ3 sinh 2φ1 sinh2 2φ2

+h2
1 cosh2 φ2 {[cosh 2φ1(cosh 2φ2 − 3) − 4]

+2 cosh 2φ1 cosh2 φ2 cosh 2φ3

}
+h2

2

{
sinh2 φ2[cosh 2φ1(3 + cosh 2φ2) − 4]

+2 cosh 2φ1 cosh 2φ3 sinh4 φ2

}]
+√

2g1 cosh2 φ3

(
h1 cosh φ1 cosh2 φ2

+h2 sinh φ1 sinh2 φ2

)
�. (29)

The Ai j
1 tensor is given by

Ai j
1 = diag(α1, α2, α1, α2) (30)

with

α1,2 = ± 1√
6
�−1 cosh2 φ3

(
h1 cosh φ1 cosh2 φ2

+h2 sinh φ1 sinh2 φ2

)
+ 1

4
√

3
(g2 ∓ 2g1 − g2 cosh 2φ3)�

2. (31)

Either of α1 or α2 leads to the superpotential in terms of
which the scalar potential can be written as

V = 3

2
�2

(
∂W

∂�

)2

+ 9

2

(
∂W

∂φ1

)2

+ 9

4
sech2φ3

(
∂W

∂φ2

)2

+9

4

(
∂W

∂φ3

)2

− 6W 2 (32)

for W = W1 =
√

2
3 |α1| or W = W2 =

√
2
3 |α2|.

In this paper, we are only intested in supersymmetric AdS5

vacua which are critical points of both the scalar potential
and the superpotential with negative cosmological constants.
Before giving these critical points, we first note that in gen-
eral, the two eigenvalues of Ai j

1 are not equal but related by

α1 + α2 = − g2√
3
�2 sinh2 φ3. (33)

We see that either W1 or W2 corresponds to N = 2 supersym-
metry but for g2 = 0 or φ3 = 0, we find, with α1 = −α2,
W1 = W2 leading to N = 4 supersymmetry as studied in
[9,10]. In particular, for g2 	= 0, non-vanishing φ3 breaks
supersymmetry from N = 4 to N = 2.

3.1 Supersymmetric AdS5 vacua

From the scalar potential (29), there are four supersymmetric
AdS5 critical points:

• I. The first critical point is given by

φ1 = φ2 = φ3 = 0,

� = −
(

h1√
2g1

) 1
3

,

V0 = −3

(
g1h2

1

2

) 2
3

(34)

with V0 being the value of the scalar potential at the
critical point or the cosmological constant. This critical
point preserves the full SO(2)D×SO(3)×SO(3) gauge
symmetry and N = 4 supersymmetry due to the vanish-
ing φ3. We can rescale the dilaton � or equivalently set
g1 = − h1√

2
to bring the critical point to � = 1. Accord-

ingly, this critical point is located at the origin of the
SO(1, 1) × SO(5, 5)/SO(5) × SO(5) scalar manifold
and usually referred to as the trivial AdS5 critical point.

• II. There is another N = 4 AdS5 critical point given by

φ1 = ±φ2 = 1

2
ln

[
h2 − h1

h2 + h1

]
,

� = −
⎛
⎝ h1h2√

2g1

√
h2

2 − h2
1

⎞
⎠

1
3

,

φ3 = 0, V0 = −3

2

(√
2g1h2

1h
2
2

h2
2 − h2

1

) 2
3

. (35)

This critical point preserves SO(2)D × SO(3)diag sym-
metry. Both signs of φ2 lead to equivalent critical points
with the same cosmological constant and scalar masses.

• III. The next critical point is given by

φ1 = φ2 = 0,

φ3 = 1

2
ln

⎡
⎣g2 − 4g1 ± 2

√
4g2

1 − 2g1g2 − 2g2
2

3g2

⎤
⎦ ,

� = −
(√

2h1

g2

) 1
3

,

V0 = −1

3
(g1 − g2)

2

(√
2h1

g2

) 4
3

. (36)
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Since φ3 	= 0, this critical point is N = 2 supersym-
metric with SO(2)diag × SO(3) symmetry. SO(2)diag

is the diagonal subgroup of SO(2)R × SO(2)D with
SO(2)R ⊂ SO(3)R . The two sign choices in (36) give
equivalent critical points.

• IV. The last critical point is also N = 2 supersymmetric
given by

φ1 = ±φ2 = 1

2
ln

[
h2 − h1

h2 + h1

]
,

� =
⎛
⎝ √

2h1h2

g2

√
h2

2 − h2
1

⎞
⎠

1
3

,

φ3 = 1

2
ln

⎡
⎣g2 − 4g1 ± 2

√
4g2

1 − 2g1g2 − 2g2
2

3g2

⎤
⎦ ,

V0 = −2

3
(g1 − g2)

2

(
h2

1h
2
2√

2g2
2(h2

2 − h2
1)

) 2
3

. (37)

At this critical point, the gauge group is broken down
to just SO(2)diag with SO(2)diag being the diagonal sub-
group of SO(2)D×SO(2)R×SO(2). As in critical point
III, the four sign choices lead to equivalent critical points.

We note that there are various possible values of the coupling
constants h1 and h2 in order for critical points II and IV to
exist. For definiteness, we will choose both h1 and h2 to be
positive and take h2 > h1. We will also choose the upper
sign choice for critical points II, III and IV.

Scalar masses at these critical points are given in Tables 1,
2, 3 and 4. To simplify the expressions, we have followed the
notation of [9] by redefining the coupling constants as

g1 = − g√
2
, h1 = g, g2 =

√
2g

ρ
. (38)

We also note that the existence of the N = 2 AdS5 critical
point III requires ρ > 1 as pointed out in [9]. In the tables,
we have given conformal dimensions of the operators dual to
the scalar fields of N = 4 gauged supergravity by using the
relation m2L2 = �(� − 4) with the AdS5 radius given by
L2 = − 6

V0
. For some values of m2L2, we have given only

one root of � since the other root violates the unitarity bound
� > 1 for all values of ρ > 1.

For g2 = 0 or ρ → ∞, scalar masses for critical points
I and II reduce exactly to those given in [10] for SO(2) ×
SO(3) × SO(3) gauge group. Note that all values of m2 L2

and � do not depend on the SO(3) coupling constant h2.
In the dual SCFTs, this SO(3) ⊂ SO(5), symmetry of the
vector multiplets, corresponds to a flavor symmetry. We also
point out that the conformal dimensions � = −4, 2 + 2

ρ
and

Table 1 Scalar masses at the N = 4 supersymmetric AdS5 critical
point I with SO(2)D×SO(3)×SO(3) symmetry and the corresponding
dimensions of the dual operators

m2L2 �

−4×10 2

−3×6 3

−4
(

1 − 1
ρ2

)
×6

2 + 2
ρ(

−3 + 4
ρ

+ 4
ρ2

)
×2

3 + 2
ρ(

−3 − 4
ρ

+ 4
ρ2

)
×2

3 − 2
ρ

, 1 + 2
ρ

Table 2 Scalar masses at the N = 4 supersymmetric AdS5 critical
point II with SO(2)D × SO(3)diag symmetry and the corresponding
dimensions of the dual operators

m2L2 �

0×8 4

−4 2

5×6 5

12 6

−4
(

1 − 1
ρ2

)
×6

2 + 2
ρ(

−3 + 4
ρ

+ 4
ρ2

)
×2

3 + 2
ρ(

−3 − 4
ρ

+ 4
ρ2

)
×2

3 − 2
ρ

, 1 + 2
ρ

� = 3 +
√

25 − 72
2+ρ

, 1 +
√

25 − 72
2+ρ

at critical points I

and III are in agreement with those of the two scalar modes
considered in [9]. However, the full scalar masses have not
been given in [9]. We hope the present results fill this gap
and could be useful in other holographic study.

Three of the eight massless scalars at critical point II are
Goldstone bosons for the symmetry breaking SO(2)D ×
SO(3)× SO(3) to SO(2)D × SO(3)diag. The remaining five
massless scalars correspond to marginal deformations of the
dual N = 2 SCFT. Similarly, three and six massless scalars at
critical points III and IV are all Goldstone bosons correspond-
ing to the symmetry breaking SO(2)D × SO(3)× SO(3) →
SO(2)diag × SO(3) and SO(2)D × SO(3) × SO(3) →
SO(2)diag, respectively. However, in these cases, there are
no marginal deformations in the dual N = 1 SCFTs.

3.2 Holographic RG flows

We now look for holographic RG flow solutions interpolat-
ing between supersymmetric AdS5 vacua identified in the
previous section. These solutions take the form of domain
walls in N = 4 gauged supergravity described by the metric
ansatz

ds2 = e2A(r)dx2
1,3 + dr2 (39)

123
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Table 3 Scalar masses at the N = 2 supersymmetric AdS5 critical
point III with SO(2)diag × SO(3) symmetry and the corresponding
dimensions of the dual operators

m2L2 �

0×3 4

−4×3 2

− 3ρ(8+ρ)

(2+ρ)2

∣∣∣×6

3ρ
2+ρ

, 8+ρ
2+ρ

− 12(1+2ρ)

(2+ρ)2

∣∣∣×6

6
2+ρ

, 2+4ρ
2+ρ

− 48(ρ−1)

(2+ρ)2

∣∣∣×2

12
2+ρ

, 4(ρ−1)
2+ρ

3(7ρ−10)
2+ρ

∣∣∣×2
2 +

√
25ρ−22

2+ρ

3(28−12ρ−ρ2)

(2+ρ)2

∣∣∣×2

3(ρ−2)
2+ρ

, 14+ρ
2+ρ

22 − 72
2+ρ

− 2
√

25 − 72
2+ρ

1 +
√

25 − 72
2+ρ

22 − 72
2+ρ

+ 2
√

25 − 72
2+ρ

3 +
√

25 − 72
2+ρ

Table 4 Scalar masses at the N = 2 supersymmetric AdS5 critical
point IV with SO(2)diag symmetry and the corresponding dimensions
of the dual operators

m2L2 �

0×6 4

− 3(ρ2−16)

(2+ρ)2

∣∣∣×2

3(ρ+4)
2+ρ

− 4(ρ−1)(ρ+5)

(2+ρ)2

∣∣∣×2

2(5+ρ)
2+ρ

, 2(ρ−1)
2+ρ

− 48(ρ−1)

(2+ρ)2

∣∣∣×4

12
2+ρ

, 4(ρ−1)
2+ρ

− 3(ρ−6)
2+ρ

∣∣∣×2
2 +

√
ρ+26
2+ρ

3(7ρ−10)
2+ρ

∣∣∣×2
2 +

√
25ρ−22

2+ρ

− 3(ρ2+12ρ−28)

(2+ρ)2

∣∣∣×4

ρ+14
2+ρ

, 3(ρ−2)
2+ρ

−2 + 24
2+ρ

+ 2
√

26+ρ
2+ρ

3 +
√

26+ρ
2+ρ

−2 + 24
2+ρ

− 2
√

26+ρ
2+ρ

1 +
√

26+ρ
2+ρ

22 − 72
2+ρ

− 2
√

25 − 72
2+ρ

1 +
√

25 − 72
2+ρ

22 − 72
2+ρ

+ 2
√

25 − 72
2+ρ

3 +
√

25 − 72
2+ρ

with dx2
1,3 = ηαβdxαdxβ , α, β = 0, 1, 2, 3, being the four-

dimensional Minkowski metric. All the scalar fields and the
Killing spinors εi are functions of only the radial coordinate
r .

Before analysing the BPS equations, we first note the
scalar kinetic terms

Lkin = −3

2
�−2�′2 − 1

2
φ′

1
2 − cosh2 φ3φ

′
2

2 − φ′
3

2 (40)

in which we have denoted the r -derivatives by ′. We now
consider supersymmetry transformations of ψμi , χi and λai .
By setting these to zero with the metric ansatz (39), we obtain

the corresponding BPS equations for the RG flow solutions
of interest. The analysis is essentially the same as in [9,10],
so we will mainly give the results with some detail omitted.

From the δψα̂i = 0 conditions, we find

A′γrεi + i

√
2

3
	i j A

jk
1 εk = 0. (41)

Multiply by A′γr and use (41) again, we find

A′2εi + Mi
kMk

jε j = 0 (42)

for Mi
j =

√
2
3	ik A

k j
1 . Non-vanishing solutions for εi

implies that Mi
kMk

j ∝ δ
j
i . We then write

Mi
kMk

j = −|W |2δ j
i (43)

where W is the superpotential identified with the eigenvalues
α1 or α2 of the Ai j

1 tensor. Recall that choosing one of these
eigenvalues breaks half of the N = 4 supersymmetry. By

choosing W =
√

2
3α1, we find that the corresponding Killing

spinors are given by ε1,3 while supersymmetry associated
with ε2,4 is broken. We then set ε2 = ε4 = 0 or equivalently
impose the following projector

Pi
jε j = εi (44)

for P = diag(1, 0, 1, 0).
Using all these results in Eqs. (41) and (42), we find the

flow equation for the metric function

A′ = ±|W |. (45)

together with the γ r -projector

γrεi = ∓i Ii
jε j (46)

with Ii j defined by

Ii
j =

√
2

3

	ik A
k j
1

|W | . (47)

It should be noted that for φ3 = 0, we have α1 = −α2 leading
to N = 4 supersymmetry. In this case, the projector (44) is
not needed.

As expected, the condition δψr̂ i = 0 gives the r -

dependent Killing spinors of the form εi = e
A
2 ε0i for con-

stant spinors ε0i satisfying (44) and (46). Finally, using the
projector (46) in δχi = 0 and δλai = 0 equations, we find the
first-order flow equations for scalar fields.

By the procedure described above, we obtain the following
BPS equations

�′ = 1

3
cosh2 φ3

(
h1 cosh φ1 cosh2 φ2 + h2 sinh φ1 sinh2 φ2

)

+
√

2

6
�3(2g1 − g2 + g2 cosh 2φ3), (48)

φ′
1 = −�−1 cosh2 φ3

(
h1 cosh2 φ2 sinh φ1 + h2 cosh φ1 sinh2 φ2

)
,

(49)

123
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φ′
2 = −�−1 cosh φ2 sinh φ2(h1 cosh φ1 + h2 sinh φ1), (50)

φ′
3 = −1

2
�−1 sinh 2φ3

(
h1 cosh φ1 cosh2 φ2 + h2 sinh φ1 sinh2 φ2

)

+
√

2

4
g2�

2 sinh 2φ3, (51)

A′ = 1

3
�−1 cosh2 φ3

(
h1 cosh φ1 cosh2 φ2 + h2 sinh φ1 sinh2 φ2

)

+
√

2

12
�2(g2 − 2g1 − g2 cosh 2φ3) (52)

which can be rewritten more compactly in terms of the super-
potential as

�′ = −�2 ∂W

∂�
, φ′

1 = −3
∂W

∂φ1
,

φ′
2 = −3

2
sech2φ3

∂W

∂φ2
, φ′

3 = −3

2

∂W

∂φ3
, A′ = W.

(53)

In deriving these equations we have chosen the upper sign
choice in (45) and (46). This also allows for identifying the
UV and IR fixed points as the AdS5 critical points at r → ∞
and r → −∞, respectively. It can also be verified that the
BPS equations are compatible with the second-order field
equations obtained from the Lagrangian (10). For g2 = 0,
the BPS equations reduce to those of N = 4 RG flows studied
in [9,10] while for h2 = 0, we recover the BPS equations for
N = 2 RG flows in [9]. The former describes holographic
RG flows between N = 4 critical points I and II and can
be obtained analytically. The latter corresponding to holo-
graphic RG flows from an N = 2 SCFT in the UV to an
N = 1 SCFT in the IR have been obtained numerically.

Although the N = 4 AdS5 vacua in the SO(2)D ×
SO(3) × SO(3) gauge group considered here have some
of the scalar masses different from those in the SO(2) ×
SO(3) × SO(3) gauge group studied in [9,10] as seen from
Table 1, it turns out that setting φ3 = 0 and φ1 = φ2 leads
to the same BPS equations as those in [9,10]. Therefore, the
flow solutions are the same and will not be repeated here. For
other possible RG flows, we are not able to find any analytic
solutions. Accordingly, we will rely on a numerical analysis
for obtaining relevant solutions.

We first look at asymptotic behaviors of scalar fields near
all of the AdS5 critical points. These behaviors give infor-
mation about possible types of deformations for the SCFT
dual to each AdS5 critical point. It is convenient to redefine
the coupling constants as in (38) together with

h2 = g

ζ
(54)

for 0 < ζ < 1 in order to have h2 > h1 > 0. Linearizing the
BPS equations leads to the following results:
Critical point I

Near critical point I, the BPS equations give, for ρ 	= 2,

� ∼ φ1 ∼ φ2 ∼ e−gr = e
− 2r

LI ,

φ3 ∼ e
−g

(
1− 1

ρ

)
r = e

−2
(

1− 1
ρ

)
r
LI (55)

with L I = 2
g . We see that �, φ1 and φ2 are dual to operators of

dimension� = 2 whileφ3 is dual to an operator of dimension
� = 2 + 2

ρ
.

As pointed out in [9], �, φ1 and φ2 correspond to the vev
of relevant operators with dimension 2 while φ3 leads to a
source term of an operator with dimension 2 + 2

ρ
in the dual

N = 2 SCFT. For ρ = 2, however, the cubic term of the
form �φ2

3 of the expansion of the superpotential is of the
same order as the quadratic term �2 as pointed out in [3]. In
this case, the asymptotic behaviors are given by

φ1 ∼ φ2 ∼ e
− 2r

LI , φ3 ∼ C3e
− r

LI ,

� ∼ Ce
− 2r

LI + 4C2
3

3L I
re

− 2r
LI (56)

which indicates that � and φ3 corresponds to source terms
of dimension-2 and -3 operators as also shown in [9].

Critical point II
For ρ 	= 2, we find

� ∼ e
− gr

(1−ζ )
1
3 = e

− 2r
LII , φ1 ∼ φ2 ∼ e

gr

(1−ζ2)
1
3 = e

2r
LII ,

φ3 ∼ e
− gr(ρ−1)

(1−ζ2)
1
3 = e

−2
(

1− 1
ρ

)
r
LII (57)

with L II = 2(1−ζ 2)
1
3

g . At this critical point, � and φ3 are
still dual respectively to operators of dimensions � = 2 and
� = 2+ 2

ρ
as in the previous case. On the other hand, φ1 and

φ2 are now dual to irrelevant operators of dimension � = 6.
As in critical point I, these behaviors suggest that � and

φ3 correspond respectively to a vev and a source term of
operators with dimensions 2 and 2 + 2

ρ
. For ρ = 2, the

asymptotic expansion gives

φ1 ∼ φ2 ∼ e
2r
LII , φ3 ∼ C3e

− r
LII ,

� ∼ Ce
− 2r

LII + 4C2
3

3L II(1 − ζ 2)
1
6

re
− 2r

LII (58)

which again implies source terms for operators of dimension
2 and 3 dual to � and φ3, respectively.

Critical point III
Near this critical point, we have

φ1 ∼ e
− gr(2+ρ)

3ρ
1
3 = e

− 2r
LIII , φ2 ∼ e

− gr

ρ
1
3 = e

− 6
2+ρ

r
LIII ,

� ∼ φ3 ∼ C1e
−

(
1+

√
25ρ−22

2+ρ

)
r

LIII + C2e
−

(
1−

√
25ρ−22

2+ρ

)
r

LIII

(59)
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Fig. 1 A family of RG flows from N = 4 AdS5 critical point with SO(2)D × SO(3) × SO(3) symmetry to N = 2 AdS5 fixed point with
SO(2)diag symmetry in the IR with g = 1, ρ = 3 and ζ = 1

2

with L III = 6ρ
1
3

g(2+ρ)
and constants C1 and C2. In this case,

φ1 and φ2 are dual to operators of dimensions � = 2 and
� = 6

2+ρ
,

2+4ρ
2+ρ

, respectively. On the other hand, � and φ3

are dual to combinations of operators of dimensions � =
1 +

√
25ρ−22

2+ρ
and � = 3 +

√
25ρ−22

2+ρ
as also pointed out in

[9].

Critical point IV
Finally, we find the behaviors near critical point IV

φ1, φ2 ∼ C1e
−

(
1+

√
ρ+26
2+ρ

)
r

LIV + C2e
−

(
1−

√
ρ+26
2+ρ

)
r

LIV ,

�, φ3 ∼ C3e
−

(
1+

√
25ρ−22

2+ρ

)
r

LIV + C4e
−

(
1−

√
25ρ−22

2+ρ

)
r

LIV

(60)
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Fig. 2 An RG flow from N = 4 AdS5 critical point with SO(2)D × SO(3)diag symmetry to N = 2 AdS5 fixed point with SO(2)diag symmetry

in the IR with g = 1, ρ = 3 and ζ = 1
2 . In this solution, φ1 = φ2 = 1

2 ln
[

1−ζ
1+ζ

]
along the flow

with L IV = 6ρ
1
3 (1−ζ 2)

1
3

g(2+ρ)
. � and φ3 are still dual to combi-

nations of operators of dimensions � = 1 +
√

25ρ−22
2+ρ

and

� = 3+
√

25ρ−22
2+ρ

as in the case of critical point III while φ1

and φ2 are dual to combinations of operators of dimensions

� = 1 +
√

ρ+26
2+ρ

and � = 3 +
√

ρ+26
2+ρ

.
We note that these behaviors give conformal dimensions

consistent with the scalar masses given in the previous sec-
tion. We are now in a position to give numerical RG flow solu-
tions to the BPS equations. First of all, we take the numerical
values of the coupling constants to be

g = 1, ρ = 3, ζ = 1

2
. (61)

There exists a family of RG flows from the N = 4 critical
point with SO(2)D × SO(3) × SO(3) symmetry (critical
point I) to the N = 2 fixed point with SO(2)diag symmetry
(critical point IV) as shown in Fig. 1. In this family, there
is an RG flow that begins at critical point I and proceeds
directly to critical point IV as shown by the green line in
Fig. 1. In addition, there is a number of RG flows that pass

arbitrarily close to critical point II before ending at critical
point IV shown by the red, blue and cyan lines in the figure.
For clarity, we have also included the dashed lines referring
to the values of the corresponding fields at each critical point.
These RG flows constitute a family or a cone of flows, in the
terminology of [26], bounded by the direct flow (green line)
and the limiting flow that passes very close to critical point
II and ends at critical point IV (cyan line). All of these RG
flows are driven by operators of dimensions 2 and 2 + 2

ρ
in

the N = 4 UV conformal fixed point to N = 2 critical point
IV in the IR.

There is also a direct RG flow from critical point II to
critical point IV as shown in Fig. 2. We have consistently

set φ1 = φ2 = 1
2 ln

[
1−ζ
1+ζ

]
along the flow. Although this

simplifies the BPS equations considerably, we are not able
to find an analytic flow solution. As in Fig. 1, the dashed
lines refer to the values at the critical points. This RG flow
is driven by relevant operators of dimensions 2 and 2 + 2

ρ

dual respectively to � and φ3. The solution is similar to the
N = 2 RG flow from N = 4 critical point I to N = 2 critical

123
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Fig. 3 An RG flow from N = 4 AdS5 critical point with SO(2)D ×SO(3)×SO(3) symmetry to N = 2 AdS5 fixed point with SO(2)diag ×SO(3)

symmetry in the IR with g = 1, ρ = 3 and ζ = 1
2 . In this case, φ1 = φ2 = 0 along the flow

point III given in [9] with φ1 = φ2 = 0 along the flow. We
also show this solution in Fig. 3 for the sake of comparison.

As a final note, the flow in Fig. 2 could joint the N = 4
RG flow from critical point I to critical point II to form a
cascade of RG flows. On this flow, the operators dual to φ1

and φ2 become irrelevant at an intermediate N = 4 fixed
point (critical point II). The relevant operators (� = 2 and
� = 2 + 2

ρ
) dual to � and φ3 then further drive the flow to

critical point IV. The resulting solution is similar to the cyan
line in Fig. 1.

4 Conclusions and discussions

In this paper, we have studied five-dimensional N = 4
gauged supergravity with SO(2)D × SO(3)× SO(3) gauge
group. Within the SO(2)diag invariant scalar sector, we have
identified four supersymmetric AdS5 vacua with N = 4
and N = 2 supersymmetries. One of the N = 4 vacua is
the trivial critical point located at the origin of the scalar
manifold and preserves the full SO(2)D × SO(3) × SO(3)

gauge symmetry. The other N = 4 vacuum only preserves

SO(2)D × SO(3)diag symmetry. Both of these vacua are
dual to N = 2 SCFTs in four dimensions with SO(3)

and trivial flavor symmetries, respectively. The remaining
two AdS5 vacua are N = 2 supersymmetric and are dual
to N = 1 SCFTs in four dimensions. One of these criti-
cal points has SO(2)diag × SO(3) symmetry. All of these
three AdS5 vacua have an analogue in related gauge groups
SO(2) × SO(3) × SO(3) and SO(2)D × SO(3) studied in
[9,10].

In addition, we have found a genuinely new N = 2 AdS5

vacuum with SO(2)diag symmetry. We have also computed
the full scalar masses at all of the aforementioned AdS5

vacua and studied holographic RG flows interpolating among
these critical points. Apart from the known N = 4 RG flows
between N = 4 critical points and the N = 2 RG flow from
the trivial N = 4 critical point to SO(2)diag × SO(3) N = 2
critical point, we have found a family of RG flows between
the trivial N = 4 critical point to the new SO(2)diag N = 2
critical point. Some of these RG flows pass arbitrarily close to
the SO(2)D × SO(3)diag N = 4 critical point in addition to
the direct RG flow from the trivial N = 4 critical point to the
SO(2)diag N = 2 critical point. We have numerically given

123
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all of these RG flows. The results could give a holographic
description of the possible RG flows between various con-
formal phases of strongly coupled N = 1 and N = 2 SCFTs
in four dimensions and might be useful in other related study.

It would be interesting to identify precisely the dual N = 1
and N = 2 SCFTs dual to all the above AdS5 vacua and
the corresponding RG flows. Since the SO(2)D × SO(3) ×
SO(3) gauged supergravity under consideration here has cur-
rently no known higher-dimensional origin, it is of particu-
lar interest to find the embedding of this N = 4 gauged
supergravity in string/M-theory in which a complete holo-
graphic description can be obtained. This might be achieved
by using recent results in exceptional field theories and dou-
ble field theories. In particular, in [30], consistent truncations
of N = 4 gauged supergravity with n ≤ 3 vector multiplets
from eleven-dimensional supergravity have been shown. In
this case, the N = 4 AdS5 vacua are embeddable in the max-
imal SO(5) gauged supergravity in seven dimensions. The
extension of this result to include AdS5 vacua that cannot be
embedded in the seven-dimensional theory might possibly
lead to the embedding of the N = 4 gauged supergravity
with SO(2)D × SO(3)× SO(3) gauge group. Finally, other
types of holographic solutions such as black strings, black
holes and Janus solutions within the N = 4 gauged super-
gravity studied here are also worth consideration. This could
be done along the same line as in the recent results [10,31,32].
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